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Abstract: Under the Global Program to Eliminate Lymphatic Filariasis (LF) American Samoa con-
ducted seven rounds of mass drug administration (MDA) between 2000 and 2006. Subsequently,
the territory passed the WHO recommended school-based transmission assessment survey (TAS) in
2011/2012 (TAS-1) and 2015 (TAS-2) but failed in 2016, when both TAS-3 and a community survey
found LF antigen prevalence above what it had been in previous surveys. This study aimed to identify
potential environmental drivers of LF to refine future surveillance efforts to detect re-emergence
and recurrence. Data on five LF infection markers: antigen, Wb123, Bm14 and Bm33 antibodies and
microfilaraemia, were obtained from a population-wide serosurvey conducted in American Samoa
in 2016. Spatially explicit data on environmental factors were derived from freely available sources.
Separate multivariable Poisson regression models were developed for each infection marker to assess
and quantify the associations between LF infection markers and environmental variables. Rangeland,
tree cover and urban cover were consistently associated with a higher seroprevalence of LF-infection
markers, but to varying magnitudes between landcover classes. High slope gradient, population
density and crop cover had a negative association with the seroprevalence of LF infection markers.
No association between rainfall and LF infection markers was detected, potentially due to the limited
variation in rainfall across the island. This study demonstrated that seroprevalence of LF infection
markers were more consistently associated with topographical environmental variables, such as
gradient of the slope, rather than climatic variables, such as rainfall. These results provide the initial
groundwork to support the detection of areas where LF transmission is more likely to occur, and
inform LF elimination efforts through better understanding of the environmental drivers.

Keywords: lymphatic filariasis; environment; American Samoa

1. Introduction

Lymphatic filariasis (LF) is a neglected tropical disease that causes considerable
disability and disfigurement in the mostly low-and-middle-income countries where it
is endemic [1,2]. Wuchereria bancrofti, a filarial worm transmitted between humans by
mosquitoes, is the parasite responsible for all LF cases in American Samoa [3]. Once the
larvae enter the human host, they mature into adult filarial worms that damage the lym-
phatic system, potentially causing chronic pain and disability [4]. Chronic consequences
of LF infection include lymphoedema, scrotal hydroceles and elephantiasis. There is also
a major mental health burden stemming from social stigma and an inability to carry out
employment and normal daily activities [5,6]. The World Health Organization (WHO)
estimates that 863 million people worldwide remain at risk of LF infection, including the
entire population of American Samoa [7].

The Global Program to Eliminate LF and the regional program, the Pacific Program to
Eliminate LF (PacELF), were officially formed in 2000 and 1999, respectively [8,9]. These
programs aim to eliminate LF as a public health problem using a two-pronged strategy.
The first is to interrupt transmission using mass drug administration (MDA), followed by
post-MDA surveillance using transmission assessment surveys (TAS). The second is the
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management of the chronic disease and disabilities already caused by LF [10]. From 2000
to 2022 these programs have delivered over 8.6 billion individual MDA treatments that
have led to a 74% decline in infections globally [7]. Thanks to the success of elimination
programs, eight countries in the Pacific region: Vanuatu, Niue, Cook Islands, the Marshall
Islands, Tonga, Kiribati and Wallace and Fortuna, have had LF elimination status validated
by the WHO. However, despite ongoing elimination efforts, transmission continues in
some areas in the Pacific, including American Samoa, French Polynesia, and Fiji.

American Samoa had a baseline LF antigen prevalence of 16.5% in 1999, one of the
highest in the region [11]. Following seven rounds of MDA between 2000 and 2006,
school-based TAS in 2011/2012 (TAS-1) and 2015 (TAS-2) found LF antigen prevalence
below the estimated threshold where ongoing transmission was considered unlikely (upper
95% confidence interval of <1% antigen-positive rate in areas where Aedes is the main
vector) [10,12]. Following TAS-1 and TAS-2, subsequent surveys conducted outside PacELF
activities found evidence of ongoing transmission [13,14] which was later confirmed by the
2016 ‘TAS Strengthening Survey’ that completed a community cluster survey alongside the
third TAS (TAS-3) in American Samoa [15]. TAS-3, which sampled only six-and-seven-year-
olds, found an adjusted antigen prevalence of 0.7% (95% CI 0.03–1.8). In the same time
period, the community survey of those aged eight years and over found an even higher
adjusted antigen prevalence of 6.5% (95% CI 4.5–8.6) [15].

In American Samoa, Aedes polynesiensis is the main LF vector, with Ae. samoanus,
Ae. upolensis and Ae. tutuilae also responsible for LF transmission to a lesser extent.
Ae. polynesiensis is a tropical mosquito species that does not survive in temperate regions
or at high altitudes. They breed in still water inside small natural hollows, such as tree
holes as well as in artificial containers such as discarded tyres [16]. Suitable environmental
factors are integral to parasite development and mosquito breeding cycles. Mosquitoes
will only hatch when submerged in water, and egg desiccation is generally fatal [17].
Conversely, intense rainfall causes breeding ground destruction and mechanical damage to
the eggs [17]. Temperature impacts the timescale for parasite maturation, particularly in the
extrinsic phase, and therefore parasite abundance [18]. W. bancrofti cannot survive at higher
elevations, likely because the cooler temperatures do not support parasite maturation, while
high slope gradients lead to increased water run-off, lessor pooling and mosquito breeding
ground damage [1,19]. These environmental interactions are complex and dynamic, and
relationships between environmental factors and LF infections have been found to vary
between countries [20,21].

While TAS is the current standard surveillance tool, various alternative or com-
plementary surveillance strategies are currently being explored to overcome the chal-
lenges of identifying residual LF infections in the post-MDA setting, when prevalence
has reached very low levels. Potential methods include community surveys that include
older age groups [15,22], molecular xenomonitoring (the detection of pathogen DNA in the
mosquito) [23–26] and testing for alternative infection markers other than antigen, such as
LF antibodies (Ab) [15,22–29]. The use of anti-filarial antibodies in post-MDA surveillance
is currently being investigated in other studies [30]. The results are promising and suggest
that Abs may provide earlier evidence of LF resurgence [30]. Another method to comple-
ment current surveillance strategies may lie in the understanding of the environmental
drivers of transmission, and how this influences the geographic distribution of LF.

