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Abstract: Seasonal patterns of mosquito population density and their vectorial capacity constitute
major elements to understand the epidemiology of mosquito-borne diseases. Using adult mosquito
traps, we compared the population dynamics of major mosquito species (Culex pipiens, Aedes albopictus,
Anopheles spp.) in an urban and a wetland rural area of Attica Greece. Pools of the captured Cx.
pipiens were analyzed to determine infection rates of the West Nile virus (WNV) and the Usutu virus
(USUV). The data provided were collected under the frame of the surveillance program carried out
in two regional units (RUs) of the Attica region (East Attica and South Sector of Attica), during the
period 2017–2018. The entomological surveillance of adult mosquitoes was performed on a weekly
basis using a network of BG-sentinel traps (BGs), baited with CO2 and BG-Lure, in selected, fixed
sampling sites. A total of 46,726 adult mosquitoes were collected, with larger variety and number of
species in East Attica (n = 37,810), followed by the South Sector of Attica (n = 8916). The collected
mosquitoes were morphologically identified to species level and evaluated for their public health
importance. Collected Cx. pipiens adults were pooled and tested for West Nile virus (WNV) and
Usutu virus (USUV) presence by implementation of a targeted molecular methodology (real-time
PCR). A total of 366 mosquito pools were analyzed for WNV and USUV, respectively, and 38 (10.4%)
positive samples were recorded for WNV, while no positive pool was detected for USUV. The majority
of positive samples for WNV were detected in the East Attica region, followed by the South Sector of
Attica, respectively. The findings of the current study highlight the WNV circulation in the region
of Attica and the concomitant risk for the country, rendering mosquito surveillance actions and
integrated mosquito management programs as imperative public health interventions.

Keywords: Culex; BG-sentinel; pathogens; fixed sampling site; RT-PCR

1. Introduction

Research on the distribution, abundance, and species composition of mosquitoes at
a regional level is vital to estimate the risk of incidence of vector-borne diseases that are
currently increasing in Europe, because of range expansion of native species and invasion
events by alien species [1–4]. Factors, such as globalization of travel and trade, increasing
land use and urbanization, high concentration of human populations, socioeconomics, and
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climate change, enhance viral circulation. As a result, invasive species have expanded
considerably their geographical and vectorial range, therefore increasing the risk of human
exposure [5–7].

Entomological studies conducted in many regions of Greece [8–14] and in other
European countries [15–17] demonstrate the importance of mosquito surveillance for
transmitted viruses that can be a powerful tool as a part of an effective early-warning
system [10,12,14,18,19]. Testing Culex mosquitoes for WNV, especially in high-risk areas
is helpful for gaining insight into the virus circulation; it is a significant confirmation in
cases where WNV was detected in mosquitoes before the symptoms’ onset in the human
cases [14,20,21].

The emergence and resurgence of certain mosquito-borne diseases has led to the
implementation of integrated programs, including entomological, veterinary, and human
surveillance in several European countries. The goal is to prompt recognition and mon-
itoring of arboviral activity; hence, the activation of proper control measures to prevent
transmission [3,5,22–24].

Among several arboviruses being endemic in Europe and the Mediterranean Basin,
two neurotropic mosquito-borne flaviviruses, the West Nile virus (WNV) and the Usutu
virus (USUV), belonging to the Japanese encephalitis antigenic complex [25,26], cause
sporadic cases of infection and outbreaks during the transmission seasons [5,13,14,27,28].

West Nile virus (WNV, Flaviviridae) is amongst the most widespread flavivirus in
the world [29,30]. Since its discovery in 1937, it has spread beyond its original known
geographic range and has caused human disease on every continent except Antarctica. It is
continuously circulating in Europe with a recent increasing trend of incidence in several
countries [3,31,32]. Greece is one of the most WNV-affected European countries with
outbreaks of the virus being recorded since 2010 [13,14,18,30,33–36]; since then, the cases
of WNV remain high on an annual basis [37–39].

The less renowned Usutu virus (USUV, Flaviviridae) is an African mosquito-borne fla-
vivirus [40–42] that constitutes a worrisome threat to human and animal health worldwide.
The virus was first detected in South Africa in 1959 [43,44], with the first cases in Europe
dated in 1996 [45–47]. The first USUV outbreak was recorded in Austria in 2001 [27,48,49],
and since then, the virus has spread throughout Europe [44,50,51], causing a considerable
mortality among bird populations [50,52–54] and creating increasing concern for the poten-
tial zoonotic transmission to humans [40,55–61]. Usutu virus antibodies were first detected
in Greece in 2010 in a dove [50,62], but no human cases have ever been recorded [10].
Nevertheless, targeted surveillance programs for vectors were not implemented; so far,
both viruses share a similar enzootic transmission cycle, with birds as amplifying hosts and
ornithophilic mosquitoes as vectors [5,50,51], and there are cases where the two viruses
co-circulate in the same environment [17,51]. It has been reported that co-circulation of
USUV and other related Flavivirus-like WNV may have an impact in terms of the respective
epidemiological mode [28].

In this study, we present entomological and WNV/USUV detection data from two
distinct regional units (RUs, NUTS3 level) of the Attica region (NUTS2 level) in Greece.
The epidemiological profile based on previous transmission periods and the different
environmental types, wetland and urban, were the reasons for the RUs selection for the
surveillance program to be performed. The current study was part of the surveillance
program in Attica region during the period 2017–2018.

The current program comprised of two axes with the following objectives:

(i) Monitoring and recording of mosquitoes’ species and population densities in the RUs
under study; and

(ii) detection and monitoring of the circulation of WNV and USUV in collected Cx. pipiens
s.l. for possible co-circulation.

This manuscript aimed to highlight the importance of implementing surveillance
programs for the prompt detection of viruses’ circulation in mosquito populations and
present, for the first time, surveillance data for USUV in mosquitoes.
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2. Materials and Methods
2.1. Study Area

Two out of eight distinct RUs of Attica comprised the main study area, where traps
were installed (Figure 1). The selection of the two RUs was based on the different envi-
ronmental types, namely urban (UR) and wetland (WT) areas, as described in Table 1.
Depending on the research coverage area in each RU, the corresponding number of traps
was placed. Additionally, the epidemiological profile of the selected RUs of Attica played
an important role concerning the risk for the residents, due to past WNV human infections
in both RUs and previously recorded malaria cases in the East Attica Sector being reported
to the NPHO since 2010 [38,63]. Data were collected from June 2017 to December 2018.

Figure 1. Geographical distribution of BGS traps with a schematic representation of the regional units participating in
the research program, 2017–2018. (a) map of Greece with locations of surveyed Regional Unit Areas; (b) Regional Unit
of Marathonas-Schinias (with red dots the sampling locations); (c) Regional Unit of Palaio Faliro (with yellow dots the
sampling locations).

