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Abstract: The Internet of Things (IoT) is inspired by network interconnectedness of humans, objects,
and cloud services to facilitate new use cases and new business models across multiple enterprise
domains including healthcare. This creates the need for continuous data streaming in IoT architectures
which are mainly designed following the broadcast model. The model facilitates IoT devices to sense
and deliver information to other nodes (e.g., cloud, physical objects, etc.) that are interested in the
information. However, this is a recipe for privacy breaches since sensitive data, such as personal vitals
from wearables, can be delivered to undesired sniffing nodes. In order to protect users’ privacy and
manufacturers’ IP, as well as detecting and blocking malicious activity, this research paper proposes
privacy-oriented IoT architecture following the provenance technique. This ensures that the IoT data
will only be delivered to the nodes that subscribe to receive the information. Using the provenance
technique to ensure high transparency, the work is able to provide trace routes for digital audit trail.
Several empirical evaluations are conducted in a real-world wearable IoT ecosystem to prove the
superiority of the proposed work.
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1. Introduction

There are several billions of smart, connected “things” around us today that enable the creation of
new opportunities, use cases, and applications [1–4]. Primarily, these devices are equipped to collect
heterogeneous types of data from various areas such as homes and cities to vehicles and roads to
tracking objects for an individual’s behavior; and the purpose is to push the collected data to cloud
services for analytics.

There are several use cases and applications of IoT and especially in healthcare [5], the list
includes: Telehealth: remote or real-time pervasive monitoring of patients, diagnosis and drug delivery.
With wearable IoT for fitness tracking, sensors are able to read users’ vitals and the information can be
pushed to healthcare facilities.

However, the hunger for sensor data streaming in an attempt to automate clinical data exchanges
for instance, can create the environment for privacy breaches. Taking wearable IoT for example,
smartwatches and other sensors (e.g., blood oxygen reader, gamma ray radiation detectors, etc.) are
facilitated to collect personal records including vitals, location, dosage, and so on. These devices are
constantly running and ready to send data anytime a requesting node makes a demand. This means
users mostly put the devices in broadcast mode so that they are easily discoverable for the data
exchange process. Once these wearable devices are within discoverable range, any other node can
make a request and if proper privacy measures are not in place, personalized data can be stolen by
unauthorized persons.
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Recently, some IoT device manufacturers, such as Texas Instrument Inc., have built-in state-of-the-art
hardware security technology incorporated into their devices. However, this does not guarantee much
user protection if the IoT environment follows the broadcast model.

Hence, by focusing on wearable IoT and personal data exchanges, this paper proposes the
broadcast-subscriber IoT model where users’ personal data are only shared with intended nodes such
as healthcare facilities or devices authorized by the user. This is achieved in two major folds.

Firstly, we propose a meta-data level encryption techniques where the identifiable components of the
communicating devices (e.g., serial number, MAC address) are encrypted. The encryption-decryption keys
are only known to the subscription devices and each time newly generated encrypted data is delivered to a
subscriber, the latter can only decrypt the data if it belongs to the subscription pool because that is the only
way the decryption key which is prior shared can be known. Several encryption-decryption algorithms at
both the hardware and software levels are tested including the AES, DES, 3DES, MD5, and SHA.

Secondly, the provenance technique is proposed in the broadcast-subscriber IoT architecture to
ensure transparency and full digital audit. In most instances when privacy is breached (e.g., personal
data stolen) in wearable IoT, it is difficult to detect the breach since devices are not able to maintain
proper historical records of previous contacts. With the proposed provenance technique, the paper
pushes for data trace route detection and formulation which is presented to the user through
visualization techniques. With provenance, the personal data is tracked from the point of generation to
the current state.

The proposed broadcast-subscriber IoT model is a variation of a multicast-based model except in the
former, it is mandatory that you register/subscribe prior to the message being broadcast. The drawback
in the general multicast approach is any device within a discoverable region can access the IoT
data whereas our approach will not allow that if you are not registered prior to the message being
published/broadcast.

Overall, the work made the following contributions to the personal and ubiquitous
computing research:

• Provenance is proposed to generate data trace routes in the wearable IoT economy order to ensure
digital audit trail for transparency. The work adopted the broadcast-subscriber IoT architecture
to ensure privacy of users’ data such as vitals especially in wearable IoT; a key concern in the
generic broadcast IoT architecture.

• Both the hardware and software level data encoding methodologies are proposed based on device
meta-data encryption.

The remaining sections of the paper are arranged as follows. Section 2 underscores the importance
of IoT in the current dispensation as well as reviews of works on IoT and privacy. Section 3 describes
the architectural design of our proposed broadcast-subscriber IoT model and design justifications
while the evaluation of the implementation is carried out in Section 4. The paper concludes in Section 5
with our contributions and future research direction.

2. Background Works

2.1. IoT Applications

With the Internet of Things (IoT), addressable machines (or objects) such as smart sensors
and other physical devices that are ideally not seen as computers, can interact with less human
intervention [1,6–9]. This has given rise to new use cases in the management and sharing of personal
data with caregivers where sensors and smartwatches can stream personal vitals; an area known as
wearable IoT. This is commonly seen in fitness and health monitoring applications.