The geographical distribution of LF is determined by multifaceted interactions be-
tween mosquitos, parasites, and humans. Each of these interactions may be impacted by
surrounding topographical, climatic, socio-demographic, and behavioural factors, leading
researchers to believe that areas with a high risk of LF transmission could potentially
be identified or predicted by understanding the environmental drivers [3,31,32]. This
knowledge could help identify areas where transmission is more likely to persist (e.g.,
through spatial models), and where further targeted interventions may be required. To
support and facilitate LF elimination in American Samoa, and to help develop more sen-
sitive and targeted surveillance methods, the association between environmental factors
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and LF warrants further investigation. An understanding of these associations can also
help reduce the risk of infections through management of environmental factors, such as
landcover management. This study aims to identify potential environmental drivers of LF
transmission in American Samoa by using spatial analysis to explore associations between
LF seroprevalence in a 2016 community survey and locally collected or remotely sensed
environmental data. While this study is focused on American Samoa, the methods could
be widely applicable to other settings.

2. Materials and Methods
2.1. Study Location

American Samoa is a US territory in the South Pacific that consists of five islands and
two atolls [33]. It has a tropical climate with little variation in rainfall and temperature
throughout the year [34]. The population is approximately 57,000, 95% of which live on the
main island of Tutuila (shown in Figure 1) [35]. Tutuila is just over 30 km from east to west,
with its highest peak at 653 m above sea level [36]. In total, the group of islands has an area
of 197 km2 [35].
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Figure 1. Map displaying administrative village borders on the two largest islands of American
Samoa, Tutuila and Aunu’u. The locations of the villages sampled in the 2016 community survey are
indicated on the map. Topographic base layer sourced from ESRI [37].

2.2. Data Collection
2.2.1. Infection Markers

Data on LF infection markers were taken from the results of a 2016 community-based,
population proportionate cluster survey conducted in American Samoa in parallel with
TAS-3. The community household survey collected data on five serological markers as indi-
cators of LF infection in participants aged eight years and over. These were microfilaremia
(Mf) which indicates an active infection [38], circulating filarial antigen indicating the
presence of living or dead worms [38], and three LF antibodies against Wb123, Bm14 and
Bm33. Circulating filarial antigen and all three antibodies can persist to varying degrees
both post-infection and post-treatment [30]. While the patterns and dynamics of antibodies
have not been fully comprehended, it is understood that Wb123 appears in the early stages
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of infection while Bm14 and Bm33 antibodies may persist for multiple years following
infection [38]. Circulating filarial antigen, and Wb123, Bm14 and Bm33 antibodies were
measured using ELISA tests. The presence and density of Mf was determined through mi-
croscopy. The estimated prevalence of the five LF infection markers, along with laboratory
methods, have previously been reported [13,15,38].

2.2.2. Survey Design

The community survey included 30 primary sampling units (PSU). Each PSU included
whole villages, combinations of small villages, or village segments with a total population
of <2000 people. Two of these PSUs, Fagali’i and the contiguous villages of Futiga, Ili’ili,
and Vaitogi, were included based on previous studies confirming high LF antigen preva-
lence [14]. The villages sampled in this study are displayed in dark green on the map of the
two largest islands of American Samoa (Figure 1). Only the villages on the largest island of
Tutuila were surveyed in 2016 and included in this study.

The sampling methodology of the 2016 community survey has been previously re-
ported [15]. The end result of the sampling strategy was that 29% of the households in
each PSU were randomly selected from a georeferenced list of buildings. All household
members in the selected houses aged eight years and older were invited to participate.
This selection process gave the total sample size (n = 2710), 98.5% of whom had their
GPS coordinates registered based on their household location. The remaining 1.5% were
assigned coordinates based on the village centroid. This ensured that every participant
was assigned to the correct village. As these approximated locations were in the centre of
the village, all were surrounded by other buildings, meaning that there was no effect on
buffers used to calculate the environmental variables.

2.2.3. Spatial Layers on Island, Village and Building Boundaries

Shapefiles of boundaries of islands, villages and buildings used in this analysis were
compiled by the American Samoa Department of Commerce and downloaded from the
American Samoa National Marine Sanctuary GIS data archive [39].

2.2.4. Environmental Variables and Environmental Data

To select the environmental variables for analysis, we conducted a literature review on
studies that investigated the relationship between LF infection markers and environmental
factors. The review identified 27 studies from around the world. Information was collected
on all the environmental factors reported in these studies, with particular focus on the
strength and direction of each relationship (see Appendix A for details). The matrix also
included study location and date, number of participants, study design, aims, main vector,
and overall conclusions. The majority of the studies were conducted in Africa, with only a
few undertaken in the Pacific region. As a consequence of this geographic imbalance, the
main vector species studied was Anopheles, which has different breeding and biting habits
to the Aedes mosquito in American Samoa. In the reviewed studies, there were an array of
relationships reported between environmental variables and LF infection markers.

The basis for including environmental variables in this study were two-fold. First,
environmental variables were selected based on the presence of strong evidence in the liter-
ature review indicating their relationship with the prevalence and distribution of various
LF markers. Second, the environmental variable had to be suitable for analysis at a village
scale. For example, it would not be logical to include the mean distance to a permanent
waterbody aggregated to a village spatial level, as, upon visual inspection, most villages
have waterbodies scattered throughout. Based on these criteria, 14 environmental variables
were identified for inclusion in this study, however three had to be removed due to lack
of available data with sufficient coverage. These three were annual average temperature,
average temperature in the dry season and average temperature in the wet season.

Spatial environmental data for American Samoa were downloaded from multiple
sources (Table 1). Datasets were selected to be as close to 2016 as possible to represent the
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environmental conditions at the time of the community survey. Datasets were excluded if
there was insufficient coverage of American Samoa at a high enough resolution to represent
the spatial heterogeneity within the small islands (≤1 km2). The issue of insufficient
coverage applied mainly to temperature variables, which were removed as a covariate in
this study.

Table 1. Datasets and sources for each environmental variable included in this study, with details of
their spatial and temporal resolutions, American Samoa.

