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Abstract: Socially assistive robots are widely deployed in interventions with children on the autism
spectrum, exploiting the benefits of this technology in social behavior intervention plans, while
reducing their autistic behavior. Furthermore, innovations in modern technologies such as machine
learning enhance these robots with great capabilities. Since the results of this implementation are
promising, their total cost makes them unaffordable for some organizations while the needs are
growing progressively. In this paper, a low-cost robot for autism interventions is proposed, benefiting
from the advantages of machine learning and low-cost hardware. The mechanical design of the robot
and the development of machine learning models are presented. The robot was evaluated by a small
group of educators for children with ASD. The results of various model implementations, together
with the design evaluation of the robot, are encouraging and indicate that this technology would be
advantageous for deployment in child–robot interaction scenarios.

Keywords: social robots; socially assistive robots; autism spectrum disorder; child–robot interaction;
robot-mediated intervention; robot design; machine learning

1. Introduction

The rapid progress of robotics offers great possibilities in the implementation of robots
in human–robot interaction (HRI) settings and especially in populations relative with
healthcare demands, elderly care, rehabilitation, physical impairments, etc. The use of
socially assistive robots (SAR) aims at aiding these populations through social interaction,
creating strong social bonds, and achieving measurable progress [1].

Recent studies have explored the potential use of SAR in special education and specifi-
cally for individuals with cognitive disorders such as autism. Autism spectrum disorder
(ASD) is a developmental disorder (DD) that characterizes children with a set of eccentric
patterns of behavior that appears in infant or toddler years [2], while the deficits fall into
three categories: social interaction, communication, and stereotyped behavior [3]. Further-
more, due to the absence of permanent cure, specialized intervention plans are taking place
to reduce the autistic behavior of children, while producing significant results [4].

The integration of SAR in autism interventions, which is referred to as robot-assisted
therapy (RAT) or robot-mediated interventions (RMI), has been reviewed by several studies.
The key elements that make SAR an effective interaction tool for autism interventions were
explored in [5]. Robots usually are used as attractors, mediators, or as measurement
tools in ASD interventions and diagnosis [6]. Huijnen et al. found that state-of-the-
art robots could address many ASD interaction objectives, which are identified by ASD
professionals [7]. In addition, it was found that children with autism perceived a robot as a
social peer with mental states, interacting with it fairly [8]. Breazeal et al. state that children
with autism retained what the robots told them and sought information for them during
interaction tasks [9].
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Furthermore, novel innovations in machine learning allowed robots to be equipped
with advanced capabilities regarding the diagnostic purposes of autism such as identifica-
tion and classification of symptoms [10–12].

During the review of the state-of-the-art robots that are used in autism intervention, it
was realized that current commercially available robots are technically sophisticated, using
advanced hardware equipment, while requiring a complex design to combine their behav-
iors with this hardware. This also means that the integration of software and algorithms
is also complicated and it is achieved through the use of various expensive components.
As such, these robots are quite expensive and require high financial resources that some
organizations do not have.

To investigate this issue, this paper proposes the design of a low-cost, portable robot
that could be implemented in autism interventions. The robot is equipped with inexpensive
but powerful hardware that allows the implementation of advanced capabilities and
modalities to the robot, which will enrich the interaction with ASD children. Exploiting the
benefits of technological novelties, the robot is equipped with machine learning abilities
that are being deployed straight to the hardware, minimizing both computational and
power consumption demands. In this way, the cost of the robot is significantly reduced
since the hardware and the software are forming an all-in-one solution with no separate
equipment to be needed. Regarding the robot’s machine learning abilities, two neural
networks were developed to perform speech recognition and motion classification, giving
the robot the basic capabilities for interactions, contributing to the adaption of its behavior
accordingly. In addition, machine vision algorithms were developed for face detection
and identification, which will provide the robot with better skills during tasks that require
visual stimuli. This approach will benefit, on one hand, therapists, who can use a cheap
assistive tool in their practices, and, on the other hand, children, who can communicate and
interact with the robot more efficiently and naturally. Finally, a team of special educators
evaluated the robot’s prototype, together with its software prototype, giving valuable
feedback and recommendations about its design and development.

The rest of the paper is organized as follows. Section 2 reviews the related work in the
field of socially assistive robots for autism interventions. Section 3 introduces the design
of the robot and the development of the technology and methods that equip the robot.
Section 4 presents the evaluation results of the robot’s and software’s designs from a team
of special education teachers who have daily experience with ASD children. Section 5 gives
the discussion, and Section 6 gives the conclusion and future research work.

