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Supplementary Materials: Monitoring the Path to the 
Elimination of Infectious Diseases 
John M. Drake and Simon I. Hay 

 
Introduction 

 
This document is the supplementary material to the paper “Monitoring the path to the elimination 
of infectious diseases”. This document provides R code to reproduce the simulated data and all 
figures contained in the main text as well as additional information. The thesis of that paper is 
that the phenomenon of critical slowing down may be used to document the elimination of endemic 
infectious disease through vaccination or other interventions. Here we study the dynamics of a 
smallpox-like pathogen during a program of vaccine rollout and elimination. We provide methods 
for estimating eraly warning signals such as the divergence of variance as the critical threshold 
is approached and demonstrate their robustness to under-reporting. We then develop a method 
for estimating the time that the vaccination campaign crosses the critical point and compare the 
performance of this method with a simple extrapolation strategy. It is shown that critical slowing 
down provides a robust and accurate way to monitor the elimination of an infectious disease. 

 
 
Setup 

 
The analysis will require some functionality from Carl Boettiger’s earlywarning package, which is 
available    on    Github    at    https://github.com/cboettig/earlywarning. 

 
>    require(earlywarning) 

 
To reproduce the published figures, we require the following scheme of named colors. 

 
> ose1 <- rgb(85, 108, 17, m = 255) 
>  ose2  <-  rgb(160,  108,  17,  m  =  255) 
>  ose3  <-  rgb(114,  132,  56,  m  =  255) 
>  ose4  <-  rgb(137,  152,  87,  m  =  255) 

 
 
Simulations 

 
We study simulations parameterized to represent smallpox. From Ferguson et al. (Ferguson et al. 
2003. Nature 426, 681-685) we have that smallpox is SEIR-like with 30% mortality. R0 is between 
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4 and 10. There is a 12 day incubation period (E-stage) and 12 day infectious period (I-stage; 3 
day prodromal stage and 9 day symptomatic period). If we ignore the E-stage, then recovery rate 
is about 30.5 per year ((12/360)−1 ≈ 30.417).  This yields a vaccination threshold of 0.75 to 0.9, 
which is also about right. 

For the simulated scenario, vaccination rate is defined to be a nonlinear function of time. The 
following R function returns the vaccination rate for a given time based on prodvided values for 
the vaccination start time and speed of rollout. 

> rho.curve.ramp <- function(t, start = 100, speed = -0.08) { 
+       ifelse(t <= start, rho <- 0, rho <- 0.96 * (1 - exp((t - 
+ start) * speed))) 
+         return(rho) 
+ } 

 

The direct method (Gillespie) is too slow for these parameters, so we use the adpativetau package 
for adpative tau leaping. Possible transitions and propensities (stochastic rates) are encoded as 
follows. 

>    require(adaptivetau) 
> transitions = cbind(c(1, 0, 0), c(-1, 0, 0), c(0, -1, 0), c(0, 
+        0, -1), c(-1, 1, 0), c(0, -1, 1), c(0, 0, 1)) 
> transitions2 = cbind(c(1, 0, 0, 0), c(-1, 0, 0, 0), c(0, -1, 
+        0, 0), c(0, 0, -1, 0), c(-1, 1, 0, 1), c(0, -1, 1, 0), c(0, 
+        0, 1, 0)) 
> rates <- function(x, params, t) { 
+        return(c(params$alpha + params$mu * (x["X"] + x["Y"] + x["Z"]), 
+ params$mu * x["X"], params$mu * x["Y"], params$mu * x["Z"], 
+ params$beta * x["X"] * x["Y"]/(x["X"] + x["Y"] + x["Z"]) + 
+ params$xi * x["X"], params$gamma * x["Y"])) 
+ } 
> rates.vacc <- function(x, params, t) { 
+          rho  <-  rho.curve.ramp(t,  start  =  params$rho.start,  speed  =  params$rho.speed) 
+        return(c(params$alpha + params$mu * (x["X"] + x["Y"] + x["Z"]) * 
+ (1 - rho), params$mu * x["X"], params$mu * x["Y"], params$mu * 
+ x["Z"], params$beta * x["X"] * x["Y"]/(x["X"] + x["Y"] + 
+ x["Z"]) + params$xi * x["X"], params$gamma * x["Y"], 
+ params$mu  * (x["X"] +  x["Y"] +  x["Z"]) * (rho))) 
+ } 

 
Model parameters are declared, grouped into a vector, and passed to the simulator. 