Variable
Description Dataset Source Spatial

Resolution
Temporal

Resolution

Temperature

MODIS/Terra Land
Surface Tempera-
ture/Emissivity

8-Day L3 Global 1
km SIN Grid

V06 [40]

USGS Earth
Explorer 1 km Weekly (2016)

Rainfall
Department of

Commerce–Local
Climate Data [41]

Pacific
Environment
Data Portal

1 km Monthly (2016)

Elevation

NOAA–American
Samoa 1/3

arc-second MHW
Coastal Digital

Elevation Model [42]

USGS Earth
Explorer 10 m 1984-2012

Landcover

Sentinel-2 10 m
Land Use/Land

Cover
Timeseries [43]

Esri 10 m 2017-2021

Surface reflectance
(used to derive

normalized
difference

vegetation index
(NDVI))

Landsat Collection 2
Level-2 Surface
Reflectance and

Surface
Temperature [44]

USGS Earth
Explorer 30 m Weekly (2016)

Population density
High Resolution
Settlement Layer

(HRSL) [45]

Pacific Data Hub
based on Data

for Good at Meta
dataset using

census data from
2010/2011

100 m

2020 (Based on
2011 census with

a population
growth rate of
0.23% applied)

2.2.5. Environmental Data Collection and Extraction

To accurately represent the environmental factors in the inhabited areas of each village,
where transmission is most likely, ‘inhabited buffer zones’ were created in ArcGIS Pro
version 2.8.6 and used as the areas for environmental data extraction. By creating the
inhabited buffer zones for each village, uninhabited areas, which are less likely to influence
LF transmission, were removed from the analysis. To create the buffer zones, we assigned a
centroid point to each building within the sampled villages using the Centroid (Polygon)
tool in ArcGIS version 2.8.6 (Figure 2). Each centroid was then given a circular buffer, and
all buffers in the village were dissolved using the ArcGIS version 2.8.6 dissolve tool to
create a boundary of inhabited areas for the village. The buffer size for each building was
first set at 100 m radius from the centroid, as 100 m is the approximate standard flight
range of Ae. Polynesiensis, and is also a plausible representation of where people most
frequently move around a building [46]. A second buffer size of 50 m radius was used for
sensitivity analysis.
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Figure 2. The process used to create the inhabited buffer zones using ArcGIS version 2.8.6 [47]. The
building locations were acquired from the American Samoa National Marine Sanctuary GIS data
archive [39]. Each colour in step four illustrates a different inhabited buffer zone.

The spatial layers downloaded for elevation and population density did not need to
be altered prior to extracting and averaging the environmental data per inhabited buffer
zone. The remaining variables were derived and calculated from the downloaded layers
using various methods, outlined below.

Normalised difference vegetation index (NDVI) is a measure of vegetation density
and health, and was estimated from the Landsat Collection 2 Level-2: Surface Reflectance
and Surface Temperature images [44]. All Landsat images from 2016 with a maximum
cloud cover of <10% were included in the calculation. The raster calculator in ArcGIS
version 2.8.6 was used to calculate the ratio of near-infrared bands, which are reflected by
vegetation, and red light bands, which are absorbed by vegetation [47,48]. NDVI values
range from −1 and +1. The values taken from ArcGIS version 2.8.6 were averaged over the
year. A high NDVI in an inhabited buffer zone indicates high vegetation density, while a
very low NDVI generally indicates water.

The downloaded landcover raster layer included ten landcover classes and needed to
be reclassified to four separate rasters, one for each of the landcover classes that were chosen
for inclusion in the analysis: rangeland, trees, crop land, and urban/built environments.
These four classes were chosen based on the evidence found in the literature review that
suggested they are most likely to have an association with LF infection markers. The
remaining six landcover classes were not included in this analysis. The reclassified raster
layer was converted into a polygon layer and the ArcGIS version 2.8.6 intersection tool
was used to find the total area within each inhabited buffer zone that was covered by each
of the landcover classes. The landcover class values used in the final models were the
percentage of each inhabited buffer zone covered by that landcover class. The percentage
of each landcover class was calculated by dividing the area of the buffer zone covered by
the landcover class (m2) by the total area of the inhabited buffer zone. A description of
each of the landcover classes used in this analysis is outlined in Table 2.



Trop. Med. Infect. Dis. 2022, 7, 295 7 of 19

Table 2. The four types of landcover analysed for their association with LF infection markers in American
Samoa. Data were taken from the recently updated Esri Land Use/Land Cover 10 m map [43].

Landcover Class Description

Crop Areas with human planted vegetation below tree height.

Rangeland Areas of shrubs, natural fields, and grassland, with no evidence of
artificial plotting or tall tree coverage.

Trees Areas of tall and dense vegetation, around 4.5 m or higher,
including forests, swamps, mangroves, and savannas.

Built/Urban Areas of human development including major paved roads,
houses, towns, and large areas of asphalt.

The slope gradient (degrees) was derived from the digital elevation model (DEM)
raster layer using the ArcGIS version 2.8.6 slope analysis tool [47]. The monthly precipita-
tion records for each month in 2016 were summed and averaged in ArcGIS version 2.8.6
to provide the annual rainfall in mm. Other variables calculated from this layer were the
average monthly precipitation in the driest months (June to September) and wettest months
of each year (October to May).

Spatial mean values of rainfall, elevation, slope gradient, NDVI and population density
were calculated by inhabited buffer zone in ArcGIS software version 2.8.6 [47] to define the
parameters for subsequent analyses.

2.3. Associations between Environmental Variables and LF Infection Markers

The statistical analysis of associations between the infection markers and environmen-
tal drivers was conducted using R studio software version 2022.02.2 [49]. Analysis was
conducted at the village level, rather than household level, to best represent variation in the
environmental factors. A descriptive statistical analysis was undertaken for each infection
marker and environmental variable. The distribution of each variable was inspected using
histograms, and the relationship between the five infection markers and the environmental
variables was assessed using scatter plots. Village-level crude prevalence of Mf, LF antigen
and each Ab (Wb123, Bm14, Bm33) were estimated, and binomial exact methods were applied
to ascertain the 95% confidence intervals (95% CI). Choropleth maps were produced to visu-
alise the estimated prevalence for each of the five infection markers in the sampled villages.
For all remaining analysis and the final models, infection marker count data was used.

Each environmental variable initially had two sets of extracted data, using building
buffer zones of 50 m and 100 m. The correlation between the environmental data extracted
for the 50 m and 100 m buffers and all five infection markers was calculated and based on
the Pearson correlation coefficient, the buffer size associated with a stronger correlation
with each infection marker was used for the next step of the variable selection process.

After selecting one buffer size per environmental variable for each infection marker,
all remaining independent variables were then examined for collinearity using a univariate
Poisson regression model. Pairs with a correlation coefficient of >0.8 in the univariate
Poisson models were considered highly correlated, and the variable with the highest
Akaike information criterion (AIC) value in each pair was excluded from the final multi-
variable models.