The region of Attica, “Attiki” in the Greek language (38.0◦ N 23.7◦ E; total area:
3808.10 km2; population: 3,828,434 inhabitants (2011 record data) [64], is the main metropoli-
tan region of Greece, located on the eastern edge of the mainland, in Central Greece. The
greater area of Attica region includes Athens (the capital of Greece) and Piraeus along with
62 other cities and settlements. It is bordered by the sea, to the east, including the south
and southwest, while four mountains, Egaleo, Parnitha, Penteli, and Hymettus, delineate
the hilly plain [65].
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Table 1. Summary of data regarding sampling sites, catches, weeks, traps, collections of the RUs of the Attica region participated in the research program, 2017–2018.

Attica
Region

Surveyed RU Areas
(Abbreviation) and Period

BG-Sentinel
Traps (BGs)

CO2 + BG-Lure

Sampling
Location

GPS Coordinates
(Decimal Degrees)

Microenvironment Description
of Sampling Site

No. of
Weeks

No. of Collections
(Field/Problematic

Collections)

Sampling
Frequency

Latitude Longitude

East Attica
(EA)

Wetland Area (WT)
Marathonas-Schinias (MS)
15/06/2017–28/12/2018

MS1 Schinias 38.147729 24.002428

Private house/outdoor garden
with a large number of trees and
large green spaces, agricultural

area (semi-urban area)

80 74 (80/6) Weekly

MS2 Schinias 38.131439 23.995250

Private house/outdoor garden
with a large number of trees and
large green spaces, agricultural

area (semi-urban area)

80 69 (80/11) Weekly

MS3 Schinias 38.143819 24.030472

Private house/outdoor garden
with a large number of trees and
large green spaces, agricultural
area (bordered by the marsh)

59 59 (59/0) Weekly

MS4 Kato Souli 38.166265 24.022584

Private house/outdoor garden
with a large number of trees and
large green spaces, agricultural

area (rural area)

76 75 (76/1) Weekly

Total MS 295 277 (295/18)

South
Sector (SS)

Urban area (UR) Palaio
Faliro (PF)

21/06/2017–27/12/2018

PF1

Open
Protection
Centers for

Elderly

37.931997 23.692625

Municipality building/outdoor
garden with a large number of

trees and large green spaces,
urban area

79 77 (79/2) Weekly

PF2 City Hall 37.928111 23.699008

Municipality building/outdoor
garden with a large number of

trees and large green spaces,
urban area

79 77 (79/2) Weekly

PF3 Rema
Pikrodafnis 37.923989 23.710129

Private house/outdoor garden
with a large number of trees and

large green spaces, urban area
78 64 (78/14) Weekly

Total PF 236 218 (236/18)
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The selected RUs are as follows:
(i) The RU of Marathonas-Schinias (MS): The wetland area (WT) sector of East Attica

(EA) (38◦0′ N 23◦57′ E, total area: 1513 km2; population: 502,348 inhabitants [64]) covers the
eastern part of the urban agglomeration of Athens, and also the rural area to its east. It is
the only Attica zone with significant agricultural activity, can be considered geographically
isolated from the rest of the basin, and is inserted between the Penteli and Hymettus
mountains. The selected RU of MS (38◦9′ N 23◦57′ E; total area: 222.75 km2; population:
33,423 inhabitants [64]) is located outside the Athens Basin in the northeast part of the
Attica region. The MS area lies 42 km away from the center of Athens. Marathonas is
an area of intense agricultural activity, while Schinias is an area of marsh and coastal
forest. The National Park of Schinias constitutes the most important coastal ecosystem in
Attica [66,67].

(ii) The RU of Palaio Faliro (PF): The urban area (UR) covers the south-central part of
the agglomeration of Athens in the South Sector of Attica (SS) (37◦54′ N 23◦44′ E; total area:
69.4 km2; population: 529,826 inhabitants [64]). The selected RU of PF (37◦56′ N 23◦42′ E;
total area: 4.574 km2; population: 64,021 inhabitants [64]) is a coastal district, situated on
the east coast of the Phalerum Bay of the Saronic Gulf, 6 km southwest of the Athens city
center. The seaside area of PF is an important touristic attraction with a seaside promenade,
several sports venues, and a marina. The Pikrodafni stream flows into the sea on the border
of the RUs of Palaio Faliro and Alimos [68].

2.2. Mosquito Collection and Identification

The selection of the mosquito monitoring stations was performed following an on-site
visit, and it was based mainly upon ecological and social characteristics, such as urban
and rural sites, presence of vegetation and shading, occurrence of humans or livestock
as potential hosts for adult mosquitoes, proximity to open sources of fresh or still water,
nuisance complaints, and convenience of sampling.

The BG-sentinel trap (BGs) (Biogents AG, Regensburg Germany) baited with CO2
and BG-Lure [69], which is considered an effective method for mosquito diversity and
abundance characterization [2,18,32], was selected as the main monitoring tool.

The composition of mosquito fauna was investigated by the monitoring system of
seven BGs traps that was established in seven selected monitoring stations. In particular,
depending on the research coverage area in each RU, four traps were placed in MS area,
and three in PF area, respectively (Figure 1). A summary of all sampling data concerning
the two studied areas is given in Table 1.

All collected mosquito samples were transferred weekly to the Laboratory of Medical
Entomology, of Public Health Policy at the University of West Attica for further analysis.
Closed and chilled containers containing dry ice were used for the transportation of
samples, under the scope of morphological identification of mosquitoes and molecular
detection of viruses (WNV and USUV), respectively.

Mosquitoes’ identification, based on morphological characters, was performed after
careful examination under a NIKON SMZ645 Stereo Microscope (Nikon Instruments Inc.,
Surrey, UK), using appropriate dichotomous keys [70–73].

Throughout the duration of the study, no male Culex torrentium adults were identified
regarding the morphological identification of the members of Cx. pipiens s.l. complex [70,71].
Adult females were characterized morphologically as Cx. pipiens s.l., as the two species are
indistinguishable morphologically [70].

Adult mosquitoes that were morphologically identified to belong to Anopheles mac-
ulipennis s.l. complex were further examined by molecular amplification methods, accord-
ing to previously described protocols [74,75].

2.3. Flaviviruses Survey in Culex pipiens Pools

Screening of Culex pipiens s.l. pools was designed to evaluate the possible co-circulation
of the two viruses (WNV and USUV) in the same mosquito pool. All collected mosquitoes
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were maintained under cold chain conditions to preserve the virus viability, pooled accord-
ing to the collection site, date, species, and sex (up to a maximum of 200 individuals per
pool), and stored at −80 ◦C.