 
> mu <- 1/60 
> R0 <- 4 
> gamma <- 365/12 
> pop.size <- 1e+06 
> beta <- R0 * (gamma + mu) 
> ee0 <- (mu/beta) * pop.size * (R0 - 1) 
> Y0 <- floor(ee0) 
> Z0 <- floor(1 * (1 - 1/R0 - (mu/beta) * (R0 - 1)) * pop.size) 
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> X0 <- floor(pop.size - Y0 - Z0) 
> params = list(gamma = gamma, beta = beta, mu = mu, xi = 0.001, 
+        rho.start = 350, rho.speed = -0.05, alpha = 0) 
>   set.seed(10281979) 
>  r =  ssa.adaptivetau(c(X =  X0, Y  =  Y0, Z  =  Z0, W  =  0), transitions2, 
+        rates.vacc, params, tf = 450) 

 
The following code produces Figure 1 of the main paper. 

 
> par(mar = c(5, 4, 4, 4) + 0.1) 
> matplot(r[, "time"], r[, c("Y")], type = "l", xlab = "Time", 
+        ylab = "Prevalance (infected individuals)", col = "gray", 
+          main  =  "Simulated  smallpox  dynamics  during  elimination") 
>  abline(h  =  ee0) 
> p.star <- 1 - 1/R0 
> t <- seq(0, 450) 
> rho <- unlist(lapply(t, rho.curve.ramp, start = params$rho.start, 
+         speed = params$rho.speed)) 
>  crit <-  t[which.min(rho  <  p.star)] 
> R0v <- R0 * (1 - rho) 
> ee <- ((mu/beta) * pop.size * (R0v - 1)) * (((mu/beta) * pop.size * 
+       (R0v - 1)) > 0) 
> lines(t, ee, col = ose1, lwd = 3) 
> abline(v = crit, lty = 2) 
> par(new = TRUE) 
> plot(t, rho, xlab = "", ylab = "", xlim = par("usr")[1:2], xaxs = "i", 
+        ylim = c(0, 1), type = "l", lwd = 3.5, axes = FALSE, col = "dodgerblue4") 
>  axis(4) 
> mtext("Vaccination coverage", side = 4, line = 2.8) 

 
Now we will look at some early warning signals. First we extract the number of new cases in each 
year using the custom function annualize to return periodically aggregated cases. The function 
pad.signal adds NA values as needed so we can use plotting functionality from the earlywarning 
package. The function plot.signal will produce the plot we want. Then we calculate moving 
window statistics across the “observed” epidemic time series. The timing of the critical point is 
shown with a vertical line. 

 

> annualize <- function(r, period = 1) { 
+       r <- data.frame(r) 
+        r$year <- r$time%/%1 
+         r$V <- c(0, diff(r$W)) 
+        data.annualized <- aggregate(r$V, by = list(r$year), FUN = sum) 
+         names(data.annualized) <- c("year", "cases") 
+            return(data.annualized) 
+ } 
>  data.annual  <-  annualize(r) 
> pad.signal <- function(x, ws) c(rep(NaN, (ws - 1)), x) 
> plot.signal <- function(data, crit = NA, ws1 = 6, ws2 = 30, main = "", 
+         axes = TRUE, xlab = "Time", ylab = "Coefficient of variation", 
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Simulated smallpox dynamics during elimination 
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Figure 1: Simulation of a smallpox elimination campaign. 
 