As recent LF surveys in American Samoa suggest that each detection of infection
marker is a discrete and relatively rare event, the final analysis for each marker used a
Poisson regression model [14,15]. The final model selection and analysis for each infection
marker was performed with a multivariable stepwise Poisson regression process that
used the LF infection marker count data. The stepwise regression process using a forward
selection of the predictor variables was used to find the most parsimonious model. A village
population log offset was included in the model to account for differences in population
size between sampled villages. The results of the multivariable Poisson regression models
have been expressed as relative risk (RR), with the effect size calculated based on these
values. For all analyses, a p-value of <0.05 was used to indicate statistical significance.
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A 95% confidence interval (95% CI) for RR that excluded 1 was also used to support the
indication of significance.

3. Results
3.1. Village Level Prevalence of Infection Markers

The study included 2671 participants in 750 households spread across 30 villages. The
infection marker with the highest prevalence in the sampled villages was the Bm33 Ab
(45.63% 95% CI 43.73–47.45%), followed by Wb123 Ab (25.61% 95% CI 23.96–27.31%), Bm14
Ab (13.1% 95% CI 11.85–14.41%), antigen (5.05% 95% CI 4.25–5.95%) and Mf (1.27% 95%
CI 0.88–1.8). The highest seroprevalence of LF was in the village of Fagali’i, a previously
confirmed hotspot [14], where Bm33 Ab prevalence was 95.06% (95% CI 87.84–98.64%)
and antigen prevalence 38.27% (95% CI 27.68–49.74%). Fagali’i also had the highest sero-
prevalence of Bm14 Ab and Wb123 Ab. Bm33 Ab was detected in all sampled villages.
Conversely, Mf-positive persons were detected in only 11 of the sampled villages. A
descriptive summary of the infection marker counts is shown in Table 3.

Table 3. Descriptive statistics for rainfall (mm), elevation (m), slope gradient (degrees), normalised
difference vegetation index (NDVI), landcover class (percent of inhabited buffer zone covered),
population density (persons/km2) and counts of infection markers in a 2016 community survey,
American Samoa.

Variable Buffer
Size Mean Standard

Deviation Minimum Maximum

Village population - 786.16 804.42 47.00 3195.00
Participants/village - 89.03 81.10 5.00 307.00

Antigen (counts/village) - 4.50 6.45 0.00 31.00
Mf (counts/village) - 1.13 2.46 0.00 12.00

Wb123 Ab (counts/village) - 22.80 21.32 2.00 83.00
Bm14 Ab (counts/village) - 11.67 12.84 0.00 57.00
Bm33 Ab (counts/village) - 40.63 40.17 4.00 175.00

Annual rainfall (mm)
50 m 3426.79 654.41 2136.74 4526.41

100 m 3430.70 654.78 2128.86 4518.20
Average dry season rainfall

per month (mm)
50 m 239.70 50.75 139.01 317.97

100 m 240.10 50.95 138.28 317.21
Average wet season rainfall

per month (mm)
50 m 351.70 63.60 230.54 461.31

100 m 352.03 63.57 229.91 460.71

Average elevation (m) 50 m 95.51 95.66 0.00 402.41
100 m 96.28 92.07 0.05 378.61

Average slope gradient
(degrees)

50 m 15.96 11.54 0.00 39.17
100 m 16.23 11.49 0.23 39.18

Average NVDI 50 m 0.34 0.05 0.21 0.41
100 m 0.34 0.05 0.23 0.41

Crop cover in inhabited
buffer zone (%)

50 m 0.11 0.34 0.00 1.78
100 m 0.14 0.44 0.00 2.28

Tree cover in inhabited
buffer zone (%)

50 m 26.35 18.89 0.29 66.59
100 m 35.96 20.63 1.02 78.29

Rangeland cover in
inhabited buffer zone (%)

50 m 5.36 5.79 0.00 21.09
100 m 8.27 8.31 0.00 27.04

Urban cover in inhabited
buffer zone (%)

50 m 59.10 21.88 16.48 95.54
100 m 40.72 22.88 9.56 88.53

Average population density
(person/km2)

50 m 20.30 6.74 12.00 36.00
100 m 18.16 6.00 10.00 33.58

The geographic distribution of LF seroprevalence amongst the sampled villages is
shown in Figure 3. Areas of high antigen and Ab crude prevalence were consistently
detected in the far western part of the island, particularly in the villages of Fagali’i, a
previously confirmed hotspot, and Fagamalo [14]. The prevalence of Mf (confirmation of
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active infection) was also the highest in these two villages (14.81% and 23.08%). Conversely,
the prevalence of all infection markers tended to be lowest in the eastern part of the island.
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Figure 3. Crude prevalence (%) of each of the five infection markers sampled in the 2016 community
survey in American Samoa: (A) antigen, (B) microfilaria, (C) Wb123 Ab, (D) Bm14 Ab, (E) Bm33 Ab.

3.2. Village-Level Environmental Data

Annual rainfall, average monthly rainfall in the wet season and average monthly
rainfall in the dry season were lowest in the inhabited buffer zone of Tula (in the east)
and highest in the inhabited buffer zone in the combined area covering the villages of
Satala-Anua-Atuu (central). Average annual rainfall in each inhabited buffer zone ranged
between 2137 mm and 4526 mm. In most villages, the seasonal variation in monthly rainfall
was minimal, with mean monthly rainfall varying by ~100 mm between the wet and dry
season months. The population density ranged between 12 to 36 persons/km2 with an
average of 18 persons/km2. As expected, both slope gradient and elevation were lower
closer to the coastline and higher in the centre of the territory. There was minimal variation
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in the mean values of the environmental data extracted using 50 m and 100 m buffers
(Table 3). The results of the environmental data extraction in each PSU, in both the 50 m
and 100 m inhabited buffer zones, is reported in Appendix B.