2.4. WNV and USUV Detection

A total of 366 Cx. pipiens s.l. pools were analyzed for WNV (collected under the
current surveillance program). Genetic material (RNA) from mosquito pools was extracted
by using the Maxwell 16 Automated Nucleic Acid extraction system (Promega, Madison,
WI, USA), according to the manufacturer’s instructions for Maxwell16LEV Simple RNA
Tissue kit [13]. A TaqMan Real-Time PCR protocol, specific for WNV lineages 1 and 2
detection, was implemented thereafter [76].

These 366 Cx. pipiens s.l. pools were also analyzed for the detection of USUV, with
a reverse transcription real-time PCR protocol [77] and for selected samples also with a
reverse transcription conventional PCR protocol [78].

Screening of the above-mentioned pools was designed to evaluate the possible co-
circulation of the two viruses (WNV and USUV) in the same pool.

2.5. Infection Rates

The minimum infection rates (MIR) and maximum likelihood estimation (MLE) were
calculated using the PooledInfRate program version 4.0 (available at https://www.cdc.
gov/westnile/resourcepages/mosqSurvSoft.html, accessed on 20 August 2021) [13,79]. For
each region included in the study areas, the respective MIR and MLE values were calculated
per 1000 mosquitoes tested. The MLE has the advantage of considering variations in pool
size, while the MIR in a study area assumes the presence of a single positive mosquito in a
pooled sample.

3. Molecular Methods for Identification of Anopheles Mosquitoes

Anopheles species have been incriminated as vectors for transmission of malaria
worldwide [80]. Nevertheless, a common limitation in identifying morphologically related
species (i.e., An. maculipennis s.l. complex) creates an urgent need for implementation of
alternative laboratory approaches.

Unidentified by morphological characteristics, specimens of Anopheles spp., as well as
subspecies belonging to the An. maculipennis complex (cryptic species), were subjected to
molecular identification by PCR. The nucleotide sequence variation of the ITS2 ribosomal
region (ITS2 rDNA) along with the nucleotide sequence of the mitochondrial gene region I
(COI) of cytochrome oxidase, respectively, were used as the main targets of the implemented
molecular protocol [81–83].

A total of 50 Anopheles adult mosquitoes, the majority of which were morphologically
identified, were examined at the molecular level. Representative samples were isolated
and sent for sequencing analysis [81,82].

Data Analysis

A Gaussian Generalized Estimating Equation (GEE) model was used to estimate the
number of captures in the two areas, Faliro and Marathonas. GEE analysis was conducted
using the package “geepack” [84,85] in R v4.0.0 (R Core Team 2013, R Foundation of
Statistical Computing, Vienna, Austria).

4. Results
4.1. Mosquito Fauna Identification

A total of 46,726 (45,663 ♀♀, 1063 ♂♂) adult mosquitoes were collected in all traps
from June 2017 to December 2018. The implemented entomological survey revealed the
presence of 15 species, classified in six distinct genera.

According to the results in Table 2 from the GEE analysis for the Culex and Aedes
species collected in both study areas, we observed the following:

https://www.cdc.gov/westnile/resourcepages/mosqSurvSoft.html
https://www.cdc.gov/westnile/resourcepages/mosqSurvSoft.html
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Table 2. Results from the GEE analysis for the Culex and Aedes species.

B (95% CI) Wald χ2 p

Culex
Intercept 117.608 (38.523–196.693) 8.50 0.004

Area: Faliro (ref: Marathonas) −90.582 (−171.388, −776) 4.83 0.028
Aedes

Intercept 6.560 (1.965, 11.154) 7830 0.005
Area: Faliro (ref: Marathonas) 3.038 (−4.685, 10.762) 0.594 0.441

Culex: there were significantly less Culex captures in Faliro than in Marathonas
(p = 0.028).

Aedes: the number of captures did not differ significantly between Faliro and Marathonas
(p = 0.441).

A total of 37.810 (80.92%) individuals were captured in the MS area, corresponding to
six genera and 15 species. Additionally, 8.916 (19.08%) individuals were captured in PF
area, corresponding to three genera and four species, respectively. Three of the captured
species, namely Anopheles sacharovi, Culex pipiens s.l., and Aedes albopictus, are of major
medical importance. Furthermore, Cx. pipiens s.l. (88.25%) and Ae. albopictus (8.05%) were
by far the most abundant from all the collected species (Table 3).

A total of 531 adult sampling collections (MS, n = 295; PF, n = 236) from established
BGs traps were examined from both studied areas, as described in Table 1. Mosquito
collection was carried out by 495 sampling collections (MS, n = 277; PF, n = 218), while 36
BGs (MS, n = 18; PF, n = 18) were problematic due to either technical failure that occurred
while in operation or without catches, possibly due to the effectiveness of the local mosquito
control programs conducted during the transmission period or due to unstable weather
conditions, mainly in winter.

The observations regarding the adult sampling collections of the four BGs traps in the
MS study area showed differences regarding species abundance, richness, and diversity.
Comparing the findings from the four BGs traps in the MS area, we observed the largest
numbers of mosquitoes were collected in the MS1 (33.6% of total MS catches) and MS4
(40.5%) traps, followed by MS2 (15.4%) and MS3 (10.5%), while the variety of species was
enriched in the MS3 and MS4 traps, respectively (Table 3). Regarding the adult sampling
collections of the three BGs traps in PF area, no differences were observed concerning
the species diversity. A large number of mosquitoes collected in the PF1 (47.35% of total
PF catches) trap were followed by the PF3 (38.72%) and PF2 (13.93%) traps, respectively
(Table 3). Taking into consideration that the urban habitats contained more densely human-
populated areas than the rural habitats, which had a higher density of livestock, we
concluded that species richness and diversity recorded in the surveyed municipalities were
within the expected range [32].

The results for Cx. pipiens s.l. and Ae. albopictus populations’ fluctuations per week,
from June 2017 to December 2018, concerning the surveyed RUs of MS and PF are presented
in Figures 2 and 3, respectively. The results for Anopheles spp. population fluctuations per
week, for the studied period concerning the surveyed RU of MS, are presented in Figure 4.
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Table 3. Species composition and relative abundance (%) in adult mosquitoes trapped in the WT and UR areas of the Attica region that participated in the research program, 2017–2018.