2. Related Work
2.1. Socially Assistive Robots and Autism Spectrum Disorder

Various designs of robots have been developed through the years, with different
characteristics and expressions. Van Straten et al. stated that children with ASD are par-
ticularly attracted by technological artifacts, such as robots, due to the simpler way of
interaction and the motivation that they establish [13]. Additionally, ASD children may
possibly feel stress while interacting with other people due to unpredictable and com-
plex human behavior. Thus, it has been reported that ASD individuals exhibit increased
levels of communication abilities and social skills when interacting with robots rather
than with humans [14,15]. Furthermore, Dautenhahn et al. found that children with ASD
interact better with robots simply because they perceive them as predictable, controllable,
and acceptable partners [15]. Usually, robots that are adopted in HRI studies for ASD
interventions have anthropomorphic characteristics with realistic features, including inte-
gration of moving bodies, electronics, and software [16–18]. Other robots have cartoon-like
characteristics with various interaction modalities and channels, capable of interacting
without constraints [19,20]. In addition, robots with animal-like characteristics have been
developed, exploiting the benefits of animal caring in social HRI tasks [21–23]. Finally,
robot designs that resemble toys have been explored, forming different HRI settings and
goals [24]. A collection of the various robot shapes and designs can be seen in Figure 1. The
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presented robots have different appearances and morphological characteristics that distin-
guish each other, allowing ASD children to identify the potential social cues and generalize
the learned skills towards human–human interactions [25], either when interacting with
humanoid robots or with robotic animals. However, a balance between the appearance and
interaction cues should be achieved, due to sensory overload problems that these children
may face [26].
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(c) Flobi robot, (d) TEO robot, (e) Probolino, (f) Keepon robot, (g) Aibo robot dog, (h) Roball robotic
toy, (i) dinosaur robot Pleo.

3. Materials and Methods

In this section, the design and development of the robot is presented. First, the
mechanical design process of the robot is described, including the design specifications
and requirements, and the final detail design is also described. Second, the technological
development of the robot is introduced, presenting the robot’s hardware and the complete
process of programming, in terms of software and algorithms.

3.1. Robot’s Design

The design process of the robot is based on the functional requirements, characteristics,
and constraints that were set and emerged from the observation of other solutions in
HRI. Furthermore, a team of eight educators, who work daily with ASD and other DD
individuals in a public school in Greece, was involved in the design process, reviewing the
prototype of the robot. It should be noted that they did not have any prior experience in
the use of robots or in robotics; thus, they did not introduce any bias into the procedure.
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3.1.1. Design Requirements, Characteristics, and Restrictions

The design requirements, characteristics, and constraints are presented in Table 1,
which presents the information under which the robot will be designed.

Table 1. Requirements, characteristics, and restrictions of robot development.

Requirements Characteristics Constraints

Convey feelings Removable parts Low cost, under 250 euros

Facial expressions Portable Designed with curves

Tactile interaction Lightweight Use of soft materials

Perform movements Robust and solid Speed limitations

Produce voice and sounds Durable Use of mild colors

Speech recognition Low space footprint Not too high sounds

Face recognition Environmentally friendly Not exceeding 250 mm height

Not exceeding 1.2 kg weight

3.1.2. Mechanical Design of the Robot

Figure 2 presents the mechanical drawing of the robot’s shape with its dimensions. It
is a small robot, with a form capable of triggering natural interaction, expressing states that
enable emotional interaction; its small size allows users to handle it nicely. Moreover, it
allows personalization due to its modular characteristics, offering great opportunities in
intervention plans. The robot has three DOF in total, one per arm and one in the torso.
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Figure 2. Robot’s form, size, and the relevant dimensions.

In Figure 3, the placement of the robot’s parts is presented. On the front side, the
microphone and the speaker are located behind two spots, aiming at a more accurate acqui-
sition of speech and sound. A vibration motor touches the front frame, so the transmission
of any oscillation can be easily understood. Responses to violent touches, such as hits
or falls, are recognized by the MCU’s accelerometer, through the use of a trained neural
network. Figure 4 presents, in more detail, the location of the electronic parts inside the
body of the robot. Figure 5 shows the 3D-printed prototype of the robot.
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3.2. Robot’s Hardware and Electronics

Low-cost and efficient hardware components equip the robot. A powerful microcon-
troller unit (MCU) is used for controlling the robot and implementing the machine learning
models. The list of all electronic parts that are used for the robot is presented below:

• MCU: An Arduino Nano 33 BLE Sense is used. The unit contains several sensors, with
the most important for the proposed robot to be the nine-axis Inertial Measurement
Unit (IMU). Moreover, it can be programmed with the Python programming language.

• Camera: A state-of-the-art machine vision camera with a 115◦ field of view is used.
The camera is capable of performing vision tasks such as face, object, and eye tracking
and recognition, which are essentials for the interaction tasks.
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• Screens: Two screens are integrated on the robot. The first one is mounted on its head,
displaying basic emotions such as happiness, sadness, surprise, fear, and anger. The
second one is mounted on the center of the robot and allows tactile interaction.

• Sensors: The robot uses one vibration motor, offering the sense of shiver when the robot
is being hit or shake, and a gyroscope and accelerometer from the MCU, detecting hit
and fall.

• Servos: Three MG90S 2.8 kg micro servos with metal gears, due to their small size and
their elastic response to external forces, are used. These motors are used to move the
hands and torso.

• Audio: One loudspeaker is implemented, expressing the voice of the robot, and a
microphone with a 60x mic preamplifier is used to capture and amplify sounds near
the robot.

Table 2 summarizes the characteristics and the equipment that are used for the devel-
opment of the robot.

Table 2. Summary of the equipment that is used for the development of the robot.

