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Abstract: Augmented reality (AR) is widely used to guide users when performing complex tasks,
for example, in education or industry. Sometimes, these tasks are a succession of subtasks, possibly
distant from each other. This can happen, for instance, in inspection operations, where AR devices
can give instructions about subtasks to perform in several rooms. In this case, AR guidance is both
needed to indicate where to head to perform the subtasks and to instruct the user about how to
perform these subtasks. In this paper, we propose an approach based on user activity detection. An
AR device displays the guidance for wayfinding when current user activity suggests it is needed.
We designed the first prototype on a head-mounted display using a neural network for user activity
detection and compared it with two other guidance temporality strategies, in terms of efficiency and
user preferences. Our results show that the most efficient guidance temporality depends on user
familiarity with the AR display. While our proposed guidance has not proven to be more efficient
than the other two, our experiment hints toward several improvements of our prototype, which is a
first step in the direction of efficient guidance for both wayfinding and complex task completion.

Keywords: augmented reality; wayfinding; multitask; large space; head-mounted display

1. Introduction

Augmented reality (AR) devices have the potential to help people learn or perform
complex tasks by displaying virtual content spatially registered over real objects or points
of interest (POIs). This AR guidance for complex task completion has been widely studied
in the literature. For example, head-mounted display (HMD) device is a convenient method
to keep users’ hands free. The user can then perform tasks in the real world while following
virtual instructions given by the device.

Sometimes, several spatially distant tasks are combined to form a sequence of oper-
ations in a large space. This is what happens when operators need to perform assembly,
disassembly or maintenance of massive machines, such as plane motors, trucks, etc. This
also happens when operators need to inspect large spaces, such as in powerplants. In these
cases, users need both help from the AR device to realize their local tasks and guidance
from the AR device to locate these tasks in space.

This leads to a new problem: how to combine AR guidance for complex tasks and
AR guidance for wayfinding. In particular, we do not want the wayfinding guidance to
disturb the user (for example, by occlusion or visual clutter) when he or she is performing
a complex task or reading important information. In this paper, we choose to approach
this problem by adding temporality to the wayfinding guidance. We use a neural network
model to determine user behavior in real-time and we propose a strategy to determine when
to display the wayfinding guidance depending on the current behavior. Our focus is not
on task completion guidance; hence, our proposed wayfinding guidance can supplement
any kind of AR-assisted task completion guidance.
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First, we review existing guidance techniques for wayfinding and analyze whether
they are adapted to our setting of interest—that is, adapted to the case when a task
should be performed at each location indicated by the wayfinding guidance. We then
propose a prototype for an adaptive guidance temporality based on user behavior; this
behavior is inferred with a neural network model. Finally, we compare this adaptive
guidance temporality to two other temporal strategies for the activation/deactivation of
the wayfinding guidance.

2. Related Work
2.1. Guidance Format

Wayfinding is how people orient themselves in their environment and how they
navigate through it. Wayfinding can be broken down into four stages: Orientation (how
to determine one’s location relative to the nearby objects and the target location), Route
decision (selection of the route to take to arrive at the target location), Route monitor-
ing (checking that the selected route is indeed heading towards the target location) and
Destination recognition (when the target location is recognized) [1]. Orientation may be
assimilated to the visual search of the target location—a visual scan of the environment
aiming at the target identification.

2.1.1. Visual Guidance

Many 3D visual guidances have been proposed. For example, Bork et al. compared
six different guidances [2]. The guidance 3D Arrows [3–5] points towards a POI. In
AroundPlot [6], the POIs positions are mapped to the outside of a rectangle using 2D
fisheye coordinates; the rectangle indicates user focus area. The guidance 3D Radar [2]
displays on a plane a top view of the user and POIs, and a vertical arrow at the proxy
positions of POIs indicates the POI height relative to user eye level. EyeSee360 [7] is
composed of a rectangle in the middle of the screen representing the user field of view,
and of a larger ellipse around this rectangle representing out-of-view space. POIs proxies
are positioned relative to a horizontal line representing user eye level and a vertical line
representing a null distance to the user. In SidebARs [8], two vertical bars at the right and
left of user field of view are used to display proxies representing out-of-view POIs). Finally,
Mirror Ball [2] proposes a reflective sphere displaying the distorted reflection of the POIs).

The existing guidances can roughly be grouped by design objectives. These groups
are search time minimization (3D Arrow [3,4], 3D Radar, Attention Funnel, [9]), intuitivity
and low workload (sidebARs, AroundPlot, [10], 3D Arrow [4,5]), user representation in 3D
space of the virtual information (EyeSee360, 3D Arrow [4,5]) and occlusion management
and visual clutter (AroundPlot, 3D Halo [11]).