Mosquito Species
Total

Number/Species
(%)

F ♀ M ♂

Marathonas-Schinias (MS) Wetland Area (WT) Palaio Faliro (PF) Urban Area (UR)

MS1 MS2 MS3 MS4
Total

Number/Species
(%)

PF1 PF2 PF3
Total

Number/Species
(%)

Aedes (Stegomyia) albopictus (Skuse) # 3762 (8.05) 3041 721 828 685 87 155 1755 (3.75) 991 160 856 2007 (4.3)
Aedes (Ochlerotatus) caspius (Pallas) 81 (0.173) 79 2 21 21 6 27 75 (0.16) 0 0 6 6 (0.013)

Aedes (Ochlerotatus) detritus
(Haliday) 588 (1.25) 580 8 187 105 247 49 588 (1.25) 0 0 0 0

Anopheles (Anopheles) algeriensis
(Theobald) 209 (0.45) 209 0 22 2 67 118 209 (0.45) 0 0 0 0

Anopheles (Anopheles) claviger
(Meigen) 160 (0.34) 160 0 39 2 34 85 160 (0.34) 0 0 0 0

Anopheles (Anopheles) maculipennis
s.l. (Meigen) 2 (0.0042) 2 0 1 0 1 0 2 (0.0042) 0 0 0 0

Anopheles (Anopheles) sacharovi
(Favre) 93 (0.2) 93 0 43 0 33 17 93 (0.2) 0 0 0 0

Coquillettidia (Coquillettidia) richiardii
(Ficalbi) 164 (0.35) 164 0 55 0 41 68 164 (0.35) 0 0 0 0

Culex (Culex) pipiens (Linnaeus) 41,236 (88.25) 41,050 186 11,480 4989 3416 14,643 34,528 (73.90) 3150 985 2573 6708 (14.35)
Culex (Culex) theileri (Theobald) 16 (0.034) 16 0 0 0 0 16 16 (0.034) 0 0 0 0

Culiseta (Culiseta) annulata (Schrank) 11 (0.023) 11 0 6 0 3 2 11 (0.023) 0 0 0 0
Culiseta (Culicella) fumipennis

(Stephens) 5 (0.010) 0 5 0 0 5 0 5 (0.010) 0 0 0 0

Culiseta (Allotheobaldia) longiareolata
(Macquart) 395 (0.84) 254 141 34 21 18 127 200 (0.43) 81 97 17 195 (0.41)

Culiseta (Culiseta) subochrea
(Edwards) 3 (0.0064) 3 0 2 0 0 1 3 (0.0064) 0 0 0 0

Uranotaenia (Pseudoficalbia)
unguiculata (Edwards) 1 (0.002) 1 0 0 0 0 1 1 (0.002) 0 0 0 0

Total 46,726 55,307 1347 12,718 5825 3958 15,309 37,810 4222 1242 3452 8916
# Aedini denomination according to Wilkerson et al. (2015).
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High numbers of Cx. pipiens s.l. were observed in the MS RU from June to September
2017, while in 2018, the population reached a peak in June and then remained relatively
low the following months (Figure 2). In the RU of PF, the populations of Cx. pipiens s.l.
were kept low during both years of entomological surveillance (Figure 2).

A gradual increase in Ae. albopictus population was recorded in the MS area since
June, reaching a peak in August, followed by a gradual decline in 2017, while populations
remained in low numbers in the year 2018 (Figure 3). In the PF area, relatively low numbers
of Ae. albopictus were recorded in 2017, while there was a peak in July 2018, followed by a
gradual decline in the upcoming months (Figure 3).
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Of particular importance was the presence of An. sacharovi collected in the MS RU,
showing an increase in the population in June 2017, then a gradual decrease of catches
the following months, and a slight increase was observed in December 2017. In 2018, the
catches of the above species were zero during the period of collection (Figure 4). There
were no collections of An. algeriensis in 2017; this species appeared in the area from March
2018, recording high numbers in April, May, and June, and reaching the peak in May;
nevertheless, the population decline from July onwards (Figure 4). An. claviger was first
collected in July 2017, reaching peak capture rates in August, and then gradually declined
in the upcoming months. In 2018, the mosquito populations were kept in low numbers,
and a few catches were recorded during the summer months (Figure 4).

4.2. Flaviviruses Detection

Of the adult female Cx. pipiens s.l. captured, a total of 41.050 (MS, n = 34.358; PF,
n = 6.692) were examined in pools for the presence of WNV and USUV. Cx. pipiens s.l.
adults were treated as a single entity, without determining the relative composition of
molestus and pipiens forms.

Out of the 366 mosquito pools tested, a total of 38 (10.4%) tested positive for WNV,
including 30 positive samples in MS and 8 positive samples in PF, respectively (Table 4).

The 366 mosquito pools tested for USUV were found to be negative (Table 4). One
single pool of 200 Cx. pipiens s.l. collected in MS in June 2018 was suspected to be possibly
USUV positive (low signal upon real-time PCR assay). A reverse transcription conventional
PCR protocol was performed for further analysis. The sample produced a PCR product
of low intensity (faint band), which did not contribute much to resolving this issue. The
PCR product was subsequently sent for sequencing analysis; however, due to the possible
reduced concentration of DNA in the sample, the results were inconclusive and therefore
the sample was not confirmed as a positive one. WNV screening in the same sample
showed that it was positive for WNV.
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Table 4. Culex pipiens pools tested for West Nile virus and Usutu virus (Nt); the number of West Nile virus- and Usutu
virus-positive Culex pipiens pools (Np) per surveyed RUs; and the year and maximum likelihood estimate (MLE) of the
infection rate values for the urban and wetland areas, Attica Research Program, 2017–2018.

Surveyed RUs

West Nile Virus Usutu Virus

2017 2018 Total No. of
Positive/Tested Pools

MLE
2017 2018 Total No. of

Positive/Tested PoolsNp/Nt * Np/Nt Np/Nt Np/Nt

East Attica/Marathonas-
Schinias (wetland area) 18/120 12/147 30/267 0.00010 (95% CL

0.0007–0.0014) 0/120 0/147 0/267

South Sector/Palaio
Faliro (urban area) 5/33 3/66 8/99 0.01 (95% CL

0.0006–0.0026) 0/33 0/66 0/99

Total no. of
positive/tested pools per
transmission year

23/153 15/213 38/366 0/153 0/213 0/366

* Np/Nt = number of positive pools/number of tested pools.

Infection Rates

In the present study, MLE values both for the wetland and the urban area were almost
zero (Table 4), suggesting very low circulation of the virus in the study areas, which is in
accordance with the human WNF cases recorded (no cases for 2017 and three cases in the
MS area in 2018) [38]. MIR was calculated by extrapolation from the real-time PCR results
(the total number of positive pools in the area/total number of mosquitoes sampled in this
area× 1000) and is presented in Figure 5. MIR rates indicate that the peak in WNV-infected
mosquitoes coincides with high numbers of Cx. pipiens populations.
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4.3. Anopheles Specimens’ Molecular Identification

The species Anopheles maculipennis s.l., Anopheles sacharovi, and Anopheles algeriensis
were identified by PCR and RFLP analysis. Further analysis of the sequencing chro-
matograms in the ITS2 gene identified An. maculipennis s.l. and An. sacharovi species in
eight of the nine tested samples, with the associated traps located in the marsh and the rural
environment, respectively. Species identification based on PCR amplification of the COI
gene following sequencing of the 522 bp fragment revealed the presence of An. algeriensis
and An. sacharovi, with the relevant traps located in marsh, rural, and semi-arid areas,
respectively.