+ plot = TRUE) { 
+ f <-  exp(seq(1,  ws1)  *  (log(0.01/1)/ws1))/sum(exp(seq(1, 
+ ws1)  *  (log(0.01/1)/ws1))) 
+ W1 <- filter(data[, 2], filter = f, sides = 1) 
+ W2  <-  pad.signal(sqrt(window_var(data[,  2],  windowsize  =  ws2)), 
+ ws2)/W1 
+ if (plot == TRUE) { 
+ plot(W2, log = "y", type = "l", xlab = xlab, ylab = ylab, 
+ axes = axes, main = main) 
+ abline(v = crit, lty = 2) 
+ } 
+ return(W2) 
+ } 
> par(mar = c(5, 4, 4, 4) + 0.1) 
>  plot(data.annual$year,  data.annual$cases,  type  =  "h",  col  =  "grey", 
+ ylab  =  "Cases",  xlab  =  "Year") 
> par(new = TRUE) 
> ews <- plot.signal(data.annual, crit = crit, ws1 = 30, ws2 = 50, 
+ main = "Statistical signal during the approach to elimination", 
+ xlab  =  "", ylab  =  "", axes  =  FALSE) 
>  axis(4) 
> mtext("Coefficient of variation", side = 4, line = 2.8) 
>  text(100,  0.5,  labels  =  "i", cex  =  1.8) 
>  text(350,  1,  labels  =  "ii", cex  =  1.8) 
>  text(430,  2.3,  labels  =  "iii", cex  =  1.8) 
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Statistical signal during the approach to elimination 
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Figure 2: Early warning signals. 
 

>  text(450,  1.6,  labels  =  "iv", cex  =  1.8) 
 
Here we look at how the signal is corrupted by binomially sampling the annualized incidence to 
represent underreporting. Evidently, the signal is quite robust to under-reporting. 

 

> par(mfrow = c(5, 1)) 
> ews <- plot.signal(data.annual, crit = crit, ws1 = 30, ws2 = 50, 
+        main = "Statistical signal during the approach to elimination") 
>  obs  <-  function(data,  p  =  0.95)  data.frame(time  =  data$year, 
+          cases  =  rbinom(seq(1,  dim(data)[1]),  size  =  data$cases,  prob  =  p)) 
> ews95 <- plot.signal(w95 <- obs(data.annual, p = 0.95), crit = crit, 
+         ws1 = 30, ws2 = 50, main = "95% Case Reporting") 
> ews50 <- plot.signal(w50 <- obs(data.annual, p = 0.5), crit = crit, 
+         ws1 = 30, ws2 = 50, main = "50% Case Reporting") 
> ews10 <- plot.signal(w10 <- obs(data.annual, p = 0.1), crit = crit, 
+         ws1 = 30, ws2 = 50, main = "10% Case Reporting") 
> ews05 <- plot.signal(w01 <- obs(data.annual, p = 0.05), crit = crit, 
+         ws1 = 30, ws2 = 50, main = "5% Case Reporting") 

 

 
Estimating the tipping point 

 
Finally, we look at some ways to estimate the threshold time. First, we seek a transformation to fit 
a hyperbolic model with linear regression. For instance, assuming the model f0 = y = −a/(a − c) 
and taking the inverse we have a linear equation z = 1/y = (c−x)/a = c/a−x/a = −(1/a)x + c/a. 
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Statistical signal during the approach to elimination 
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Figure 3: Early warning signals in time series corrupted by sampling. 
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Figure 4: Transformation of a hyperbola model for the early warning signal. 
 

Thus, taking the reciprocal of y, and regressing on x, the slope is the negative inverse of a and the 
intercept is c/a so that an estimator for the critical time is c = −slope × intercept. He we try that 
with the early warning signal computed above. 

 
> y <- ews[1:385] 
>  x  <-  1:length(y) 
> par(mfrow = c(1, 2)) 
> plot(x, y, type = "p", pch = ".") 
> plot(x, 1/y, type = "p", pch = ".") 
> z <- 1/y 
>  mod  <-  lm(z[200:385]  ~  x[200:385]) 
> est <- -prod(coef(mod)) 
>   print(est) 

 
[1] 0.132874 

 
From Figure 4 we see that at least one problem with this approach is that the rectangular hyperbola 
y = a/(x − c) assumes an asymptote at zero, which is a reasonable approximation on the original 
scale but not the inverse scale. Adding an asymptote we have f1 = y = a/(x − c) + b, but this 
doesn’t admit any tidy transformations. 