When integrating these designs in a setting where the local tasks as well as the wayfind-
ing task need to be AR-assisted, the criterion of interest is mostly occlusion management
and visual cutter. We do not want the visual guidance to impede the local task completion
or to hide important virtual information about the task. However, the work of Bork et al.
(see Figure 1 to visualize the guidances) shows that guidances occluding the least user
field of view (sidebARs, AroundPlot, 3D Arrow) have lower usability and speed scores
compared with more imposing guidances (EyeSee360, 3D Radar) [2].

2.1.2. Non-Visual Cues

To limit visual clutter and cognitive load, researchers have investigated non-visual
cues [12]. The main possibilities are auditory and vibrotactile cues, and combinations
of the two. For example, HapticHead [13] uses a vibrotactile grid around the user’s
head to indicate the target direction by activating the corresponding vibrotactile actuators.
Marcquart et al. used vibrotactile actuators to encode target relative longitude; depth is
encoded with the vibration pulse and an audio feedback encodes user viewing angle and
target relative elevation level with its pitch and volume [12].
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When using vibrotactile cues, the less important visual clutter can come at the cost
of a higher completion time and more head movements for the user, as shown in Haptic-
Head [13]. The authors compare a vibrotactile grid around user head with the attention
funnel visual guidance, a visual display of a curved funnel from user location to his or her
target. In addition, the vibrotactile guidance can only provide focus on one target at a time,
which can be an important limitation.
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When using auditory cues, the less important visual clutter comes at the cost of a
higher completion time [12] and a possible overload of the auditory channel. This may be a
problem, depending on the context in which the wayfinding guidance is used. In industrial
settings for instance, where sequence of tasks in large spaces are likely to happen, the
auditory channel may already be overloaded, or even unusable because of noise protection.
For example, noise protection is a common requirement in the three sites described by
Lorenz et al. [14].

2.1.3. Guidance in a Multitask Setting

There exist some works on guidance techniques combining wayfinding task with
other tasks (which do not require wayfinding guidance). However, in these works, the
other tasks are only tools to evaluate the guidance techniques performances and do not
constitute a meaningful objective by themselves.

They are used to measure situational awareness [12], visual working memory [15], or
to analyze how specific guidances perform when workload increases [16]. In these works,
the visual search task, where the wayfinding guidance technique is needed, is the main
task. None of these works consider our problem, where the visual search can be seen as an
auxiliary task and where wayfinding is only needed to guide the user from one main task
location to another. Additionally, as seen in Sections 2.1.1 and 2.1.2, new challenges arise
from this problem: occlusion or efficiency when performing local tasks for visual guidance,
efficiency for non-visual guidance.

2.2. Guidance Adaptivity
2.2.1. Adaptivity Justification

Section 2.1 highlights that the minimization of visual clutter and occlusion comes
at the cost of efficiency (for visual cues and non-visual cues) and reduce the application
possibilities (for non-visual cues) of the guidance.

However, the visual clutter and occlusion minimization is wanted mostly during the
real-world task completion phase; during the wayfinding task phase, visual clutter and
occlusion are less important and other criteria may be more relevant for the choice of the
guidance technique. For example, when navigating in hazardous environments, guidance
designs facilitating situational awareness (for example, 3D Halo, or auditory cues) may be
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preferred, while guidance designs which have been proven to be efficient in terms of speed
(as EyeSee360) may be used in safer environments.

Because the wayfinding and the local tasks do not happen at the same time, AR
assistance for local task completion and AR guidance for wayfinding can be decoupled.
If done, the guidance design for wayfinding will not have to handle both visual clutter
minimization and any other criterion (situational awareness, user speed . . . ) relevant for
the current context.

Separating local tasks and wayfinding can be performed in several ways. The device
can adapt to the user location, for instance by displaying the visual guidance depending on
how far the user is from his or her target. The device can also adapt to the user behavior:
display the visual guidance only when the user is performing some specific tasks, or stop
displaying the visual guidance when he or she has seen the target location.

Many context-aware approaches have been proposed to adapt the AR display to the
context at hand. For example, the environment luminosity can be considered to decide
the most appropriate virtual text color [17,18]. AR content can be filtered depending
on user expertise [17,19] or location [20], etc. To the best of our knowledge, none of the
existing context-aware approaches consider wayfinding guidance. In the following sections,
we will review two context-aware approaches that seem relevant for the combination of
AR-assisted local tasks completion and wayfinding guidance.

2.2.2. Task-Based Adaptivity

Task-related content is extremely common in AR. For example, many industrial
AR devices propose to guide users in a step-by-step manner, by displaying information
relative to the task at hand. Often, the progression in the different steps requires conscious
commands from the user. This can be carried out with voice command [21–24], a tap
on the headset [22,25], a click on connected devices [26], a gestural command [21] or
click/selection on virtual menu with hands or gaze [27–29].