5. Discussion and Conclusions

The epidemiology of WNV and USUV has changed dramatically over the past two
decades [28,47]. Recent data showed that strains detected in humans, horses, birds, and
mosquitoes mainly belong to WNV lineage 2, including the Greek WNV strains detected
during 2010–2018 [30,31,39,86–89]. Various USUV lineages are co-circulating in Europe,
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the majority of strains are related to European USUV lineages [49,52–54,90], although some
reports indicate the presence of African USUV lineages as well [43,61,91]. USUV Europe 2
lineage is the most prevalent genetic lineage detected in birds, mosquitoes, and humans,
while Europe 3 and 4 and Africa 2 and 3 lineages were detected in mosquitoes [47].

Vector competence plays an important role in vectorial capacity helping in identi-
fying species that might be important contributors to flaviviruses transmission, imple-
menting control measures to reduce the potential of WNV/USUV transmission [28,42],
and indicating the possible role of supporting the spread of WNV/USUV during win-
ter [20,53,88,92–95].

In this study, mosquito screening for WNV showed that the majority of positive
samples for WNV were detected in the East Attica, followed by the South Sector of Attica
(Table 4). In the RU of PF, WNV-positive pools in mosquitoes were detected in both years,
while in the study of Bisia et al. (2020) [18], no positive pool was detected in 2018. The
region of MS has a warm temperate climate with hot dry summers and mild winters and
displays characteristics to sustain WNV transmission cycles [96]. Due to its ecological and
geographical features, this region is considered a risk area for flavivirus transmission [67].

The higher diversity and abundance of mosquito fauna were observed in Marathonas
(intense agricultural activity) and Schinias (swamp and coastal forest), confirming similar
remarks from previous studies [67,97]. The spatiotemporal monitoring of land cover
changes studied by Gaitanis et al. (2015) [66] in the RU of MS showed a reduction of
the areas covered by semi-natural and agricultural and cover types (forests, wetlands,
shrublands, and cultivated fields) and the increase of urban and mixed areas during the last
60 years. According to the results of the study and records from the resident population,
the mosquito nuisance is serious from early spring onwards [97].

Regarding data on the WNV circulation in equids and birds, according to the Ministry
of Rural Development and Food, no cases were detected in 2017 in the Attica region. For
2018, confirmed WNV cases in equids were recorded in West Attica and East Attica RUs,
and canary birds that were positive for the virus were also detected in the Athens West
Sector RU [98].

For 2018, Greece reported 317 WNV infections and 51 deaths, representing 20% of
total EU cases and displaying a 6,6 higher rate than in 2017, with 48 human cases being
recorded. Regarding the areas of the present study, 11 and 14 human cases were recorded
in the South Sector of Athens and the East Attica RUs, respectively, with a total number of
160 cases being recorded in the Attica region for 2018 [99].

The installation and circulation of WNV in Greece is a fact, while extensive studies
have been performed on its circulation since 2010 [10–12,14,18,23,30,33–35]. However,
predicting periods and circulation areas of the virus are difficult due to complex interactions
of multiple involved factors [23,38,100]. It is noteworthy that, although outbreaks occurred
in humans every year apart from the 2015–2016 period [18,37,38,88,100], positive Cx. pipiens
s.l. pools were detected in different areas of the country [9,13,14,96].

Minimal infection rates of Cx. pipiens adults for WNV in both study areas were in
accordance with the mosquito population density, and the low infection rates detected are
consistent with the low human case rates observed. No human cases were recorded for
2017 and three cases were detected in the wetland area in 2018 [38,99].

The molecular identification of Anopheles spp. proved to be a useful tool for supporting
morphological identification. This molecular approach using two genetic markers increased
taxonomic resolution helped to identify damaged specimens and to distinguish species
within a complex. A deeper study on the molecular identification of the Anopheline
mosquito complex is required [3], as many of the Anopheles species in the MS area are
malaria vectors [96], and indigenous cases of malaria have been recorded in East Attica
the years 2009, 2010, 2011, 2012, and 2015 [63]. An. maculipennis s.l. is a potential vector of
malaria, and it has been considered as an important vector in the past for the spread of this
disease in various regions of Greece. An. sacharovi is considered to be the principal vector
of malaria, from all subspecies of the An. maculipennis s.l. complex for Mediterranean
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countries and of course for Greece [67,75,83]. An. claviger is a potential vector of malaria,
although its medical significance is not considered to be great for our country. Relatively in
high numbers, An. algeriensis is a common and very abundant species in the area, captured
in all four traps, and although it can easily be infected with malaria plasmodium, it is
considered a secondary vector due to its exophily [70].

The findings of this study revealed different assemblages of mosquito species in each
targeted RU. Regarding the selected RUs, there were significant differences in many of their
ecological characteristics and that was the main factor for their selection. All of the species
recorded in this study were collected in the MS RU, while in the PF RU, the main collected
species were Cx. pipiens s.l., Ae. albopictus, and Cs. longiareolata, which is in accordance with
the study of Bisia et al. (2020) [18]. In both surveyed RUs, Cx. pipiens s.l. and Ae. albopictus
were by far the most abundant species.

This study also provides baseline information and acts as a starting point for further
investigation of USUV circulation. With the continuing spread of USUV since 2001 in
neighboring countries of Greece [42,47,58], it is important to monitor both viruses before
the possible occurrence of an epidemic. According to the epidemiological model, Greece
belongs to the areas where the USUV can be transmitted, causing a possible epidemic. It
mainly indicates areas in the north of the country, for two possible reasons. First of all, in
these areas, especially in the river deltas where the number of mosquitoes has increased,
migratory birds appear to have stopped moving from Europe to Africa [101], and secondly,
in Northern Greece, the only case so far with antibodies to the virus has been recorded [62].

In the present study, samples from Attica for the years 2017–2018 were found negative
for USUV. However, despite the limitations that emerged for confirming one possibly
positive sample, USUV and WNV co-circulation cannot be excluded in the future. Up to
date, no cases of USUV have been reported in humans or equids in Greece, suggesting
that there is no circulation of this virus or, at least, its prevalence is very low. Given the
knowledge we have from other relatives of flaviviruses, such as the WNV, the risk of
causing even more outbreaks in areas endemic to the USUV or in new ones that have
not yet spread are quite high. It must be noted that USUV might be misdiagnosed as
WNV when the diagnosis is based only on antibody detection, without testing by PCR or
neutralization assays, due to cross-reactivity in serology [42,60,102].