Therefore, we switch to estimating the nonlinear function by least squares 
 
> y <- ews[1:365] 
> x <- 0:(length(y) - 1) 
> plot(x, y) 
>  mod2  <- nls(y ~  -a/(x - c) +  b, start =  list(a =  10, b  =  0.2, 
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+ c = 400)) 
>  print(mod2) 

 
Nonlinear regression model 

model: y ~ -a/(x - c) + b 
data:   parent.frame() 

a  b c 
1.3371 0.2677  368.8403 

residual sum-of-squares: 0.3274 
 
Number of iterations to convergence: 7 
Achieved convergence tolerance: 7.893e-06 

 

> mod2.refit <- nls(y ~ -a/(x - c) + b, start = coef(mod2)) 
>    print(mod2.refit) 

 
Nonlinear regression model 

model: y ~ -a/(x - c) + b 
data:   parent.frame() 

a  b c 
1.3371 0.2677  368.8403 

residual sum-of-squares: 0.3274 
 
Number of iterations to convergence: 0 
Achieved convergence tolerance: 7.893e-06 

 

> lines(x, -coef(mod2)[1]/(x - coef(mod2)[3]) + coef(mod2)[2]) 
 

Figure 5 shows this approach to work much better. In this example, the estimated critical time 
is 370 compared with a true value of 381. A weakness of this approach is that it can be expected 
to be numerically unstable so that if insufficient data are available or if start values for the fitting 
algorithm are pooly chosen it will run into difficulties. 

The following function attempts to estimate the critical time directly from a signal such as that 
generated above. 

>  estimate.threshold  <-  function(ews,  sig.time  =  NA,  plot  =  FALSE, 
+ a = 7.5) { 
+ if (is.na(sig.time)) { 
+ stop.50 <- 0.75 * max(ews, na.rm = TRUE) 
+ sig.time <- min(which(ews > stop.50)) 
+ } 
+ y  <-  ews[1:sig.time] 
+ x <- 0:(length(y) - 1) 
+ mod  <- nls(y ~  -a/(x - c) +  b, start =  list(a =  a, b  =  min(ews, 
+ na.rm = TRUE), c = 1.05 * sig.time), control = c(max.iter = 500, 
+ minFactor  =  1/4096)) 
+ if (plot == TRUE) { 
+ plot(x, y, pch = 16, cex = 0.5, col = "grey", xlab = "Time", 
+ ylab  =  "Early  warning  signal",  main  =  paste("Estimated  threshold:", 
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Figure 5: Nonlinear least squares fit to a hyperbola model for the early warning signal. 
 

+ round(unname(coef(mod))[3]))) 
+ lines(x,  -coef(mod)[1]/(x  - coef(mod)[3])  +  coef(mod)[2], 
+ lwd  =  2,  col  =  "dodgerblue4") 
+        } 
+            return(estimated.threshold  <-  unname(coef(mod))[3]) 
+ } 

 
It’s use is demonstrated as follows: 

 
>  threshold  <-  estimate.threshold(ews,  plot  =  TRUE) 

 
The result is shown in Figure 6. 

What might we compare these estimates to? One proposal is simple extrapolation from the observed 
trend. Of course, this doesn’t predict the tipping point, just the extinction time. But, if bifurcatioin 
delay is small then these should be close. Our extrapolating estimator will perform the following 
steps: 

 

1. Select that portion of the incidence data from the last the number of cases was greater than 
90% of its maximum to some later time at which the extrapolation is to be made. 

2. Log transform the data and fit a linear equation: log(w + 1) = mx + b, where w is annual 
incidence (one is added to observations particularly to faclitate studies of under-reporting, 
which will often yield values of zero). 

3. Solve the resulting equation for log(w + 1) = 0 yielding estimator t̂  = −b/m for the critical 
time. 
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Estimated threshold: 393 

 

 
0 100 200 300 400 

 

Time 
 
 

Figure 6: Demonstration of the use of the threshold estimator. 
 