Size 205 × 134.1 mm Servos 3 × MG90S 2.8 kg

Weight 1.2 kg Gyroscope and
Accelerometer 3-axis LSM9DS1 IMU sensor

Port USB 2.0 Micro-B Speaker 1 × 3 W loudspeaker

Camera 640 × 480 32-bit Microphone Electret 60× min preamplifier

Head Screen 1.54” 240 × 240 Central screen 3.5” touch LCD screen 420 × 320

3.3. Instructional Technology

In this section, the robot’s control software prototype, the detailed development of the
ML models, computer vision algorithms, and the deployment on the MCU are presented.

3.3.1. Software Prototype

The prototype of the robot’s software was developed in order for specialists to assess
and evaluate its design and overall user experience. The software prototype was designed
to provide the necessary information about the intervention and children’s interaction
with the robot. Additionally, educators are capable of controlling the robot with a set of
predefined functions, acquiring data about the progress of the children, the functionality of
the robot, and the related team. Figure 6 presents the main page of the software.
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For the development of the software prototype, the necessary information is displayed
with the use of simple diagrams that are easy to use and interpret by the users. Further-
more, a few restrictions were set on the users so that changes can be performed under
consideration. The software’s assessment results by the team of specialists are presented in
the Section 4 of the paper.

3.3.2. Robot’s Main Capabilities

The main capabilities of the robot include speech recognition and the classification
of specific motions. Regarding speech recognition, the robot is able to understand spec-
ified commands that will be captured from its microphone. This capability allows the
robot to participate in social initiation tasks, in which the child will be engaged in speech
development assignments that will be determined by the specialist. For this purpose, a
neural network was trained with a set of keywords that correspond to various functions of
the robot. The dataset consisted of four main keywords, forming a minimum interaction
with the robot, and included the “hey_robot” keyword that activates the robot, the “dance”
keyword that enables the robot to dance, making specific movements with its body and
hands, the “photo” keyword that makes the robot take a photo and save it in a specific
folder, and, finally, the “goodbye” keyword, which is a farewell to the robot. Additionally,
labels including “unknown” words and “noise” were used to train the NN against faulty
inputs that may be captured while increasing its accuracy. In this paper, the keywords used
for the development and training of the NN were in English, but, in the future, they will be
captured in Greek. For more details about models’ development process, please see the
provided supplementary materials.

Concerning the classification of specific motions, a neural network was trained with a
dataset of three classes including the acquired data from the microcontroller’s IMU. The
three classes in the dataset were “stable”, where the MCU is in idle position, resembling
that the robot stands still, “hit”, where the captured motions resemble when the robot is
being hit, and “fall”, where the captured movements resemble a possible fall of the robot.
With the recognition of these motions, the robot is able to express its feelings about its
current situation.

Further to the development of the previous capabilities, the robot is able to perform
face tracking and identification using its camera. This ability allows the robot to participate
in eye contact tasks, helping children to develop social communication abilities through
conversations or other short tasks that would be defined by a therapist. Firstly, the robot
detects a person’s face and then tries to identify with whom it may interact. A set of known
and unknown faces is created, training a machine learning recognizer, which, through the
use of specific algorithms, is able to identify the person. This capability will help the robot
to adapt its behavior accordingly and adjust its movements and motions to the current state
of the child. The detailed development of neural networks and machine vision algorithms
is described in the next section.

3.3.3. Machine Learning Models’ Development

This section presents the complete process of ML models, starting from data acquisi-
tion and ending with the development and deployment of the neural networks that are
capable of detecting specific words and classifying motions in real time. The process of
the models’ development was achieved through the use of Edge Impulse Studio [27]. For
each neural network, the following procedure was followed: (1) data preparation, (2) data
preprocessing, (3) feature extraction, and (4) neural network classifier training.

Concerning speech recognition, the data of this model were acquired through a mobile
phone (iPhone 12), due to its ability for capturing audio spatially, and were uploaded to
the Edge Impulse tool. Two datasets were developed; the smaller dataset was developed
to train the neural network faster while the bigger one contained more variety in the data.
Once this process was completed, the data were divided into approximately 360 samples
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for each class. For this dataset, a refinement process was followed, where deteriorated and
duplicate samples were removed, improving the model’s accuracy.

Once the dataset was prepared, the audio processing parameters were set. The window
size of the data that were processed per classification and the frequency were set to 1000 ms
and 16,000 Hz, respectively.

For the processing of sound, the Mel frequency cepstral coefficients (Audio MFCC)
technique was selected; this extracts the coefficients of a raw signal [28]. In this step, the
raw audio signal was taken and, using signal processing, the cepstral coefficients were
generated. Figure 7 presents the cepstral coefficients for the keywords hey_robot, dance,
photo, and goodbye, as presented in the Edge Impulse tool.
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Once the feature extractions were generated, the NN was developed and trained on
these features using a TensorFlow framework [29]. The dataset was divided for training
and testing; 80% of the speech samples were used for training, and the remaining 20% were
used for testing the NN. The model’s architecture is presented in Figure 8; its parameters
were the following:
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Architecture:

• The input layer had 650 inputs that came from the feature extraction, providing the
MFCCs of the raw data.

• Layer 1: a 1D convolutional layer was created with eight neurons and three kernel
sizes, which was the length of the 1D convolutional window, one convolutional layer,
and the Relu activation function.

• Layer 2: a MaxPooling 1D layer was set with a pool size of 2; the maximum element
from each region of incoming data covered by the filter was selected.