Further investigations of both viruses could provide answers to our suspicions about
both the USUV circulation in our country and the interaction with its related flavivirus.
Furthermore, entomological surveillance activities should be extended to Attica, especially
urban ones, as USUV appears to be equally transmitted in urban and rural areas, in contrast
to WNV, where higher transmission rates are recorded in rural areas [26]. Virus surveillance
within the native mosquito populations offers an opportunity to detect a virus before the
emergence of disease in the susceptible host population [103].

A general comment to be made refers to the fact that Anopheles species identification
exclusively by morphological features often presents difficulties, highlighting the necessity
for implementation of a targeted molecular protocol to the species level [104]. In our case,
Anopheles mosquitoes collected in the Marathonas-Schinias area created a need for the
development of a special molecular protocol. In this manuscript, we aimed to highlight that
the implemented combined research methodology proved to be a useful tool for supporting
morphological identification. Furthermore, the applied molecular methodology was found
to be specific and sensitive, regarding the possibility of finding positive mosquito pools
for WNV.

In conclusion, the findings of this study emphasize the need for regular monitoring
of the mosquito fauna in all regions of Greece, which will contribute to increasing the
current knowledge about the diversity, distribution abundance, and ecology of species
that are present in the regions. Related studies on mosquito fauna should be performed
in all RUs of the Attica region as data on mosquito population and species distribution
would be valuable, in particular on those species that are of zoonotic relevance. The
implementation of integrated arbovirus surveillance programs represents a relevant and
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necessary assessment of the risk of pathogen transmission in a given region, allowing for
the establishment of the appropriate preventive measures.
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Towards harmonisation of entomological surveillance in the Mediterranean area. PLoS Negl. Trop. Dis. 2019, 13, e0007314.
[CrossRef] [PubMed]

25. Calisher, C.H.; Gould, E.A. Taxonomy of the virus family Flaviviridae. Adv. Virus Res. 2003, 59, 1–19. [PubMed]
26. Calzolari, M.; Bonilauri, P.; Bellini, R.; Albieri, A.; Defilippo, F.; Maioli, G.; Galletti, G.; Gelati, A.; Barbieri, I.; Tamba, M.; et al.

Evidence of Simultaneous Circulation of West Nile and Usutu Viruses in Mosquitoes Sampled in Emilia-Romagna Region (Italy)
in 2009. PLoS ONE 2010, 5, e14324. [CrossRef]

27. Papa, A. Emerging arboviruses of medical importance in the Mediterranean region. J. Clin. Virol. 2019, 115, 5–10. [CrossRef]
28. Zannoli, S.; Sambri, V. West Nile Virus and Usutu Virus Co-Circulation in Europe: Epidemiology and Implications. Microorganisms

2019, 7, 184. [CrossRef]
29. Hubálek, Z.; Halouzka, J. West Nile Fever–a Reemerging Mosquito-Borne Viral Disease in Europe. Emerg. Infect. Dis. 1999, 5,

643–650. [CrossRef]
30. Chancey, C.; Grinev, A.; Volkova, E.; Rios, M. The Global Ecology and Epidemiology of West Nile Virus. BioMed Res. Int. 2015,

2015, 376230. [CrossRef]
31. Haussig, J.M.; Young, J.J.; Gossner, C.M.; Mezei, E.; Bella, A.; Sirbu, A.; Pervanidou, D.; Drakulovic, M.B.; Sudre, B. Early start of

the West Nile fever transmission season 2018 in Europe. Eurosurveill 2018, 23, 1800428. [CrossRef]
32. Martínez-de la Puente, J.; Ferraguti, M.; Ruiz, S.; Roiz, D.; Llorente, F.; Pérez-Ramírez, E.; Jiménez-Clavero, M.A.; Soriguer, R.;

Figuerola, J. Mosquito community influences West Nile virus seroprevalence in wild birds: Implications for the risk of spillover
into human populations. Sci. Rep. 2018, 8, 2599. [CrossRef] [PubMed]

33. Chaintoutis, S.C.; Chaskopoulou, A.; Chassalevris, T.; Koehler, P.G.; Papanastassopoulou, M.; Dovas, C.I. West Nile Virus Lineage
2 Strain in Greece, 2012. Emerg. Infect. Dis. 2013, 19, 827–829. [CrossRef] [PubMed]

34. Danis, K.; Papa, A.; Theocharopoulos, G.; Dougas, G.; Athanasiou, M.; Detsis, M.; Baka, A.; Lytras, T.; Mellou, K.; Bonovas, S.;
et al. Outbreak of West Nile virus infection in Greece, 2010. Emerg. Infect. Dis. 2011, 17, 1868–1872. [CrossRef]

35. Hadjichristodoulou, C.; Pournaras, S.; Mavrouli, M.; Marka, A.; Tserkezou, P.; Baka, A.; Billinis, C.; Katsioulis, A.; Psaroulaki, A.;
Papa, A.; et al. West Nile Virus Seroprevalence in the Greek Population in 2013: A Nationwide Cross-Sectional Survey. PLoS ONE
2015, 10, e0143803. [CrossRef]

36. MALWEST. West Nile Virus, Epidemiology. Available online: http://www.malwest.gr/en-us/westnilevirus/informationforhealth
careprofessionals/epidemiology.aspx (accessed on 27 May 2020).

37. European Centre for Disease Prevention and Control (ECDC). Historical Data by Year—West Nile Fever Seasonal Surveillance.
Available online: https://www.ecdc.europa.eu/en/west-nile-fever/surveillance-and-disease-data/historical (accessed on 20
March 2020).

38. Pervanidou, D.; Vakali, A.; Georgakopoulou, T.; Panagiotopoulos, T.; Patsoula, E.; Koliopoulos, G.; Politis, C.; Stamoulis, K.;
Gavana, E.; Pappa, S.; et al. West Nile virus in humans, Greece, 2018: The largest seasonal number of cases, 9 years after its
emergence in the country. Eurosurveillance 2020, 25, 1900543. [CrossRef] [PubMed]

39. Papa, A.; Papadopoulou, E.; Chatzixanthouliou, C.; Glouftsios, P.; Pappa, S.; Pervanidou, D.; Georgiou, L. Emergence of West
Nile virus lineage 2 belongin g to the Eastern European subclade, Greece. Arch Virol. 2019, 164, 1673–1675. [CrossRef]