> extrapolator <- function(data, sig.time = NA, plot = FALSE) { 
+ if (is.na(sig.time)) 
+ sig.time  <-  length(data) 
+ ma <- max(data, na.rm = TRUE) 
+ ma90 <- 0.9 * ma 
+ w <- max(which(data > ma90)) 
+ y  <-  data[w:sig.time] 
+ x <- (w - 1):(sig.time - 1) 
+ z <- log(y + 1) 
+ mod <- lm(z ~ x) 
+ if (plot) { 
+ plot(x,  z,  xlab  =  "Time",  ylab  =  "Cases",  main  =  paste("Estimated  threshold:", 
+ round(unname(-coef(mod)[1]/coef(mod)[2])))) 
+ abline(mod, lwd = 2, col = "dodgerblue4") 
+ } 
+ return(extrapolated.threshold   <-   unname(-coef(mod)[1]/coef(mod)[2])) 
+ } 

 
This function is demonstrated as follows and illustrated in Figure 7 

 
>  extrapolated.threshold  <-  extrapolator(data.annual$cases,  plot  =  TRUE) 

 
Now, we’d like to see how the bias and variance of the the early warning statistic and extrapolator 
estimate change with under-reporting in n = 1000 simulations. 

 

>  n.sims  <-  1000 
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Estimated threshold: 562 
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Figure 7: Demonstration of the use of an extrapolation approach to estimating the critical threshold. 
 

>  sims  <-  lapply(1:n.sims,  function(x)  ssa.adaptivetau(c(X  =  X0, 
+ Y = Y0, Z = Z0, W = 0), transitions2, rates.vacc, params, 
+ tf = 450)) 
> save(sims, n.sims, file = "sims.RData") 

 
>   load("sims.RData") 
> sims.annualized <- rapply(sims, f = function(x) annualize(x), 
+ how = "list") 
>   set.seed(10281979) 
>  sims95  <-  lapply(sims.annualized,  function(x)  obs(x,  p  =  0.95)) 
>  sims50  <-  lapply(sims.annualized,  function(x)  obs(x,  p  =  0.5)) 
>  sims10  <-  lapply(sims.annualized,  function(x)  obs(x,  p  =  0.1)) 
>  sims05  <-  lapply(sims.annualized,  function(x)  obs(x,  p  =  0.05)) 
>   thresh   <-   unlist(lapply(sims.annualized,   FUN   =   function(x)   extrapolator(x$cases))) 
>  thresh95  <-  unlist(lapply(sims95,  FUN  =  function(x)  extrapolator(x$cases))) 
>  thresh50  <-  unlist(lapply(sims50,  FUN  =  function(x)  extrapolator(x$cases))) 
>  thresh10  <-  unlist(lapply(sims10,  FUN  =  function(x)  extrapolator(x$cases))) 
>  thresh05  <-  unlist(lapply(sims05,  FUN  =  function(x)  extrapolator(x$cases))) 
>  sims.ews  <-  lapply(sims.annualized,  FUN  =  function(x)  plot.signal(x, 
+ plot = FALSE)) 
>  sims95.ews  <-  lapply(sims95,  FUN  =  function(x)  plot.signal(x, 
+ plot = FALSE)) 
>  sims50.ews  <-  lapply(sims50,  FUN  =  function(x)  plot.signal(x, 
+ plot = FALSE)) 
>  sims10.ews  <-  lapply(sims10,  FUN  =  function(x)  plot.signal(x, 
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+        plot = FALSE)) 
>  sims05.ews  <-  lapply(sims05,  FUN  =  function(x)  plot.signal(x, 
+        plot = FALSE)) 
>  thresh.ews  <-  unlist(lapply(sims.ews,  FUN  =  function(x)  estimate.threshold(x))) 
>   thresh95.ews   <-   unlist(lapply(sims95.ews,   FUN   =   function(x)   estimate.threshold(x))) 
>   thresh50.ews   <-   unlist(lapply(sims50.ews,   FUN   =   function(x)   estimate.threshold(x))) 
>   thresh10.ews   <-   unlist(lapply(sims10.ews,   FUN   =   function(x)   estimate.threshold(x))) 
>   thresh05.ews   <-   unlist(lapply(sims05.ews,   FUN   =   function(x)   estimate.threshold(x))) 
>  threshold  <-  data.frame(threshold  =  c(thresh.ews,  thresh95.ews, 
+        thresh50.ews, thresh10.ews, thresh05.ews, thresh, thresh95, 
+         thresh50, thresh10, thresh05), reporting = rep(c(rep(100, 
+        n.sims), rep(95, n.sims), rep(50, n.sims), rep(10, n.sims), 
+        rep(5, n.sims)), 2), method = c(rep("ews", n.sims * 5), rep("extrapolation", 
+       n.sims * 5))) 
>  boxplot(threshold  ~  method  +  reporting,  data  =  threshold,  col  =  rep(c("dodgerblue4", 
+          ose1),  5), axes  =  FALSE,  log  =  "", ylim =  c(350,  1500)) 
>  axis(2) 
> axis(1, at = seq(0, 8, by = 2) + 1.5, labels = c("5%", "10%", 
+        "50%", "95%", "100%")) 
>  box() 
> legend("topleft", bty = "n", col = c("dodgerblue4", ose1), legend = c("Critical slowing down 
+        "Extrapolation"), lty = 1, lwd = 6) 
> save(sims.annualized, sims95, sims50, sims10, sims05, thresh, 
+          thresh95,  thresh50,  thresh10,  thresh05,  sims.ews,  sims95.ews, 
+         sims50.ews, sims10.ews, sims05.ews, thresh.ews, thresh95.ews, 
+      thresh50.ews, thresh10.ews, thresh05.ews, threshold, file = "bias.RData") 