Only a few works automatically adapt the HMD display based on user activity. Tsai
and Huang propose a device detecting the user behavior when he or she is walking around
in an exploration task [30]. These behaviors are generic (“Stationary and Staring (SS),
Standing Still but Turning Around (ST), Looking Around While Moving (LM), Staring
While Moving (SM), and Turning Around (TA)” [30]), and associated with a type of
information display (Typical mode, Stationary Focus mode, Aggregation mode, Moving
Focus mode and Transparent mode). These modes give information about all the POIs
in the area or about the POI the user is currently looking at. User behaviors are detected
using the Perceptive GPS (PGPS) algorithm based on a Hidden Markov Model [31].

In this work, the user activity is the exploration of large space. The user does not
interact with the environment or with the AR headset, as it is the case in our setting of
interest—AR guidance for complex task completion and AR guidance for wayfinding.
Therefore, in our case, we would need to detect other user behaviors (see Section 3.2) than
the ones detected in Tsai and Huang work, and to display different types of information (a
visual guidance, or no visual guidance).

2.3. Summary

Many AR guidances for wayfinding have been proposed. Visual guidances raise
the issues of visual clutter and occlusion, while non-visual guidances raise the issue of
efficiency in terms of speed. Depending on the context in which wayfinding guidance is
needed, these issues can be critical. To limit visual clutter and occlusion, a solution would
be to display the wayfinding guidance only when necessary.

The need of wayfinding depends on the current context the user is in: for exam-
ple, distance to the target task location, user current behavior. The two context-aware
approaches we found the most suitable to our setting are spatial context and task-based
context. To the best of our knowledge, no context-aware device has taken interest in the
need of wayfinding.
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3. Prototype
3.1. Design Justification

We seek to propose a prototype combining visual guidance for navigation between
tasks locations (wayfinding) and AR assistance for local tasks completion. In this work, we
focus on the wayfinding assistance display and use an industrial AR software solution [29]
for the local task completion assistance.

From the literature, three different approaches emerge regarding when to display
visual guidance: a manual approach, where the user indicates to the device whether he
or she wants the guidance to be displayed or not; a spatial approach, where the guidance
appearance depends on the user location related to the target; and a task-based approach,
depending on what the user is doing.

The manual approach is the simplest one, but has many drawbacks: operators are
likely to perform tasks requiring both hands—for example, carrying objects and performing
gestures, making click and menu navigation commands ill-adapted. Voice command is
also not suited for noisy environments [28]. Click on gaze is currently limited because of
tracking issues [32] and requires a virtual button which permanently occludes user field
of view.

A spatial approach could consist of displaying the guidance only when the user is far
from the target location. However, this approach does not cover many possible scenarios.
For instance, a user can be looking at a machine from a distant point of view to detect
possible defects, and then come closer to repair it. Visual guidance is likely to disturb him
or her in the defect detection task. Another scenario where a spatial approach is not fitted is
a scenario in hazardous environments. In this case, on his or her way to a local task, the user
may need to also be looking at information display (real or virtual) about the environment—
for example, safety warnings. As they are not task-related, these warnings may appear far
from the target location, where wayfinding guidance is activated. The guidance could then
distract the user from the warnings, which could be potentially dangerous.

This is why the task-based approach seems to be the most generic one. We could
take inspiration from the work of Tsai and Huang and associate specific user states to
relevant virtual display content. In our prototype, we propose a new range of possible user
behaviors and associate them with two possible displays: with wayfinding guidance and
without wayfinding guidance. In the following sections, we will describe how the user
behaviors to be detected were chosen and how we associate them with the need (or not) of
wayfinding guidance.

3.2. User States Detection

User behavior classification was made based on the taxonomy of user tasks in an
industrial context from Dunston et al. [33] (see Figure 2). They classified industrial tasks
into five categories. Application domain is a promising area where mixed reality (MR)
technology could be applied. Application-specific operation is a more specific operation
within the application domain. Operation-specific activity is a specific unit of work;
multiple operation-specific activities form an application-specific operation. Composite
task (such as measure, connect, align, etc.) is a fundamental building block of an operation-
specific activity; a series of composite tasks form an operation-specific activity. Finally,
primitive task “refer[s] to elemental motion such as reaching, grasping, moving, eye travel,
etc.” [33] (p. 437).