• Layer 3: a dropout layer was created with a value of 0.25; 25% of input units will drop
at each epoch during training, preventing the NN from overfitting.

• Layer 4: a 1D convolutional layer was set with 16 neurons, with the same kernel size
and activation function as previously stated.

• Layer 5: a max pool 1D layer was set, as in Layer 2.
• Layer 6: a dropout layer was set, as in Layer 3.
• Layer 7: a flatten layer was created, converting the data into a one-dimensional array

for inputting it to the next layer. The output of the convolutional layers was flattened
and connected to the final classification layer, which was a fully connected layer.

• Layer 8: a dense layer was created to densely connect the NN layers, where each
neuron in this layer received input from all the neurons of the previous layers.

Parameters:

• Parameter 1: the Adam optimizer was selected due to its little memory requirement
and its computationally efficiency [30]; the learning rate, which means how fast the
NN learns, was equal to 0.005. The batch size was defined to 32.

• Parameter 2: for training the neural network, the Categorical Crossentropy loss func-
tion was selected, accuracy was defined as metric in order to calculate how often the
predictions equal the labels, and epochs were set to 500.

• Parameter 3: 20% of the samples were set for testing.

Regarding the motion classification model, the data were collected from microcon-
troller’s three-axis accelerometer and consisted of three main labels. The collected data
were 12 min of training data and 3.30 min of test data.

For the processing of data, the window size was set to 2000 ms and the spectral analysis
was used, analyzing the repetitive motion of the accelerometer data while extracting the
frequency and power of the signal over time [31]. Figure 9 presents an example of the
frequency and power of a sample in the “fall” label, as generated in the Edge Impulse tool.
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The proposed model that was developed for the motion classification was smaller
than the previous one. Figure 10 shows the architecture with the following parameters:
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Architecture:

• Layer 1: an input layer with 33 features that came from the spectral analysis, providing
the frequency and spectral power of a motion.

• Layer 2: a dense layer with 20 neurons was set together with the Relu activation
function.

• Layer 3: another dense layer with 10 neurons was set together with the Relu function.
• Layer 4: A final dense layer was used to connect the previous layers, with the SoftMax

activation function.

Parameters:

• The Adam optimizer was selected with a learning rate of 0.0005, and the batch size
was set to 32.

• The Categorical Crossentropy loss function was selected, accuracy was defined as
metric, and the epochs were equal to 100.

• The data for testing were defined at 20% of the dataset (the remaining 80% of the
dataset was used for training).

After the development of the models, they were deployed on the MCU. Since the
development took place on TensorFlow, they had to converted to TensorFlow Lite (TF Lite)
models to fit onto the MCU using the TinyML technique [32,33].

Regarding the speech detection model, a two-buffer mechanism was set for implement-
ing continuous audio sampling. In this method, audio is sampled in parallel with inference
and output, and, while inference is still running, sampling continues in the background.
Thus, no sample is missed, and new audio data are captured and analyzed. Using contin-
uous inferencing, small buffers that contain audio samples are passed to the inferencing
process, with the oldest to be removed and the new to be inserted at the beginning. The
continuous inference process is presented in Figure 11. Concerning the motion classification
model, it was implemented with the same two-buffer technique.

A confidence threshold was set to 80% for both models, meaning that if a feature was
detected by the model with at least 80% confidence, this feature matched the actual label of
the class.

The deployment of the model on an Arduino microcontroller followed an implemen-
tation of different scripts based on the Python language and OpenCV library. These scripts
contained functions for face detection and recognition and the integration with the keyword
detection model.

For the face detection task, the Haar cascade classifier was used based on the work
made in [34]. Using OpenCV library and a pretrained classifier, the detection of the face
was implemented by a detection method.
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Regarding the face identification task, a dataset of faces, with the name of each person
as an ID, was created and was used to train an ML recognizer based on the histogram of
oriented gradients (HOG) [35]. Firstly, the image was converted to grayscale and every
single pixel on it was processed. Then, the gradients to the direction in which the image
was darkening were determined, and the part of the image that looked similar to the
created HOG was created. Next, the face landmark algorithm [36] was used to deal with
the various face orientations, extracting 68 specific landmarks of the face, where eyes and
lips were always in the same position, as shown in Figure 12.
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Figure 12. Facial landmarks of (a) frontal face, (b) side face.

Once the landmarks were acquired, a neural network was trained to generate mea-
surements, comparing known faces against unknowns. Pre-trained networks can be found
at [37], which can be used to produce encoded values of these measurements. Finally, a
trained classifier, which takes measurements from a new face, determined which known
face matched the closest, with a confidence threshold of 85%. The result of the classifier is a
person’s name, and an example is presented in Figure 13.

After developing the models and deploying them to the microcontroller, the results
of the models’ performances, inferencing, and the educators’ review are presented in the
next section.
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3.3.4. Evaluation Metrics

The speech and motion classification models’ performance were evaluated using total
accuracy (TAcc), accuracy (ACC), sensitivity or recall (TPR), specificity (TNR), precision
(PPV), and F1-score (F1).

Total accuracy is the model’s overall accuracy and was determined by the fraction of
the model’s correct predictions for each class to all samples of the model:

TAcc =
∑m

i=1 pc
i

∑n
i=1 si

(1)

where pc
i is the i-th correct prediction and si is the i-th sample.