40. Gaibani, P.; Rossini, G. An overview of Usutu virus. Microbes Infect. 2017, 19, 382–387. [CrossRef]
41. Nikolay, B.; Diallo, M.C.; Boye, S.; Sall, A.A. Usutu virus in Africa. Vector Borne Zoonotic Dis. 2011, 11, 1417–1423. [CrossRef]

http://doi.org/10.1016/j.onehlt.2015.08.002
http://doi.org/10.3390/insects11060329
http://doi.org/10.3390/ijerph10126534
http://doi.org/10.2807/1560-7917.ES.2018.23.32.1800427
http://doi.org/10.1186/1756-3305-7-323
http://doi.org/10.2807/1560-7917.ES.2017.22.18.30526
http://www.ncbi.nlm.nih.gov/pubmed/28494844
http://doi.org/10.1371/journal.pntd.0007314
http://www.ncbi.nlm.nih.gov/pubmed/31194743
http://www.ncbi.nlm.nih.gov/pubmed/14696325
http://doi.org/10.1371/journal.pone.0014324
http://doi.org/10.1016/j.jcv.2019.03.007
http://doi.org/10.3390/microorganisms7070184
http://doi.org/10.3201/eid0505.990505
http://doi.org/10.1155/2015/376230
http://doi.org/10.2807/1560-7917.ES.2018.23.32.1800428
http://doi.org/10.1038/s41598-018-20825-z
http://www.ncbi.nlm.nih.gov/pubmed/29422507
http://doi.org/10.3201/eid1905.121418
http://www.ncbi.nlm.nih.gov/pubmed/23697609
http://doi.org/10.3201/eid1710.110525
http://doi.org/10.1371/journal.pone.0143803
http://www.malwest.gr/en-us/westnilevirus/informationforhealth
careprofessionals/epidemiology.aspx
https://www.ecdc.europa.eu/en/west-nile-fever/surveillance-and-disease-data/historical
http://doi.org/10.2807/1560-7917.ES.2020.25.32.1900543
http://www.ncbi.nlm.nih.gov/pubmed/32794446
http://doi.org/10.1007/s00705-019-04243-8
http://doi.org/10.1016/j.micinf.2017.05.003
http://doi.org/10.1089/vbz.2011.0631


Trop. Med. Infect. Dis. 2021, 6, 176 16 of 18

42. Vázquez, A.; Jimenez-Clavero, M.; Franco, L.; Donoso-Mantke, O.; Sambri, V.; Niedrig, M.; Zeller, H.; Tenorio, A. Usutu virus:
Potential risk of human disease in Europe. Eurosurveill 2011, 16, 19935. [CrossRef]

43. Clé, M.; Beck, C.; Salinas, S.; Lecollinet, S.; Gutierrez, S.; Van de Perre, P.; Baldet, T.; Foulongne, V.; Simonin, Y. Usutu virus: A
new threat? Epidemiol. Infect. 2019, 147, e232. [CrossRef]

44. Roesch, F.; Fajardo, A.; Moratorio, G.; Vignuzzi, M. Usutu Virus: An Arbovirus on the Rise. Viruses 2019, 11, 640. [CrossRef]
[PubMed]

45. Michel, F.; Sieg, M.; Fischer, D.; Keller, M.; Eiden, M.; Reuschel, M.; Schmidt, V.; Schwehn, R.; Rinder, M.; Urbaniak, S.; et al.
Evidence for West Nile Virus and Usutu Virus Infections in Wild and Resident Birds in Germany, 2017 and 2018. Viruses 2019, 11,
674. [CrossRef] [PubMed]

46. Weissenböck, H.; Bakonyi, T.; Rossi, G.; Mani, P.; Nowotny, N. Usutu virus, Italy, 1996. Emerg. Infect. Dis. 2013, 19, 274–277.
[CrossRef] [PubMed]

47. Vilibic-Cavlek, T.; Petrovic, T.; Savic, V.; Barbic, L.; Tabain, I.; Stevanovic, V.; Klobucar, A.; Mrzljak, A.; Ilic, M.; Bogdanic, M.; et al.
Epidemiology of Usutu Virus: The European Scenario. Pathogens 2020, 9, 699. [CrossRef] [PubMed]

48. Lühken, R.; Jöst, H.; Cadar, D.; Thomas, S.M.; Bosch, S.; Tannich, E.; Becker, N.; Ziegler, U.; Lachmann, L.; Schmidt-Chanasit, J.
Distribution of Usutu Virus in Germany and Its Effect on Breeding Bird Populations. Emerg. Infect. Dis. 2017, 23, 1994–2001.
[CrossRef]

49. Oude Munnink, B.B.; Münger, E.; Nieuwenhuijse, D.F.; Kohl, R.; van der Linden, A.; Schapendonk, C.M.E.; van der Jeugd, H.;
Kik, M.; Rijks, J.M.; Reusken, C.B.E.M.; et al. Genomic monitoring to understand the emergence and spread of Usutu virus in the
Netherlands, 2016–2018. Sci. Rep. 2020, 10, 2798. [CrossRef]

50. Ashraf, U.; Ye, J.; Ruan, X.; Wan, S.; Zhu, B.; Cao, S. Usutu Virus: An Emerging Flavivirus in Europe. Viruses 2015, 7, 219–238.
[CrossRef]

51. Nikolay, B. A review of West Nile and Usutu virus co-circulation in Europe: How much do transmission cycles overlap? Trans. R.
Soc. Trop. Med. Hyg. 2015, 109, 609–618. [CrossRef]

52. Bakonyi, T.; Erdélyi, K.; Brunthaler, R.; Dán, Á.; Weissenböck, H.; Nowotny, N. Usutu virus, Austria and Hungary, 2010–2016.
Emerg. Microbes Infect. 2017, 6, e85. [CrossRef]

53. Benzarti, E.; Sarlet, M.; Franssen, M.; Cadar, D.; Schmidt-Chanasit, J.; Rivas, J.F.; Linden, A.; Desmecht, D.; Garigliany, M. Usutu
Virus Epizootic in Belgium in 2017 and 2018: Evidence of Virus Endemization and Ongoing Introduction Events. Vector-Borne
Zoonotic Dis. 2020, 20, 43–50. [CrossRef]

54. Hönig, V.; Palus, M.; Kaspar, T.; Zemanova, M.; Majerova, K.; Hofmannova, L.; Papezik, P.; Sikutova, S.; Rettich, F.; Hubalek, Z.;
et al. Multiple Lineages of Usutu Virus (Flaviviridae, Flavivirus) in Blackbirds (Turdus merula) and Mosquitoes (Culex pipiens,
Cx. modestus) in the Czech Republic (2016–2019). Microorganisms 2019, 7, 568. [CrossRef]

55. Aberle, S.W.; Kolodziejek, J.; Jungbauer, C.; Stiasny, K.; Aberle, J.H.; Zoufaly, A.; Hourfar, M.K.; Weidner, L.; Nowotny, N. Increase
in human West Nile and Usutu virus infections, Austria, 2018. Eurosurveill 2018, 23, 1800545. [CrossRef]