According to Dunston et al., the composite and primitive tasks levels are the two levels
relevant for AR applications. Since task recognition algorithms at the level of primitive tasks
are highly domain-specific (every single scenario needs specific data), in our prototype,
the granularity of user behavior classification is at the level of the composite task. The
above-mentioned taxonomy does not consider the user interaction with the augmented
reality device, which is yet part of the industrial activity. We therefore made the choice to
include interactions with the AR device to the composite tasks category.
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We chose the resulting tasks for our prototype design:

• Local task: in an industrial context, this is any composite task (outside of walk and
visual search) which would have been performed by the operator without the display.

• Compare real with virtual: in practice, this is the same as local task but with the user
frequently rotating his or her head to look at a virtual content when realizing the
local task. They are separated in two different categories since they imply different
user behaviors.

• Walk: this happens when the user goes from one point of interest to another, for example.
• Menu interaction: these are the operator’s direct interactions with the augmented reality

device, for example, when he or she needs to indicate that he or she has finished a
step and needs information to perform the next step, or when he or she needs to move
a virtual object to see it better.

• Virtual information assimilation: this is the state the user is in when visualizing virtual
content displayed by the device (i.e., to learn what to perform in the next step) without
realizing any other task.

• Real-world information assimilation: this is the state the user is in when visualizing
real-world content (i.e., a component, a security panel, etc.) without realizing any
other task.

• Visual search: this is the task a user performs while looking for specific object or
information, real or virtual. In our setting, the visual search target is mostly the next
local task location, but it can also be any other object. These tasks were chosen after
a careful observation of users performing several AR-assisted local tasks in large
space. We made sure that these tasks were associated with specific user behaviors: we
could know the task the user was performing by looking at his or her behavior. For
example, we could know the difference between menu interaction and virtual information
assimilation by the use of the hands in the first case, but not in the latter. We set up a
neural network model to detect those tasks. See Section 3.3 for its implementation.

3.3. Visual Guidance Appearance

The chosen visual guidance is a blinking 3D arrow. We choose it because of its
simplicity and intuitivity for users.

User behaviors for which guidance is useful were identified as walk (when walking,
users may need information about their surroundings and where they should be going)
and visual search. This identification was made from a careful observation of people using
an AR headset to realize local tasks in large space. When these two behaviors are detected
by the neural network, guidance is displayed, and hidden otherwise.
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To smooth out high frequency changes in the guidance apparition, instead of simply
appearing when needed and disappearing when not needed, the visual guidance had its
opacity increased (when guidance is needed) and decreased (when guidance is not needed)
at each timeframe. The guidance takes about 1 s to fully appear or disappear.

3.4. Materials
3.4.1. User Behavior Inference Algorithm

The neural network used to infer user behaviors is the the open-source network
proposed by Fawaz et al. [34]. The input data are time series data tracked from the
Hololens2 HMD [35]. It consists of the head linear and angular velocity, the hands velocity,
the angular gaze velocity, if the user is looking at a virtual object, if the user is pointing
at a virtual object and if the user is clicking at a virtual object. These data were acquired
from twelve people and in three different environments. These environments were: a
large room with obstacles limiting user visibility and walk, two neighboring large rooms
with no obstacles and three neighboring large rooms. The data recordings were from
3 to 10 min long. After acquisition, the data were manually labeled frame by frame using a
first-person view video, which was synchronized with the data acquisition (every 0.2 s).
The labels corresponded to the behaviors defined in Section 3.2. The neural network was
trained during 1500 epochs with a learning rate of 0.001. Its input format was a sequence
of 5 consecutive data points.

Verification heuristics were used to correct possible neural network errors. The
prediction walk was verified by a speed threshold, and the compare real with virtual task
and virtual information assimilation task predictions were disregarded if the user was
not looking at virtual content within the 5 past input data points. When a prediction is
disregarded, the last valid prediction is returned.

3.4.2. AR Device and Display

The HMD used in this study is a Hololens2 [35], and the software application used to
display the virtual objects is adapted from Spectral TMS software [29].

This solution enables the user to switch from one task instruction to the other by
clicking on virtual buttons located at these task locations. See Figure 3. for a user view of
the application and of the guidance display.
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Figure 3. User view of the task at hand. The left image shows the task setup, with the instruction
and explicative media displayed at the task location which is indicated by an orange gem. The right
image shows the user performing the task with the permanent 3D arrow blinking in his or her field
of view.

3.4.3. Real-Time Inference

The user behavior inference algorithm ran on a computer GPU. The input data of the
neural network and the opacity to display were sent from the Hololens2 to the computer
and conversely via a UDP protocol at a frequency of 5 Hz. This low frequency enables the
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input to be sent to the computer, the neural network to compute the output, and finally
the output to be sent back to the headset. In a more developed version (for example, using
cloud processing), a higher frequency could be used.