Accuracy was calculated for every model class through the false/true positive/negative
result of the classifier. It is defined by:

ACC =
TP + TN

TP + TN + FP + FN
(2)

where TP, TN, FP, and FN are the sums of the true positive, true negative, false positive,
and false negative results of the classifier for every class, respectively.

Recall is the metric that evaluates the true positive rate of every class:

TPR =
TP

TP + FN
(3)

Specificity is the metric that evaluates the true negative rate of every class:

TNR =
TN

TN + FP
(4)

Precision indicates the positive predictive values of every class:

PPV =
TP

TP + FP
(5)

The F1-score or harmonic mean indicates an average rate of the model’s accuracy for
each class:

F1 = 2
Precision ∗ Recall
Precision + Recall

(6)
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4. Results
4.1. Speech Detection Model

Regarding the speech detection model, the total samples for the dance, goodbye, hey_robot,
noise, photo, and unknown labels were 57, 54, 91, 67, 75, and 53, respectively. Table 3 presents
the confusion matrix of the model. Based on the values of the matrix, TAcc = 97.48%.
According to Equation (1), ∑m

i=1 pc
i is the sum of the main diagonal values of the matrix,

while ∑n
i=1 si is the sum of the model’s total samples.

Table 3. The confusion matrix of the model.

Predicted Labels

A
ct

ua
lL

ab
el

s

DANCE GOODBYE HEY_ROBOT NOISE PHOTO UNKNOWN UNCERTAIN

Dance 56 0 0 0 0 0 1

Goodbye 0 53 0 0 0 0 1

Hey_robot 0 0 91 0 0 0 0

Noise 0 0 0 64 0 1 2

Photo 0 0 0 0 74 0 1

Unknown 0 0 0 2 0 49 2

In Table 4, the metrics defined in Section 3.3.4 were calculated for each class, when the
model was being tested for the same data.

Table 4. Metrics’ results for each class in model testing.

Class ACC TPR TNR PPV F1

dance 0.997 0.982 1.00 1.00 0.991
goodbye 0.997 0.981 1.00 1.00 0.991

hey_robot 1.00 1.00 1.00 1.00 1.00
noise 0.992 0.955 0.994 0.970 0.962
photo 0.997 0.987 1.00 1.00 0.993

unknown 0.990 0.925 0.997 0.980 0.951

It can be seen from Table 4 that the hey_robot class had the highest percentage for every
metric. The Noise and unknown classes had the lowest rates in TPR metric, which indicates
that there were fewer true positives; consequently, the F1 for these classes was lower, too.

4.2. Motion Classification Model

Figure 14 presents the TAcc and the TPR for each class based on Equations (1) and (3),
respectively, of the unoptimized and optimized model and which were extracted from
the Edge Impulse tool. It can be noticed that there was a significant drop of accuracy
between the unoptimized and optimized versions of the motion classification model due
to quantization in order to fit onto the MCU. The stable class had the highest rate in both
versions, due to the simplicity of the samples. On the contrary, the fall and hit classes had
the lower rates in TPR due to the confused movements.

4.3. Models’ Comparison

For increasing the models’ accuracy, various implementations were deployed includ-
ing the fine tuning of epochs and learning rate, giving different results. The development
of the proposed model for speech detection was divided into two stages. In the small
dataset, a neural network with MFCC feature extraction was developed and tested in four
implementations compared with the pretrained MobileNet-v2 model, with Mel-filterbank
energy (MFE) features’ extraction involving two implementations. For this dataset, the
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MFCC model was tuned with 100 and 200 epochs and the learning rate was from 0.001 to
0.005. Regarding the MFE model, the epochs were 100 and the learning rates were 0.01 and
0.05, respectively. The results indicated that TAcc for the pretrained, MobileNet-v2 model,
was almost 93% with 100 epochs and 0.05 learning rate and the F1 score was 95%, which
was the best implementation for this dataset. The results are shown in Figure 15.
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Figure 15. Accuracy and average F1-score of the MFCC and MFE models in different
implementations.

The second stage of development, based on the big dataset, included the deployment
of three implementations. The first two models were based on the MFCC feature extraction
and were deployed with the same values in epochs and learning rate; however, there
was a difference in their architecture, where the first was a 2D convolutional NN and the
second was the model that was proposed in Section 3.3.3. The last model was the MFE
model, which was implemented in the small dataset with 50 epochs. The results of this
implementation showed that the proposed 1D conv neural network performed better than
the other two, with TAcc = 97.48%. Additionally, the MFE model performed poorly in this
dataset, with TAcc = 90%. Additionally, in the MFE models, changes to epochs seemed to
have no effect on TAcc. Figure 16 presents the comparison results.
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Figure 16. Accuracy and F1-score comparisons between the proposed model and a 2D
conv + MFE model.

Concerning the development of the motion classification model, it was developed
in three implementations. The architecture remained the same as well as the learning
rate. The epochs changed from 30, 100, and 200, respectively. The proposed model had
TAcc = 88.08%, with 100 epochs’ training. Results can be seen in Figure 17.
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4.4. Deployment Results on Microcontroller

Since the models were converted to TF Lite, they were optimized, increasing their
performances but reducing their on-device accuracy. Figure 18 presents the comparison
between the quantized and the unoptimized speech detection model, generated from the
Edge Impulse tool.
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In Figure 18, it is evident that there was a reduction in Ram, Flash, and latency
between the two models. Also, the TAcc of the optimized model remained almost the same,
compared with the unoptimized.