56. Cadar, D.; Lühken, R.; van der Jeugd, H.; Garigliany, M.; Ziegler, U.; Keller, M.; Lahoreau, J.; Lachmann, L.; Becker, N.; Kik, M.;
et al. Widespread activity of multiple lineages of Usutu virus, western Europe, 2016. Eurosurveill 2017, 22, 30452. [CrossRef]
[PubMed]

57. Cavrini, F.; Gaibani, P.; Longo, G.; Pierro, A.M.; Rossini, G.; Bonilauri, P.; Gerunda, G.E.; Di Benedetto, F.; Pasetto, A.; Girardis, M.;
et al. Usutu virus infection in a patient who underwent orthotropic liver transplantation, Italy, August–September 2009.
Eurosurveill 2009, 14, 19448. [CrossRef]

58. Cook, C.L.; Huang, Y.-J.S.; Lyons, A.C.; Alto, B.W.; Unlu, I.; Higgs, S.; VanLandingham, D.L. North American Culex pipiens and
Culex quinquefasciatus are competent vectors for Usutu virus. PLoS Negl. Trop. Dis. 2018, 12, e0006732. [CrossRef]

59. Grottola, A.; Marcacci, M.; Tagliazucchi, S.; Gennari, W.; Di Gennaro, A.; Orsini, M.; Monaco, F.; Marchegiano, P.; Marini, V.;
Meacci, M.; et al. Usutu virus infections in humans: A retrospective analysis in the municipality of Modena, Italy. Clin. Microbiol.
Infect. 2017, 23, 33–37. [CrossRef] [PubMed]

60. Santini, M.; Vilibic-Cavlek, T.; Barsic, B.; Barbic, L.; Savic, V.; Stevanovic, V.; Listes, E.; Di Gennaro, A.; Savini, G. First cases of
human Usutu virus neuroinvasive infection in Croatia, August-September 2013: Clinical and laboratory features. J. Neurovirol.
2015, 21, 92–97. [CrossRef]

61. Simonin, Y.; Sillam, O.; Carles, M.J.; Gutierrez, S.; Gil, P.; Constant, O.; Martin, M.F.; Girard, G.; Van de Perre, P.; Salinas, S.; et al.
Human Usutu Virus Infection with Atypical Neurologic Presentation, Montpellier, France, 2016. Emerg. Infect. Dis. 2018, 24,
875–878. [CrossRef] [PubMed]

62. Chaintoutis, S.C.; Dovas, C.L.; Papanastassopoulou, M.; Gewehr, S.; Danis, K.; Beck, C.; Lecollinet, S.; Vasilis, A.;
Kalaitzopoulou, S.; Panagiotopoulos, T.; et al. Evaluation of a West Nile virus surveillance and early warning system in
Greece, based on domestic pigeons. Comp. Immunol. Microbiol. Infect. Dis. 2014, 37, 131–141. [CrossRef]

63. National Public Health Organization (NPHO). Malaria/Annual Epidemiological Data. Available online: https://eody.gov.gr/en/
epidemiological-statistical-data/ (accessed on 3 April 2020).

64. Hellenic Statistical Authority (HSA). Population-Housing Census 2011. Available online: https://www.statistics.gr/en/2011
-census-pop-hous (accessed on 15 July 2020).

65. Region of Attiki–European Commission. Available online: https://ec.europa.eu/growth/tools-databases/regional-innovation-
monitor/base-profile/region-attiki (accessed on 31 January 2020).

http://doi.org/10.2807/ese.16.31.19935-en
http://doi.org/10.1017/S0950268819001213
http://doi.org/10.3390/v11070640
http://www.ncbi.nlm.nih.gov/pubmed/31336826
http://doi.org/10.3390/v11070674
http://www.ncbi.nlm.nih.gov/pubmed/31340516
http://doi.org/10.3201/eid1902.121191
http://www.ncbi.nlm.nih.gov/pubmed/23347844
http://doi.org/10.3390/pathogens9090699
http://www.ncbi.nlm.nih.gov/pubmed/32858963
http://doi.org/10.3201/eid2312.171257
http://doi.org/10.1038/s41598-020-59692-y
http://doi.org/10.3390/v7010219
http://doi.org/10.1093/trstmh/trv066
http://doi.org/10.1038/emi.2017.72
http://doi.org/10.1089/vbz.2019.2469
http://doi.org/10.3390/microorganisms7110568
http://doi.org/10.2807/1560-7917.ES.2018.23.43.1800545
http://doi.org/10.2807/1560-7917.ES.2017.22.4.30452
http://www.ncbi.nlm.nih.gov/pubmed/28181903
http://doi.org/10.2807/ese.14.50.19448-en
http://doi.org/10.1371/journal.pntd.0006732
http://doi.org/10.1016/j.cmi.2016.09.019
http://www.ncbi.nlm.nih.gov/pubmed/27677699
http://doi.org/10.1007/s13365-014-0300-4
http://doi.org/10.3201/eid2405.171122
http://www.ncbi.nlm.nih.gov/pubmed/29664365
http://doi.org/10.1016/j.cimid.2014.01.004
https://eody.gov.gr/en/epidemiological-statistical-data/
https://eody.gov.gr/en/epidemiological-statistical-data/
https://www.statistics.gr/en/2011-census-pop-hous
https://www.statistics.gr/en/2011-census-pop-hous
https://ec.europa.eu/growth/tools-databases/regional-innovation-monitor/base-profile/region-attiki
https://ec.europa.eu/growth/tools-databases/regional-innovation-monitor/base-profile/region-attiki


Trop. Med. Infect. Dis. 2021, 6, 176 17 of 18

66. Gaitanis, A.; Kalogeropoulos, K.; Detsis, V.; Chalkias, C. Monitoring 60 Years of Land Cover Change in the Marathon Area,
Greece. Land 2015, 4, 337–354. [CrossRef]

67. MALWEST 2013. Study on Presence, Seasonal Variation and Spatial Distribution of Mosquitoes and Design of an Integrated
Mosquito Management Plan. Report Regarding Mosquito Species and Geographical Distribution. Available online: http:
//www.malwest.gr/en-us/deliverables.aspx (accessed on 27 July 2020).

68. Stefopoulou, A.; Balatsos, G.; Petraki, A.; LaDeau, S.L.; Papachristos, D.; Michaelakis, A. Reducing Aedes albopictus breeding
sites through education: A study in urban area. PLoS ONE 2018, 13, e0202451. [CrossRef]

69. Biogents, A.G. The BG-Sentinel: Biogent’s Mosquito Trap for Researchers. Available online: http://www.bg-sentinel.com/
(accessed on 29 September 2020).
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