4. User Study
4.1. Hypotheses

Our user study setting mimics an industrial scenario assisted with an AR device. In
this setting, a scenario consists of a series of steps associated with a task to perform (i.e.,
remove the top cover of a machine) at a specific location (i.e., the machine emplacement).
Users are helped by virtual content when performing the task (the description of the task
is displayed in the headset, and virtual medias can be displayed near the location of the
task), and wayfinding to the task location is assisted with a visual guidance.

In this work, we compare an adaptive guidance (our prototype) with two other
guidances: a minimal guidance and a permanent guidance.

• The adaptive guidance appears according to the algorithm described in
Sections 3.2 and 3.3.

• The minimal guidance appears when the next step of a task begins and disappears
when the target location (where the real-world task should be performed) is in the
field of view of the user.

• The permanent guidance is always displayed.

We wanted to verify the following hypotheses:

Hypothesis 1 (H1). Participants are more efficient (in terms of speed) with the adaptive guidance
than with the minimal guidance.

Hypothesis 2 (H2). Participants are more efficient (in terms of speed) with the permanent guidance
than with the adaptive guidance.

Hypothesis 3 (H3). Participants find the adaptive guidance more comfortable than the perma-
nent guidance.

4.2. Methods
4.2.1. Subjects

The experiment was conducted on 28 persons, involving students and teachers, from
Mines ParisTech and developers and commercials from the Spectral TMS entreprise. Par-
ticipants were aged from 20 to 58 years old, with 21 men and 7 women. The participants
overall felt quite familiar with augmented reality (familiarity was rated 3.0/5 in average),
and extremely familiar with technological devices (familiarity was rated 4.5/5 in average).
Participants were classified as either “expert” or “novice” depending on the grade they
gave and their professional background. All participants calibrated the headset to their
view. They all gave their consent to have their data recorded anonymously and to take part
in the experiment. They were given the choice to stop the experiment at any point without
having their data registered or to refuse to take part in the experiment.

No particular risk linked to the AR experiment was noticed. The headset was disin-
fected after each participant, the room was aerated and both participants and supervisors
wore masks during the experiment.

4.2.2. Task and Procedure

We employed a within-subjects design with the independent variable being the guid-
ance type to examine the effect of guidance temporality on participants’ performances
and comfort.

Performance was measured with task completion time, and comfort was evaluated
by grades given by the participants on a visual analog scale. These grades evaluated: the
general feeling about the guidance, the feeling of comfort towards the guidance (did the
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participant accept the visual guidance without feeling disturbed?), the feeling of efficiency
(did the participant feel that he or she was faster with the help?) and the feeling of relevance
towards the presence or the absence of guidance (did the participant need the help when it
was not displayed and was the help displayed when needed?). These times and grades are
the dependent variables to measure.

During the evaluation phase of the experiment, participants were asked to perform
three scenarios, each associated with a different guidance. A scenario consisted of 10 steps
to be executed in a precise order. At each step, a location was given to the participant,
materialized by a flying orange gem. Half of the locations were associated with a task to
perform in the real world, and half of them were associated with no task, and the participant
were only asked to move towards the gem. The possible tasks were for example sorting
cards by color or drawing a specific logo displayed through the AR headset. The locations
were randomly chosen in advance, so that for each scenario, between two consecutive
target locations, there is a random distance of 2, 3 or 5 m and the angle between them is
a random multiple of π/4. There were a total of 10 possible scenarios. Every participant
had the headset calibrated to his or her view and the curtains were closed, ensuring that all
participants were in similar settings regarding the visualization of the virtual objects.

For each participant, the three scenarios were randomly chosen between the 10 pos-
sible scenarios. The order of the guidances shown to the participant was also random
to minimize the impact of the learning effect on the speed performance for each type
of guidance.

After each scenario of the evaluation, the participant was asked for his or her feedback
on the guidance by rating the four above-mentioned criteria (general feeling, feeling of
comfort, feeling of efficiency, feeling of relevance) and to freely add a comment. Then, at
the end of the whole evaluation part, the participant was given the opportunity to choose
his or her favorite guidance type for each criterion and to leave general comments. To
limit any bias from the participants, when explaining the experiment, participants were
only told that they were going to take part in a 30-min-long experiment involving an AR
headset, and that this experiment aimed at evaluating different guidance temporality types.
They did not have more details about the three guidance behaviors.

Before the evaluation phase was a training phase in which the participants completed
a scenario without any guidance. The aim was to help the participant learn how the
application works and get comfortable with the clicking mechanics required by the AR
device. This would minimize any learning effect between the three scenarios of the
evaluation phase.