3.3. Multivariable Poisson Regression Models

The models developed for each infection marker differed in the environmental vari-
ables that were found to be significant (Table 4). Tree cover, which was included in all
five multivariable models, consistently had a positive association with infection marker
positivity. The risk of Mf-positivity increased by 18% (95% CI 9%, 29% p < 0.01) for every
1% increase in tree cover in the inhabited buffer zone. Effect sizes of a similar magnitude
were found in the other four infection marker models. The association between rangeland
cover and Mf-positivity had the largest effect size of any relationship within the study.
The risk of Mf-positivity was estimated to increase by 42% (95% CI 17%, 76% p < 0.01)
for every 1% increase in rangeland cover. The Bm33 Ab model was the only Ab model
to include rangeland cover, again finding a statistically significant positive relationship
with Ab-positivity (5% 95% CI 2%, 8% p < 0.01). The percentage of crop cover within
an inhabited buffer zone was included in the Wb123 Ab and Bm14 Ab models however
the result in the Wb123 Ab model was not statistically significant. However, the Bm33
Ab model showed a statistically significant negative association between crop cover and
Ab-positivity, whereby the risk of Ab-positivity decreased by 22% for every 1% increase in
crop cover (95% CI −33%, −11% p < 0.01). Urban cover also had a statistically significant
association with Mf-positivity and Ab-positivity.

Table 4. Results of the multivariable Poisson regression models for the association between the five
lymphatic filariasis infection markers sampled in the 2016 ‘TAS Strengthening Survey’ in American
Samoa and environmental variables: rainfall (mm), population density (persons/km2), elevation
(m), slope gradient (degrees), NDVI, landcover class (percent of village buffer zone covered), and LF
infection markers.

Microfilaria Antigen Wb123 Ab Bm14 Ab Bm33 Ab

RR (95% CI) p-
Value RR (95% CI) p-

Value RR (95% CI) p-
Value RR (95% CI) p-

Value RR (95% CI) p-
Value

Climatic Variables

Annual Rainfall - - - - - - 1.0 (1.0, 1.0) 0.01 - -
Dry Season

Rainfall - - - - - - - - - -

Wet Season
Rainfall 1.01 (1.0, 1.02) <0.01 1.01 (1.0, 1.01) <0.01 1.0 (0.99, 1.0) 0.1 - - 1.0 (1, 1) <0.01

Population Variables

Population
Density 0.88 (0.81, 0.96) <0.01 0.89 (0.85, 0.93) <0.01 0.96 (1.03, 1.06) <0.01 0.96 (0.95, 0.98) <0.01 0.98 (0.96, 0.99) <0.01

Topographical and Landcover Variables

Elevation - - - - - - 1.0 (1.0, 1.0) 0.04 - -
Slope gradient 0.91 (0.84, 0.98) 0.02 0.91 (0.88, 0.94) <0.01 1.01 (1.0, 1.02) 0.04 - - 1.01 (0.99, 1.02) 0.09

NDVI - - 0.00 (0, 0.06) <0.01 0.03 (0, 0.31) <0.01 0.001 (0.0, 0.02) <0.01 0.01 (0.01, 0.58) <0.01
Crop class - - - - 0.85(0.71, 1.01) 0.07 - - 0.78 (0.67, 0.89) <0.01
Tree class 1.18 (1.09, 1.29) <0.01 1.07 (1.04, 1.09) <0.01 1.05 (1.03, 1.06) <0.01 1.09 (1.07, 1.11) <0.01 1.06 (1.05, 1.08) <0.01

Urban class 1.09 (1.01, 1.18) 0.02 1.02 (0.99, 1.04) 0.17 1.02 (1.01, 1.04) <0.01 1.04 (1.03, 1.06) <0.01 1.04 (1.03, 1.08) <0.01
Rangeland class 1.42 (1.17, 1.76) <0.01 1.12 (1.06, 1.19) 0.03 - - - - 1.05 (1.02, 1.08) <0.01

RR = relative risk. Ab = antibody. CI = confidence interval. Values in bold indicate that the result was statistically
significant based on effect level, 95% CI and a p-value of < 0.05. ‘-‘ indicates that the variable was not included in
the model.
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Higher population densities had a negative association with infection marker positivity
across all models, especially the Mf model (−12%, 95% CI −19%, −4% p < 0.01) and antigen
model (−11% 95% CI −15%, −7% p < 0.01). There was also a negative association between
steeper slope gradients and Mf (−9% 95% CI −16%, −2% p 0.02) and antigen (−9% 95% CI
−12%, −6% p < 0.01) positivity.

In all models, rainfall showed no significant association with the detection of LF
infection markers. NDVI had a very minimal association (RR between <0.0001 and 0.03)
with infection marker positivity in all models where it was included (antigen, and Wb123,
Bm14 and Bm33 antibodies).

4. Discussion

This study was the first to investigate associations between environmental variables
and LF infection markers in American Samoa. We identified seven environmental variables
that were associated with at least one of the five LF infection markers tested in the 2016
community survey in American Samoa. Each of the five infection markers were associated
with a unique set of environmental variables, with the effect sizes varying between each
marker. However, there were some overall consistencies detected in the results. In the
villages included in this study, rangeland, tree cover, and urban cover had the strongest
positive association with LF infection markers. Tree cover had a positive association with
LF infection marker positivity in all five models. Similarly, higher population densities
universally had a negative association with LF infection marker positivity. There is also
evidence that slope gradient had a negative association with Mf and antigen positivity.

The associations between environmental variables and LF infection markers were
generally consistent with the results found in previous studies. For example, the negative
association with slope gradient in this study has been found almost universally in other
studies conducted on the African continent [32,50]. However, while some associations were
similar to reports from other countries, other findings were contradictory. The negative
relationship between high population density and LF infection markers was opposite to
the results found in most other studies.

Although the negative association observed with population density could appear to
logically conflict with the positive association observed with urban landcover, it should be
noted that the urban landcover class is not a direct measure of the level of urbanisation.
More accurately, this landcover class represents evidence of the presence of manmade struc-
tures such as roads and buildings, which may have since been abandoned. In American
Samoa, higher population density generally follows a similar distribution to the urban
landcover classification but there are areas of medium-high population density that sit
within rural areas. Additionally, large portions of the urban areas have low population den-
sities. Areas with high population densities may have higher quality residential buildings
and therefore less exposure to mosquitos. People in these areas might also have had better
access during rounds of MDA. These possible confounding factors will require further
investigation in the future.

The contrasting results between this study and studies in other locations may be
related to the complexity of the dynamic relationships between LF transmission and
environmental drivers in different locations. The differences observed between this study
and other studies also demonstrate the importance of considering the specific geographical
context for this type of analysis. Compared to other study locations, American Samoa is
smaller in physical size and population and is characterised by minimal seasonal variability
in climatic factors. Additionally, even the most densely populated areas of American Samoa
would be considered as low density in most parts of the world.