On the other side, regarding the motion classification model, the comparison between
the optimized and unoptimized model, extracted from the Edge Impulse Studio, can be
seen in Figure 19.
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Figure 19. Comparison between optimized and unoptimized deployments for the motion classifica-
tion model.

From this comparison, it was shown that on-device accuracy dropped significantly in
the optimized model (3.15%), with the rate for uncertain values in the fall label being higher
(3.9%). This low performance could be explained by the limited dataset of the captured
data. The results of the classification and testing on the MCU, for the speech detection and
motion classification models, are presented in Tables 5 and 6, accordingly.

Table 5. On-device model testing and classification for speech detection model.

Dance Goodbye Hey_Robot Noise Photo Unknown

Dance 0.99609 0.00000 0.00000 0.00000 0.00000 0.00000

Goodbye 0.00000 0.99609 0.00000 0.00000 0.00000 0.00000

Hey_robot 0.00000 0.00000 0.99609 0.00000 0.01172 0.00000

Noise 0.00000 0.00000 0.00000 0.98047 0.02734 0.00391

Photo 0.00000 0.00000 0.00000 0.00000 0.93359 0.09766

Unknown 0.00000 0.00000 0.00000 0.01953 0.02734 0.89844

Table 6. On-device model testing and classification for motion classification model.

Timestamp Fall Hit Stable

80 0 0 1.00

560 0 1.00 0

80 1.00 0 0

In Table 5, the on-device model testing and classification results of the speech model’s
labels are presented. As can be seen, the results explain the capability of the model to
perform fast, continuous audio capturing with impressive accuracy in each label.

In Table 6, the model was tested to classify motions for the three classes for 5 s sampling.
For the fall and stable motions, the samples were correctly predicted, with ~100% accuracy;
however, for the hit sample, the classification started ~500 ms after the initialization. Thus,
it was clear that there were a few false positive samples in the hit label, which implies the
need for a better dataset.
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4.5. Evaluation Using Specialists

Eight educators of a public school in Athens for the specialized education for children
with ASD and other developmental disorders (n = 4, autism specific; n = 2, other DDs;
n = 2 general education, working across various special educational needs) participated in
small focus group sessions (see Appendix A). Specialists varied widely in their levels of
experience, ranging from <2 to 28 years in their current education setting (M = 12.7 years,
SD = 9.19). The aim of this evaluation was to identify educators’ ideas and perceptions
about the robot and software prototype, taking their recommendations into consideration
for future work while developing the robot for ASD interventions. It should also be noted
that specialists had no previous experience in robotics.

4.5.1. Procedure Description

Seven educators completed one small focus group regarding the software prototype
assessment in their working environment. The focus group included a brief introduction
on the Human–Robot Interaction field and the context of RMI in ASD. After, the robot’s
software prototype was presented, and they had 5–10 min to navigate through its screens.
When they finished, they were given a questionnaire to answer about their experience,
indicating necessary corrections (see Appendix B). When this session ended, the second
focus group took place with eight educators participating regarding robot assessment.
Participants viewed the robots that were presented in the paper’s Section 2.1, and they
were not given any information about their capabilities or technical feasibility. Then, the
robot’s 3D-printed prototype was presented. Later, they assessed the prototype, and they
were encouraged to consider its potential uses in autism interventions (see Appendix C).

The total duration of the first focus group was 100 min, with a 90 min time (12.85 min
mean time) for answering. The total duration of the second focus group was 90 min, with
an 80 min time (11.42 min mean time) for answering the specific questionnaire.

4.5.2. Results of Software Prototype Session

The first two questions were answered prior to the demonstration of the prototype
and showed that 71.42% of specialists want to have the control of the robot, parameterizing
its functions according to children’s needs, and 85.71% of the specialists expect that the
software will have buttons and images. All the specialists found it useful, user-friendly, and
comprehensible. Of the educators, 71.42% faced difficulties in returning to a previous screen,
while 42.85% indicated that the analytics should be displayed differently. Additionally,
71.42% of the educators indicated that the sound in button pressing, the commands in the
main screen, and the limited available options were missing. Among the most important
findings were a help button, a more colorful interface, and the option to note important
reasons about the intervention. Of the specialists, 28.57% stated that the apply button was
something unnecessary, while 71.42% found the analytics page the most important element.
The answers for possible changes varied between aesthetic and usability opinions. In the
last question, the specialists recognized equipment and robotic knowledge as the main
prevention reasons.

When the general questions were finished, nine Likert Scale questions were answered.
Concerning Q14, 57.14% of specialists rated the ease-of-use level sufficient. Regarding Q16,
71.42% of the specialists rated the overall experience as excellent, and, in Q17, three out of
seven agreed that the process of use was clear. In Q18, 57.14% of the specialists agreed that
the navigation was easy, and, in Q19, five out of seven stated that such a software would be
extremely important. In Q20, five of seven educators had no previous experience of using
similar software, and, in Q21, 85.71% had completely no experience in the use of robots.
Finally, in Q22, 42.85% of the specialists understood completely the software.