4.2.3. Results Analysis

We realized a within-subject study with the three types of guidance as independent
parameters, and the scenario total completion time and participants rating as dependent
variables. For every dependent parameter, a 1 × 3 repeated measures ANOVA was
performed when normality assumption was verified by a Shapiro test, and Friedman test
was used as non-parametric analysis otherwise. Pairwise comparisons between guidances
were further made if the ANOVA or Friedman test indicated significant differences between
the guidances. The Wilcoxon signed-rank test was conducted after the ANOVA test, and
the Nemenyi test was conducted after the Friedman test.

5. Results
5.1. User Behavior Inference Results

During the experiment, the resulting balanced accuracy (from the formula described
in the review of Grandini et al. [36]) was 67%. From the confusion matrix (Table 1), one can
see that some misclassifications are likely to happen due to unbalanced data during training
(see, for example, the high rate of visual search samples which are classified as local task).
Overfitting over the training data is another possible reason for misclassification: training
and validating sets were quite similar, which prevented us from detecting it beforehand.
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Finally, smooth transitions occurred between user behaviors; however, only one behavior
was captured by timestamp. This may lead to small uncertainty when users are in between
two behaviors (for example, from visual search to walk).

Table 1. Confusion matrix of the user behavior inference algorithm with the data obtained from the
experiment of Section 4. LT refers to local task, CRV to compare real with virtual, W to walk, MI to menu
interaction, RIA to real-world information assimilation, VIA to virtual information assimilation, VS to visual
search. Values highlighted in green are the values where the decision to not display the guidance is
well computed, values highlighted in blue are the values where the decision to display the guidance
is well computed, and values highlighted in orange are the values where the decision to display or
not the guidance is wrong.

Computed Classes

LT CRV W MI RIA VIA VS Total

Actual
classes

LT 1378 512 3 26 62 242 2 2225
CRV 588 1216 2 8 13 2 221 2050

W 303 274 2301 12 19 0 30 2939
MI 381 325 1 2036 5 75 1 2824
RIA 281 103 4 25 457 1 1 872
VIA 127 19 1 18 1 585 24 775
VS 201 112 20 2 2 19 361 717

Total 3259 2561 2561 2332 559 924 640 12402

A total of 7 classes are used in the user behavior inference algorithm. However,
only 2 states are output: guidance display (which triggers guidance opacity increase) and
no guidance display (which triggers guidance opacity decrease). When computing this
confusion matrix (Table 2), a balanced accuracy of 86% is obtained. The guidance display
state accuracy is 74%, while the no guidance display state accuracy is 97%.

Table 2. Confusion matrix of the guidance display decision algorithm. NGD means no guidance
display and GD means guidance display.

Computed Classes

NGD GD Total

Actual classes
NGD 8486 260 8746
GD 968 2712 3680

Total 9454 2972 12402

5.2. Efficiency

Efficiency was measured in terms of completion time. We measured the time users
took to visualize the target location, the time they took to reach it and the time they took to
perform the whole scenario. The Friedman p-values of these different metrics for the three
guidances are reported in Table 3.

Contrary to our assumptions,

Result 1(R1): Participants were significantly faster to perform the whole scenario with minimal
guidance than with adaptive guidance (p-value of 0.036 from Table 4).

Result 1bis (R1bis): Novices were also significantly faster to perform the whole scenario with
minimal guidance than with adaptive guidance (p-value of 0.002 from Table 4).

Result 2 (R2): Novices were significantly faster to perform the whole scenario with minimal
guidance than with permanent guidance (p-value of 0.036 from Table 5).

Result 3 (R3): However, experts were, on the contrary, significantly slower to perform the whole
scenario with minimal guidance than with permanent guidance (p-value of 0.036 from Table 4).
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Table 3. Friedman p-values of the different efficiency metrics comparison between guidances.

Novices Experts Total

Time to visualize target location 0.116 0.050 0.023
Time to reach target location 0.735 0.174 0.039

Whole scenario duration 0.002 0.039 0.035

Table 4. p-values of pairwise comparisons using the Nemenyi post hoc test for the time participants
took to perform the whole scenario.

Minimal Adaptive Permanent

Novices Experts Total Novices Experts Total Novices Experts Total

Minimal 1.000 1.000 1.000 0.002 0.740 0.027 0.0291 0.036 0.555
Adaptive 0.002 0.740 0.027 1.000 1.000 1.000 0.695 0.181 0.271

Permanent 0.0291 0.036 0.555 0.695 0.181 0.271 1.000 1.000 1.000

Table 5. Pairwise comparisons using the Nemenyi post hoc test for the time participants took to
visualize the target location.