Our study found that some landcover classes were strongly associated with the pres-
ence of LF infection markers. Rangeland produced the largest effect size in the study
when analysed for its relationship with Mf-positivity, although the confidence interval was
wide. Rangeland includes areas of shrubs, natural fields, and grassland [43]. This type of
landcover may provide Ae. polynesiensis with the small puddles of water that it prefers to



Trop. Med. Infect. Dis. 2022, 7, 295 12 of 19

use as a breeding ground [16]. The tree class was another variable that had an association
with infection marker positivity. Dense tree cover may protect mosquitos from fatally high
temperatures and intense rainfall. This phenomenon was found in a similar study in Ghana,
where mosquitos could survive higher temperatures if they were protected by dense tree
coverage [50].

The crop class was included in two infection marker models and had a statistically
significant negative relationship with Bm33 Ab-positivity within this study. Crop class
was also included in the Wb123 Ab model but did not produce a statistically significant
association (Table 4). A study in Burkina Faso found a similar negative relationship between
crop cover and LF infections. They attributed it to the large quantities of insecticide use on
the crops that temporarily reduces mosquito abundance [51]. However, their study was
specifically related to cotton crops, and they suggested that different crop varieties may
impact LF prevalence in different ways. Information on crop type was not available for
this study.

Slope gradient showed a negative association with Mf-positivity and antigen-positivity,
consistent with studies conducted in Nigeria and Ghana [32,50]. It is likely that steeper
gradients promote stronger water run-off, which causes damage to mosquito eggs and
the pools of water used for breeding grounds, leading to lower mosquito abundance [32].
It is also possible that slope gradient is acting as a proxy variable for elevation, as they
were highly correlated in all models. A higher mean slope gradient is generally the result
of high mean elevation. W. bancrofti cannot survive at high elevations, generally >600
m, as temperatures are outside of the species’ survival ranges [19,32,52]. In the villages
sampled in this study, the highest mean elevation was in the inhabited buffer zone of
Satala-Anua-Atuu (402 m). This makes it possible for temperature to be a confounding
factor but potentially to a lesser extent than areas with mean elevations >600 m. In all
models except the Bm14 model, elevation was not included due to multicollinearity with
slope gradient.

This study did not include temperature as a variable due to the limited data, and
rainfall was removed from the multivariable models due to multicollinearity, ill-fit or lack
of statistical significance. Regardless, it is still possible that both rainfall and temperature
play an important role in driving LF transmission. Lack of correlation does not always
mean a lack of causation and there are strong, well-known biological pathways between
temperature, rainfall and LF infection risk. These biologically plausible pathways indicate
that further investigation is warranted in American Samoa when higher quality data
become available. However, it is possible that the statistical correlation will not adequately
represent the real-world dynamics due to the minimal variation in rainfall and temperature.

The main limitation of this study is the shortage of high-resolution datasets that com-
pletely cover American Samoa, which meant environmental variables with previously
confirmed associations with LF in other parts of the world could not be analysed. The main
example was temperature, where elevation had to be used as a proxy due to the limited
coverage by the temperature raster layer. There was also no NDVI dataset which completely
covers American Samoa. An NDVI layer was created to compensate for this absence, as
described in Section 2. However, many LANDSAT images had to be excluded due to cloud
coverage >10%, so the NDVI layer was not representative of the potential variation through-
out the year. A further potential limitation is that migration and temporary residence were
not considered. Previous investigations of travel impact on LF in in American Samoa have
however found than recent travel was not related to LF infection [13,15].

This study included five markers as an indication of LF infection: antigen, Mf and
three antibodies (Wb123, Bm14 and Bm33). Antigen remains the standard infection marker
used in LF surveys but evidence is increasingly showing the value of including antibodies
in surveillance [29]. However, there is still only a limited understanding of how antibody
patterns change and develop over time [30]. As research into the dynamics of LF antibodies
develops, it is possible that future surveys will test for antigens in combination with one
or more antibodies [30]. Therefore, an understanding of how each individual infection
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marker is impacted by environmental factors is likely to prove useful. The challenge posed
by interpreting the different positive counts in current TAS and community surveys is
ongoing, and research is continuing.

It is outside the scope of this study to use the information on environmental associa-
tions to predict LF distribution in unsampled villages. However, it is encouraging to note
the consistency between high LF prevalence and the presence of the potential environmen-
tal drivers when compared to the results of other studies around the world. In the two
sampled villages with the highest LF prevalence, both had low average slope gradients,
low population densities and high tree cover.

5. Conclusions

This study is the first step toward understanding the intricate associations between
environmental factors and LF transmission in American Samoa. These results can be used
in future spatial analysis of LF distribution, such as predictive risk mapping to identify
potential hotspots and inform evidence-based strategies to strengthen surveillance. This
type of analysis may also be used to assess the potential impact of climate change on LF
transmission. Our models can be refined and adapted based on past, present and predicted
future environmental data to understand changes in LF disease distribution as climate
change continues to impact infectious disease distribution.
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Appendix A Summary of Studies Investigating Associations between Environmental
Variables and Lymphatic Filariasis

Variable n * Study Reference Location Most Common
Relationship Found

Temperature

Day Land Surface
Temperature 4

Mwase et al., 2014 [53]
Stensgaard et al., 2011 [2]
Eneanya et al., 2018 [32]

Kwarteng et al., 2021 [50]

Zambia
Uganda
Nigeria
Ghana

Positive (n = 2)

Night Land Surface
Temperature 3

Mwase et al., 2014 [53]
Stensgaard et al., 2011 [2]
Kwarteng et al., 2021 [50]

Zambia
Uganda
Ghana

No relationship was
found.

Mean max/min
temperature 2 Cano et al., 2014 [4]

Eneanya et al., 2018 [32]
Global
Nigeria

A positive
relationship with
mean minimum

temperature.