4.5.3. Results of Robot Prototype

Concerning the first and second questions, the majority of the specialists described
the robot as cute and safe, having the appropriate size for children, being minimally
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expressive and child-friendly, with an accessible shape. In the third question, the emotions
that the robot caused the specialists ranged from curiosity, to tenderness, to excitement,
and pleasure. Additionally, the specialists found the central screen and face tracking and
speech detection capabilities as the main advantages, which also gave value to the robot.
In question 6, two out of eight educators said that they did not like that the head rotates
with the body, and two out of eight noticed the lack of human characteristics. In general,
attached parts, positive feedback, head rotation, and the guidelines to children seemed to
be what specialists would add. In questions 10 and 11, we found that the attached accessory,
human face screen, head rotation, feedback functionality, and a more stable base should
be improved. Furthermore, the specialists indicated emotion expression tasks and speech
activities as the robot’s potential deployment domain. Lastly, in question 14, the educators
would use robots Kaspar, Nao, Flobi, Aibo, and Roball as an alternative.

5. Discussion

In this study, important findings were found for the development of ML models that
will be deployed on a robot for ASD interventions, as well as for the design of the robot’s
and software’s prototypes using educators’ reviews.

Regarding machine learning models, some differences were found. First, for the
speech detection model, the small dataset was very limited, where the MobileNet-v2 model
was shown to be the best, with 95% accuracy. For the refined dataset, the proposed model
reached almost 98% accuracy when deployed on the microcontroller, while its accuracy
was slightly increased. As for the F1-score, it was higher than the accuracy, which indicated
good balance between precision and recall. Concerning the model for classifying motions,
the findings suggest that more work has to be completed in terms of the data. Despite that
accuracy reached almost 86%, there were misclassifications of samples, which may happen
due to the limited amount of data and the way that data were captured.

In terms of on-device performance regarding the speech detection model, it took 105
ms for detection and 5 ms for classification. This explains the vast capabilities of TinyML in
demanding tasks, such as child–robot interaction, where continuous and reliable sensing is
required. On the other side, the on-device performance of the motion classification model
showed that classification started later in time regarding the hit class, which explains that
the motions in this class were not distinct.

The evaluation of the specialists is very important, both for the robot and its soft-
ware, while their engagement in the process is significant. Firstly, regarding the software
prototype, the specialists want to use it for controlling the robot. They mentioned aes-
thetic elements that would make the experience richer and the solution of other minor
usability issues. Moreover, they found the analytics and preview panes as the most useful
elements. Additionally, they indicated a lack of equipment and knowledge as reasons that
may prevent them from using the robot. As a general result, the overall experience was
interesting and no major usability issues that hindered interaction were found. Lastly, an
understanding of what the software can accomplish remains questionable and needs to be
defined appropriately.

Regarding the assessment of the robot’s prototype, the specialists anticipate working
with it in interventions when it is ready, with emotions and speech development tasks as
the most important implementations. Furthermore, the educators characterized the robot
as simple, making it an appropriate tool for children. Additionally, the central screen of
the robot, which allows tactile interaction and the ability to recognize speech and faces,
was defined as the most important function. The specialists also stated that there are
things that need to be improved such as autonomous head rotation, anthropomorphic
characteristics, and a more stable base. Consequently, the robot seemed to be attractive,
but further improvements, which entail future work, should be accomplished both in the
design and the machine learning models.

Despite the possible benefits and useful prospects, it should be noted that some
limitations of the study still exist.
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First, the robot has not been tested in real interventions with ASD children; therefore,
the impact on them was not found. Additionally, another limitation is that there were not
clear objectives to measure based on this deployment; thus, further investigation is needed.
Furthermore, despite the positive results of the machine learning models, these need to be
tested in real situations and interventions in order for their applicability in interaction tasks
to be certified, while their functionality with the proposed robot will be verified by end
users. In addition, the robot’s hardware should also be tested in real intervention scenarios
that will assure that it fits in the particular robot.

Therefore, the important findings of this study rely on the development of machine
learning models, their positive outcomes through various implementations and approaches,
and the useful results of educators’ evaluation about the design of the robot and the func-
tionality of its software. In addition, the limitations of the study include the applicability
of the robot in real scenarios, the determination of clear deployment objectives, and the
applicability of ML models and robot’s hardware in interventions. All the above need to be
examined and studied further, entailing future work, which is presented in the next section.

6. Conclusions and Future Work

This paper focuses on the design of a low-cost, portable, and intelligent robot, capable
of being implemented in ASD interventions. Additionally, the development of two machine
learning models, which were deployed and tested on a microcontroller, gives the ability
to the robot of sensing real-world cues, interacting with the child in a certain degree of
multimodality. The results of the models are promising but there are certain additions that
need to be accomplished. Additionally, the evaluations of the specialists who engaged in
the process are useful for future consideration, developing a more robust and efficient robot
for autism interventions.

Future work includes research in three domains: (1) the expansion of the models’
datasets with more data from various individuals with and without ASD; (2) improvements
in the models’ architectures with the refinement of the algorithms and the use of novel
techniques; and (3) the development and improvement of the robot according to specialists’
reviews and feedback.