Minimal Adaptive Permanent

Novices Experts Total Novices Experts Total Novices Experts Total

Minimal 1.000 1.000 1.000 0.900 0.739 0.357 0.260 0.036 0.357
Adaptive 0.900 0.739 0.357 1.000 1.000 1.000 0.122 0.181 0.017

Permanent 0.256 0.036 0.357 0.122 0.181 0.017 1.000 1.000 1.000

R1 and R1bis contradict H1, which is therefore rejected.
R2 and R3 (see Figure 4) may suggest that novices performances are hindered by the

permanent guidance when it is displayed when not needed, when, on the contrary, experts
perform better with the permanent guidance because it is always there when they need it,
and they are able ignore it when they do not need it.
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Figure 4. Boxplots of task completion by guidance type. On the left are the boxplots of experts’
task completion time, and on the right are the boxplots of novices’ task completion time. While
experts are significantly faster with permanent guidance, novices are significantly faster with minimal
guidance.To explain why H1 was rejected, we looked into the time participants took to visualize their
target. We noticed that participants were significantly slower to notice the target with the adaptive
guidance than with the permanent guidance (see Figure 5 and Table 5). The reason behind this was
extremely noticeable during the experiments: participants tended to wait for the adaptive guidance
to appear.
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Figure 5. Boxplots by guidance type. On the left is the boxplot of the time participants took
to visualize the target location and on the right is the boxplot of the time participants took to
complete the whole scenario. Participants were significantly slower to find the target location with
the adaptive guidance than with the permanent guidance. Participants were significantly faster
to complete the whole task with the minimal guidance than with the adaptive and permanent
guidances.H2 is not accepted nor rejected, and the boxplot of task duration in Figure 5 shows similar
task duration between the adaptive and permanent guidances. This suggests that participants wasted
time (compared to the minimal guidance) in an equivalent manner for these two guidances. A
hypothesis is that the time wasted when participants were waiting for the adaptive guidance is
compensated by faster local tasks completion compared with the permanent guidance. This faster
task completion may be because they were not disturbed by the wayfinding guidance with the
adaptive guidance when performing local tasks, contrary to the permanent guidance. We cannot
verify that participants were indeed faster when performing tasks with the adaptive guidance or with
the minimal guidance compared to the permanent guidance, because the variety of tasks to perform
was high, and the different tasks needed different completion time. This made time completion
between different tasks impossible to compare. A future work would be to ensure similar local task
difficulties for the three guidance temporalities evaluation.

5.3. Users Preferences

To our surprise, no clear preference was set for any of the guidances. H3 is then
neither accepted nor rejected. This means that the three guidances have advantages and
drawbacks for all the participants (see Table 6 for the details of participants’ grades).

Table 6. Participants grades for the four criteria described in Section 4.2.2. Task and procedure.

Guidance Type Comfort Grade Efficiency Grade Relevance Grade General Feeling Grade

Mean Std Mean Std Mean Std Mean Std

Minimal 7.15 1.72 6.63 1.90 5.96 2.40 7.04 1.57
Adaptive 5.98 1.86 7.37 1.88 6.16 2.36 7.38 1.59

Permanent 7.12 1.70 7.85 1.66 6.78 2.30 8.00 1.31

However, two other limitations due to the experiment setting can explain the lack of
difference between the participants’ grades. Firstly, the 3D Arrow does not occlude much
user field of view, and therefore the differences between the three guidances were not as
noticeable as they could have been with other guidances. Some participants mentioned
that they did not really notice any difference between the three guidances. Secondly, a
learning effect seems to have appeared. Despite a long training scenario when participants
learned how to use the AR headset, novices were performing better with time with the
Hololens2 commands and getting accustomed to how the 3D Arrow behaves. Therefore,
they felt more efficient and generally preferred the last guidance they tried because they
felt more at ease. This effect is partly smoothed with the randomness of the guidance
order, but it increases variability and may have participated to the lack of general trend for
participants preferences.
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Some general observations can still be made from participants comments on the
different guidances.

When participants preferred the minimal guidance, they said that it disappeared at the
right moment to enable them to visualize the target location. However, some participants
complained that the minimal guidance disappeared too early or did not appear at all. The
latter happened when the gem indicating the target location was already in their field of
view, but far from them, or at their field of view periphery.

Participants generally said that the adaptive guidance appeared and disappeared
globally at the right moments, but the few times when it did not appear or disappear when
needed was enough to disturb them and make them feel uncomfortable. An improvement
of the user behavior detection may fix this issue.

Some participants said that the permanent guidance was the smoothest to follow.
However, some of them complained that it was tiring to always have to obey to it.

A common complaint for the adaptive and permanent guidances is that participants
tend to focus on the guidance for too long instead of focusing on their surroundings: some
participants noticed that they would have seen the target location earlier if they were not
too concentrated on following the visual guidance indications.