 
Of course, since the extrapolator has no information about bifurcation delay it will inevitably be 
very biased. What’s more, there’s no “natural” way to correct for this bias. Therefore, we will draw 
a plot showing just the effect of under-reporting on the critical slowing down based estimator. 

 

>    load("bias.RData") 
> par(mfrow = c(1, 2)) 
> par(mar = c(5, 4, 2, 0) + 0.1) 
> plot(sims.ews[[1]], lwd = 2, col = "dodgerblue4", ylab = "Coefficient of variation", 
+          main  =  "(a)  Under-reporting") 
>  lines(sims95.ews[[1]],  lwd  =  2,  col  =  ose1) 
>  lines(sims50.ews[[1]],  lwd  =  2,  col  =  ose2) 
>  lines(sims10.ews[[1]],  lwd  =  2,  col  =  ose3) 
>  lines(sims05.ews[[1]],  lwd  =  2,  col  =  ose4) 
>  legend("topleft",  legend  =  c("100%  Reporting",  "95%  Reporting", 
+          "50%  Reporting",  "10%  Reporting",  "5%  Reporting"),  col  =  c("dodgerblue4", 
+        ose1, ose2, ose3, ose4), lwd = 2, bty = "n") 
>  boxplot(threshold   ~  method   +  reporting,   data  =   threshold[threshold$method  == 
+        "ews", ], col = rep(c("dodgerblue4", ose1), 5), axes = FALSE, 
+         ylim = c(360, 410), xlab = "Fraction of cases reported", 
+         ylab = "Estimated threshold", main = "(b) Bias") 
>  axis(2) 
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Figure 8: Comparison of the extrapolation and critical slowing down based approaches to estimating 
the critical threshold. 
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(a) Under−reporting 
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Figure 9: Bias in an approach to estimating the critical threshold from measurement of critical 
slowing down. Note that lines in the left panel are largely, but not exactly, overlapping. 

 

> axis(1, at = seq(0, 8, by = 2) + 1, labels = c("5%", "10%", "50%", 
+        "95%", "100%")) 
>  box() 
> abline(h = crit, lty = 2) 

 
Figure 9 shows that there is a small amount of negative bias in this critical slowing down estimator 
of the critical point (the threshold is predicted to be earlier than than it actually is). One thing I’ve 
found is that this is somewhat sensitive to the time at which the prediction is made. Possibly this 
is also due to the size of the moving window used for calculating the variance. In this experiment 
this is set to 30 observations. A smaller moving window would have less inertia (would adjust 
faster), but preliminary numerical experiments found this to trade off with the estimability of a 
in the hyperbola model: with fewer than about 30 observations in the window it was not possible 
to find starting positions for a that would actually converge. Some additional experiments showed 
that models could be fit with reporting as low as 1% or 2% but automated fitting was impossible 
and the variance in the estimate became very large (though not as large as for the extrapolation 
method). 
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