Supplementary Materials: The models, datasets, and the related code are available online at https:
//github.com/ilkatsanis/RobotDesign_TinyML (1 April 2022).
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Appendix A

This appendix presents the background of the participating educators who took
part in the two focus groups. The first table shows the participants of the first focus
group and the second one shows the participants of the second focus group. Notes:
PGES = public general education school; PSES = public special education school; MSEN = multiple
special education needs; ODD = other developmental disorders.

https://github.com/ilkatsanis/RobotDesign_TinyML
https://github.com/ilkatsanis/RobotDesign_TinyML
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Table A1. Participants of the first focus group.
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Specialist ID Gender Years of Experience Type of School Needs of Children

Specialist ID.1 Female 5 years PSES Autistic children

Specialist ID.2 Female 16 years PGES ODD

Specialist ID.3 Female 2 years PSES Autistic children

Specialist ID.4 Female 19 years PGES ODD

Specialist ID.5 Female 28 years PGES MSEN

Specialist ID.6 Female 17 years PGES Autistic children

Specialist ID.7 Female 2 years PSES Autistic children

Table A2. Participants of the second focus group.
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8

Specialist ID Gender Years of Experience Type of School Needs of Children

Specialist ID.1 Female 5 years PSES Autistic children

Specialist ID.2 Female 16 years PGES ODD

Specialist ID.3 Female 2 years PSES Autistic children

Specialist ID.4 Female 19 years PGES ODD

Specialist ID.5 Female 28 years PGES MSEN

Specialist ID.6 Female 17 years PGES Autistic children

Specialist ID.7 Female 2 years PSES Autistic children

Specialist ID.8 Female 16 years PGES MSEN

Appendix B

In this appendix, the questionnaire regarding the assessment of the software’s pro-
totype from the therapists is presented. The first two questions were answered before
the demonstration of the prototype. Questions 3–13 were answered descriptively, while
questions 14–22 were in a Likert Scale.

Table A3. Assessment questions for the robot’s software prototype.

Prior to the demonstration
of the prototype

Question 1. What Do You Expect to Do with the Software Prototype?

Question 2. How Do You Expect It to Look Like?

After the demonstration
of the prototype

Question 3. How did the software prototype look to you as a whole?

Question 4. What made it more difficult for you to use it?

Question 5. Was there anything that did not look like as expected? If so,
which one?

Question 6. Was there something you expected to exist but was missing?

Question 7. Is there any item that is not needed?

Question 8. Which feature(s) of the prototype are most important to you?

Question 9. Which feature(s) of the prototype is less important to you?

Question 10. What is the most important function that You think should exist?

Question 11. If you had a magic wand, what would you add to the
software prototype?

Question 12. What would you change in the appearance of the prototype?

Question 13. What would prevent you from using the software?
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Table A3. Cont.
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Question 14. What was the level of ease of use?
(i) Excellent, (ii) Sufficient, (iii) Medium/Normal, (iv) No,

and (v) Disappointing

Question 15. How satisfied are you with its use?
(i) Excellent, (ii) Sufficient, (iii) Medium/Normal, (iv) No,

and (v) Disappointing

Question 16. How would you rate the overall experience?
(i) Excellent, (ii) Sufficient, (iii) Medium/Normal, (iv) No,

and (v) Disappointing

Question 17. The process of using it was clear.
(i) Strongly Agree, (ii) Agree, (iii) Disagree, (iv) Strongly Disagree

Question 18. Navigating through the prototype was easy.
(i) Strongly Agree, (ii) Agree, (iii) Disagree, (iv) Strongly Disagree

Question 19. How important would such software be for using a robot?
(i) Excellent, (ii) Sufficient, (iii) Medium/Normal, (iv) No,

and (v) Disappointing

Question 20. Have you ever had previous experience using similar software?
(i) Very much, (ii) Very, (iii) Medium/Normal, (iv) Almost no, (v) Not at all

Question 21. Do you have previous experience in applying robot to the
educational process?

(i) Very much, (ii) Very, (iii) Medium/Normal, (iv) Almost no, (v) Not at all

Question 22. To what extent did you understand what software does?
(i) Very much, (ii) Very, (iii) Medium/Normal, (iv) Almost no, (v) Not at all

Appendix C

In Appendix C, the questionnaire regarding the assessment of the robot prototype
from therapists is presented. The specialists were given the robots presented in the paper’s
Section 2.1 and a summary of its functions, gaining better knowledge for the proposed robot.

Table A4. Assessment questions for robot’s prototype.

Question 1. How would you describe the presented robot?

Question 2. How would you evaluate its shape and form?

Question 3. What emotions does its overall appearance evoke to you?

Question 4. Based on its morphological elements and functions, what do you think is its
main advantage?

Question 5. Based on the table with its functions, which do you think are the most useful
and important?

Question 6. What do you dislike about its morphological features?

Question 7. Why do you think this robot is worth? If not, please explain.

Question 8. What would you add about its morphological features?

Question 9. What would you add about its functions?

Question 10. What could we improve about the existing appearance?

Question 11. What could we improve about its existing features?

Question 12. How does our robot compare to the ones you saw before?

Question 13. What potential uses would you discern in ASD interventions?

Question 14. If not ours, which of the other robots would you like to use and why?
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