Average Annual
Temperature 8

De Souza et al., 2010 [31]
Manhenje et al., 2013 [1]

Cano et al., 2014 [4]
Stanton et al., 2013 [51]
Eneanya et al., 2018 [32]
Onapa et al., 2005 [54]

Palayandi et al., 2014 [52]
Slater & Michael 2013 [55]

Ghana
Mozambique

Global
Burkina Faso

Nigeria
Uganda

India
African Continent

Positive, linear (n = 6)

Land

Normalised
Difference Vegetation

Index (NDVI)
8

Mwase et al., 2014 [53]
Stensgaard et al., 2011 [2]
De Souza et al., 2010 [31]

Cano et al., 2014 [4]
Stanton et al., 2013 [51]
Eneanya et al., 2018 [32]

Kwarteng et al., 2021 [50]
Slater & Michael 2013 [55]

Zambia
Uganda
Ghana
Global

Burkina Faso
Nigeria
Ghana

African Continent

Positive (n = 4)
Did not contribute to

the model (n = 3)

Soil pH 1 Eneanya et al., 2018 [32] Nigeria No relationship
found

Land Cover 6

Mwase et al., 2014 [53]
Cano et al., 2014 [4]

Stanton et al., 2013 [51]
Eneanya et al., 2018 [32]

Kwarteng et al., 2021 [50]
Rwegoshora et al., 2005 [56]

Zambia
Global

Burkina Faso
Nigeria
Ghana

East Africa

Varied significantly
depending on the
type of landcover

analysed.

Water

Humidity 2 De Souza et al., 2010 [31]
Palayandi M. 2014 [52]

Ghana
India

Positive (n = 1)
Negative (n = 1)

Potential
evapotranspiration 1 Eneanya et al., 2018 [32] Nigeria Removed due to

multicollinearity

Wetness Index 2
Eneanya et al., 2018 [32]

Grziwotz et al., 2018
(As dew point) [57]

Nigeria
French Polynesia Positive (n = 2)

Distance to waterbody 8

Mwase et al., 2014 [53]
Stensgaard et al., 2011 [2]
Stanton et al., 2013 [51]
Eneanya et al., 2018 [32]

Nurjazuli & Santjaka 2020 [58]
Chesnais et al., 2019 [59]
Edirisinghe M. 2017 [3]

Kwarteng et al., 2021 [50]

Zambia
Uganda

Burkina Faso
Nigeria

Indonesia
Democratic Republic of

the Congo
Sri Lanka

Ghana

Positive (n = 4)
No relationship

(n = 2)
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Variable n * Study Reference Location Most Common
Relationship Found

Aridity 2 Cano et al., 2014 [4]
Eneanya et al., 2018 [32]

Global
Nigeria

No relationship
(n = 2)

Number of Months
with Rainfall 1 Stanton et al., 2013 [51] Burkina Faso Positive

Mean tidal level 1 Grziwotz et al., 2018 [57] French Polynesia Positive

Rainfall/Precipitation 13

Mwase et al., 2014 [53]
Stensgaard et al., 2011 [2]
De Souza et al., 2010 [31]
Manhenje et al., 2013 [1]

Cano et al., 2014 [4]
Stanton et al., 2013 [51]
Eneanya et al., 2018 [32]

Kwarteng et al., 2021 [50]
Hussaini et al., 2020 [60]
Grziwotz et al., 2018 [57]

Onapa et al., 2005 [54]
Palayandi M. 2014 [52]

Slater & Michael 2013 [55]

Zambia
Uganda
Ghana

Mozambique
Global

Burkina Faso
Nigeria
Ghana
Nigeria

French Polynesia
Uganda

India
African Continent

Positive, nonlinear
(n = 7)

Altitude
Elevation 12

Mwase et al., 2014 [53]
Stensgaard et al., 2011 [2]
De Souza et al., 2010 [31]
Manhenje et al., 2013 [1]

Cano et al., 2014 [4]
Stanton et al., 2013 [51]
Eneanya et al., 2018 [32]

Kwarteng et al., 2021 [50]
Onapa et al., 2005 [54]
Palayandi. M 2014 [52]

Slater & Michael 2013 [55]
Dhimal, Ahrens & Kuch 2014 [21]

Zambia
Uganda
Ghana

Mozambique
Global

Burkina Faso
Nigeria
Ghana

Uganda
India

African Continent
Nepal

Negative, nonlinear
(n = 8)

Slope 2 Eneanya et al., 2018 [32]
Kwarteng et al., 2021 [50]

Nigeria
Ghana Negative (n = 2)

Human Factors

House type 1 Srividya et al., 2018 [61] India

The proportion of
concrete and tiled,

not thatched, houses
was higher in

hotspots (31.8%
and 47.3%)

Water in the house 2 Nurjazuli & Santjaka 2020 [58]
Hussaini et al., 2020 [60]

Indonesia
Nigeria Positive (n = 2)

Distance to
stable light 2 Eneanya et al., 2018 [32]

Kwarteng et al., 2021 [50]
Nigeria
Ghana

Negative (n = 2)
LF prevalence
decreased with

increasing distance

* The total number of studies included in the literature review that analysed the variable.
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Appendix B Extracted Environmental Data for Normalised Difference Vegetation Index (NDVI), Rainfall (mm), Population Density (persons/km2),
Elevation (m), Slope Gradient (degrees), and Landcover Class (Percent of Inhabited Buffer Zone covered) in Each Village Inhabited Buffer zone of
the 2016 Lymphatic Filariasis Community Survey, American Samoa

Average
Normalised
Difference
Vegetation

Index

Annual Rainfall
(mm)

Average Rainfall
in Dry Months

(mm)

Average Rainfall
in Wet Months

(mm)

Average
Population

Density
(Persons/km2)

Average
Elevation (m)

Average Slope
Gradient
(Degrees)

Crop Cover in
Inhabited Buffer

Zone (%)

Forest Cover in
Inhabited Buffer

Zone (%)

Rangeland
Cover in

Inhabited Buffer
Zone (%)

Urban Cover in
Inhabited Buffer

Zone (%)

VILLAGE 50 m 100 m 50 m 100 m 50 m 100 m 50 m 100 m 50 m 100 m 50 m 100 m 50 m 100 m 50 m 100 m 50 m 100 m 50 m 100 m 50 m 100 m
Afono 0.4 0.4 3447.1 3422.3 245.5 243.0 352.9 350.7 22.6 19.1 18.1 20.3 10.1 10.0 0.0 0.0 51.8 61.8 1.4 3.2 16.5 9.6
Alao 0.4 0.4 2280.8 2281.6 152.0 152.0 239.4 239.4 26.5 23.9 63.5 58.8 16.1 16.0 0.0 0.0 28.5 35.9 5.5 7.5 62.7 43.3

Amaua 0.4 0.4 3291.9 3298.6 230.4 231.1 338.9 339.5 17.8 16.0 159.2 168.5 25.3 27.2 0.0 0.0 35.0 40.3 7.2 18.8 52.0 26.7
Amouli 0.3 0.3 2467.6 2461.5 166.0 165.6 258.5 257.8 18.9 17.9 94.2 92.9 22.5 22.4 0.0 0.0 38.5 49.2 9.9 11.7 45.0 24.6