6. Discussion
6.1. User Behavior Inference Algorithm Improvement

Improving the user behavior inference algorithm accuracy can be carried out by using
more training data and by adapting the neural network architecture so that it can output
several labels for a single output. This will be performed in a future work by using the
data collected during the current experiment. Achieving a multi-label prediction can be
performed by replacing the initial softmax activation function of the output layer by a
sigmoid activation function and using a binary-crossentropy loss.

The improvement of the user behavior inference algorithm accuracy would of course
consequently improve the guidance display decision algorithm, in particular if more effort
is put in the visual search behavior detection. However, other measures could also be taken,
as discussed in Section 6.3.

6.2. User Preferences

The results of this experiment show that the three proposed guidances have advan-
tages and drawbacks and no conclusion on participants preferences could be made. On
average, participants were the fastest with the minimal guidance; however, in some cases
they were lost for a long time looking for the target location after the minimal guidance
disappearance, causing them to dislike this guidance. It is also noticeable that experts’ and
novices’ highest efficiency is not obtained with the same guidance.

The fact that experts were faster with the permanent guidance while the novices are
faster with the minimal guidance can be explained by the following hypotheses: Experts
are able to ignore the visual guidance when they find it useless and therefore, they can look
at the guidance direction rather than at the guidance itself, making them find the target
location easily. Novices tend to focus on the virtual guidance when displayed, preventing
them from looking around in the direction pointed by the guidance and finding it. These
hypotheses would require further gaze tracking analysis for verification. This would imply
that: 1. Users would prefer a path or global direction to indicate the target rather than
step-by-step instructions preventing them from looking around. 2. Because the too-long
display time of 3D Arrow slows down users, it is more complex to define when guidance is
needed and when it is not needed. 3. The definition of the moments when the guidance is
useful may depend on the guidance ability to let people concentrate on other parts of their
environment (that is, on people’s situational awareness while following the guidance).
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6.3. Prototype Improvement

A future work would test once again an adaptive guidance based on user behavior,
but with a guidance design more focused on situational awareness.

This adaptive guidance could also be further improved by adding information in
addition to current user behavior. Regarding the guidance appearance, we chose to adapt
the guidance to what the user is doing without taking in consideration the fact that the
user would adapt to the guidance in return. That is, once he or she notices that a guidance
will help him or her navigate, the user may tend to wait for the guidance to appear by
itself—and then, to not understand why the guidance fails to appear. To consider user
adaptivity to the guidance and to integrate it into the guidance temporality design, we
could indicate to the user that the guidance is always here, at his or her disposal, only
waiting for the user to show his or her need of a guidance. This could be carried out by
always displaying the guidance, but with an extremely low opacity value, for example.
Regarding the guidance disappearance, we did not take user knowledge into account;
in particular, user detection of the target location was ignored. Thus, when the user has
found the target location, the guidance did not disappear, and possibly disturbed his or
her navigation in the environment. A more refined design of an adaptive guidance could
take this knowledge into account.

7. Conclusions

To the best of our knowledge, the present work is the first to explore how to guide
users when they perform multiple AR real-world tasks in large space. For this exploration,
several approaches are possible. For example, a guidance for wayfinding could be carefully
designed so that it does not disturb the user when he or she is performing real-world tasks.
Another approach would be to determine when the user needs guidance to navigate in the
environment, and when the user need guidance to perform a task in the real world.

This work is a first step in this direction. Making the assumptions that users may need
guidance only when walking or performing a visual search, and that the guidance display
design does not influence when the guidance is needed, we realized a prototype of a user
behavior-based adaptive guidance, with a 3D Arrow as guidance display. We compared this
adaptive guidance to two other guidance appearance/disappearance temporalities. This
showed us the potential of an adaptive guidance while highlighting the imperfections of our
first prototype. In particular, the two above-mentioned assumptions seem to be inaccurate.
First, user behavior alone is not enough to determine whether a guidance is needed or
not; a more refined adaptive guidance could include user adaptivity to the guidance and
user knowledge in its guidance appearance/disappearance decision algorithm. Second,
the design of the guidance display seems to have an influence on whether the guidance
is needed or not: for example, a visual guidance providing step-by-step instructions may
force the user to focus on it all the time and prevent him or her from focusing on areas
outside of the guidance.

An interesting future work would then be to refine the presently proposed adaptive
guidance and to couple it to a visual display adapted to user perception of the environment.
We would like to explore two propositions: 1. Trajectory (for example, a path from
the user to the target location) against step-by-step direction instruction (for example,
3D arrow), and 2. Obstacle awareness facilitation (for example, by highlighting obstacles
while indicating the target location). In this future work, it is planned to test the prototype
with a larger panel of users’ backgrounds; in particular, it would be interesting to know
user preferences among people not particularly familiar with AR.
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