Asili 0.3 0.3 3877.8 3941.9 287.6 293.2 390.5 396.5 16.0 15.3 89.5 101.7 23.4 24.4 0.0 0.0 46.3 65.0 0.0 0.0 43.6 21.1
Aumi 0.3 0.3 3755.6 3740.4 265.9 265.0 384.2 382.6 21.5 18.9 132.4 137.0 29.0 28.5 0.0 0.0 15.1 26.4 20.3 27.0 56.2 28.4

Fagalii 0.4 0.4 2828.0 2842.5 195.3 196.5 292.6 293.9 12.0 10.8 8.7 9.2 4.5 5.7 0.0 0.0 66.6 78.3 0.0 0.0 31.8 17.7
Fagamalo 0.4 0.4 2985.0 2990.1 206.0 206.5 308.4 308.9 12.7 12.7 0.1 0.9 0.5 1.9 0.0 0.0 60.6 69.1 0.0 0.0 35.6 18.8

Faganeanea 0.3 0.3 4173.3 4155.6 290.9 289.2 427.0 425.3 21.7 17.0 112.0 115.0 31.7 31.7 0.0 0.0 42.8 42.4 10.2 16.3 32.4 15.2
Fagatogo 0.3 0.3 4393.5 4369.5 304.3 302.6 447.8 445.6 36.0 33.6 2.3 4.6 2.4 3.7 0.0 0.0 8.9 14.5 5.8 8.0 77.1 60.3

Fatumafuti 0.3 0.3 3224.8 3230.2 210.5 211.0 335.5 336.0 30.0 30.0 0.0 0.0 0.0 0.2 0.0 0.0 23.3 27.9 8.1 13.1 59.6 28.1
Futiga 0.4 0.4 3281.0 3266.0 229.0 227.7 335.3 334.0 16.6 13.6 93.3 92.1 14.6 13.1 0.0 0.1 28.4 45.2 3.2 4.7 67.5 48.9
Iliili 0.4 0.4 3121.1 3113.8 212.9 212.3 324.0 323.4 21.5 18.8 60.0 57.4 3.0 2.9 0.0 0.1 3.3 6.4 3.8 9.3 92.1 82.4

Laulii 0.3 0.3 3563.8 3536.3 245.9 243.3 367.0 364.4 26.7 22.3 95.3 93.9 22.7 23.1 0.1 0.0 10.5 14.2 12.2 22.7 70.2 44.6
Leloaloa 0.3 0.2 4390.9 4394.9 307.4 307.8 452.3 452.5 18.4 16.0 374.8 361.3 35.0 37.2 0.5 0.3 11.6 17.1 21.1 25.0 22.9 14.6

Leone 0.3 0.3 3219.0 3315.4 226.7 235.5 329.2 338.0 17.4 16.2 42.7 54.9 8.2 9.2 0.0 0.0 10.3 19.5 1.4 2.0 85.9 73.8
Malaeimi 0.4 0.4 4188.3 4212.7 299.7 301.9 423.0 425.3 14.8 13.4 97.1 98.2 18.2 18.2 1.8 2.3 14.0 25.8 2.6 5.2 78.2 62.4
Malaeloa
Aitulagi 0.4 0.4 3849.7 3932.0 281.5 289.0 388.0 395.6 23.2 19.1 106.7 133.6 13.9 16.4 0.0 0.0 34.9 52.7 3.5 5.6 59.2 39.3

Masausi 0.3 0.4 2425.9 2438.0 165.3 166.1 252.3 253.5 16.7 17.5 13.1 16.1 6.1 7.2 0.0 0.0 57.1 71.8 4.7 3.4 33.9 13.6
Nua 0.3 0.3 3734.3 3733.2 275.3 275.3 377.0 376.8 12.6 11.6 116.1 115.9 27.4 26.2 0.0 0.0 17.2 32.6 3.8 2.7 59.8 35.9

Pago Pago 0.3 0.4 4269.6 4274.0 297.6 298.0 436.3 436.7 31.8 29.0 164.1 164.2 26.4 25.8 0.0 0.0 14.1 28.3 1.8 5.6 80.9 59.6
Pavaiai 0.4 0.4 4042.2 4048.7 293.2 294.1 407.7 408.3 12.4 11.5 130.4 133.8 8.1 8.5 0.1 0.2 10.3 19.1 0.5 1.6 75.1 63.3
Satala-

Anua-Atuu 0.2 0.2 4526.4 4518.2 318.0 317.2 461.3 460.7 30.4 27.0 402.4 378.6 38.8 39.2 0.0 0.0 1.7 6.0 16.2 26.3 65.4 44.4

Seetaga 0.3 0.3 3818.9 3772.2 283.3 279.5 384.4 379.9 12.5 11.6 163.2 165.8 29.0 29.4 0.0 0.0 25.8 38.9 0.1 0.1 54.0 30.0
Tafuna 0.3 0.3 3125.5 3122.3 210.9 210.8 327.2 326.7 23.1 21.5 28.1 27.7 3.4 3.4 0.5 1.0 0.3 1.0 2.8 7.2 95.5 88.5

Taputimu 0.4 0.4 2983.3 2995.9 203.0 204.1 307.7 308.9 14.9 14.1 35.3 35.9 1.8 1.7 0.1 0.1 12.2 22.7 0.2 1.6 87.3 75.5
Tula 0.4 0.4 2136.7 2128.9 139.0 138.3 230.5 229.9 30.3 23.5 18.0 16.7 9.6 8.9 0.0 0.0 19.5 32.7 6.1 10.3 70.6 42.7

Utumea
West 0.4 0.3 3371.0 3376.7 246.3 246.8 341.7 342.2 12.0 10.0 160.3 155.6 24.7 24.3 0.0 0.0 57.6 58.7 0.0 0.0 23.2 10.1

Vaitogi 0.4 0.4 2838.4 2842.5 188.4 188.8 298.5 298.8 15.3 14.0 38.2 40.4 2.3 2.6 0.2 0.2 14.8 27.1 1.3 2.1 82.7 66.8
Vatia 0.4 0.3 3192.1 3165.1 213.3 211.6 331.9 329.1 23.1 19.0 46.0 37.3 20.0 17.7 0.2 0.1 29.4 45.0 7.5 7.0 56.1 31.5
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