However, there are several communication protocols and standards (e.g., NFC, RFID, Bluetooth,
Bluetooth LE, ANT, Proprietary, Wi-Fi, ZigBee, Z-wave, 6LoWPAN, 2.5–4 G, etc.) which can lead to
most of the challenges including limited interoperability [1]. Moreover, compromising data is cheaper
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because there are several protocols that can be explored on the same device for digital content accessibility.
Hence, in wearable IoT for instance, users who are streaming their personal vitals to backend services
(e.g., health information systems in the cloud) or across multiple personal devices (e.g., streaming between
sensors and smartphones for fitness tracking) are at risk from hackers. This case is even rampant when
the broadcast technique is employed in the wearable IoT architecture because then any device within
discoverable range can attempt to retrieve information.

These challenges with personal data compromises creates the need for data encoding and the
generation of audit trails to determine how the IoT data is shared between devices. This is why this
work further reviewed some works on privacy-based provenance systems.

2.2. Privacy and Provenance in IoT

Over the years, provenance (i.e., the record of the lineage of data) has proven to ensure quality,
reliability and to a very large extent transparency, in enterprise systems. In the Electronic Health System,
data provenance tracking is necessary for rights protection, regulatory compliance, management of
intelligence and medical data, and verifying of information as it flows through various stages [10].
Moreover, as huge amounts of data are being generated, provenance may be required to ensure
privacy [11,12].

Recently, the research community has started looking into the employment of provenance to
answer the what, when, and how questions on IoT data. Eduardo et al. [13] proposed a lightweight
semantic model and a prototypic mobile-enabled software for capturing information about IoT devices,
including their provenance, capabilities and use so as to enable users make inferences about them.
According to the authors, using provenance provides the understanding of the lifecycle of data and
the reason for which it was used in the IoT system.

On the other hand, Jan et al. [14] provide an in-depth analysis of privacy threats and challenges
in the Internet of Things which brings new issues such as pervasive privacy-aware management of
personal data. The authors named seven categories of privacy violations which include identification,
tracking and profiling, threats of privacy-violating interactions and presentations, lifecycle transitions,
inventory attacks and information linkage.

Similarly, Elisa et al. [15], noted that privacy is very vital in the context of IoT since data collection
includes context data such as location, time, etc., which enables inferences on personal information
and preferences of individuals. Thus, such information needs protection by all parties involved from
its capturing, management, and its use, to its storage [16]. However, little has been done regarding
security, privacy and personal safety risks that arise beyond subsystems; that is, cross platform
openness perceptive that comes with cloud services in relation to IoT [17].

Within the context of healthcare, emphasis on maintaining originality of which data provenance
is required, in medical applications is key [18]. This can prevent passive attacks like eavesdropping of
contextual information and spoofing attacks. Further, the IoT can be useful for hospitalized patients
whose physiological status requires close attention by adopting noninvasive monitoring.

2.3. The Open Issues

When one takes a closer look at the literature reviewed, it is apparent that there is not much work
done on securing personal health data (e.g., vitals) in IoT systems. This can be attributed to the fact
that the field is relatively new. Meanwhile, most of the works reviewed on privacy issues in IoT do
not have concrete architectural designs. Besides, while techniques such as provenance have been
successful in other domains for privacy purposes, the technique is under-utilized in IoT.

In the wearable IoT, streaming and sharing personal and contextual data across devices require
even higher level of privacy. Unfortunately, just broadcasting information from the IoT devices does
not help because sniffers can be attracted. Thus, this paper has put forward the following research
questions to explore specifically to guarantee privacy when sharing personal data:
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1. How can the personal data shared in wearable IoT be made more secure when devices
are broadcasting?

2. How can the data be encoded in a way that even if the shared keys are stolen, data privacy will
not be breached?

3. Can transparency be offered to ensure the determination of who got what information in the
wearable IoT?

These questions are addressed in the upcoming sections.

3. The Designed IoT Architecture

3.1. Designing the System

Based on the aforementioned challenges, an IoT architecture is proposed and developed in [19].
The diagram of the architecture as reproduced is shown in Figure 1. The design of the architecture
is to facilitate secure IoT data transmission in a multi-tier network that comprises: IoT devices,
middleware, and some cloud-hosted applications and services. Though our focus is on wearable IoT
devices, the architecture is generic enough to support interactions with devices in mainstream IoT
services such as: Home, Work, and Vehicular IoT. To facilitate this, the work explores provenance and
broadcast-subscriber scenarios.

Multimodal Technol. Interact. 2018, 2, x FOR PEER REVIEW  4 of 14 

 

1. How can the personal data shared in wearable IoT be made more secure when devices are 
broadcasting? 

2. How can the data be encoded in a way that even if the shared keys are stolen, data privacy will 
not be breached? 

3. Can transparency be offered to ensure the determination of who got what information in the 
wearable IoT? 

These questions are addressed in the upcoming sections. 

3. The Designed IoT Architecture 

3.1. Designing the System 

Based on the aforementioned challenges, an IoT architecture is proposed and developed in [19]. 
The diagram of the architecture as reproduced is shown in Figure 1. The design of the architecture is 
to facilitate secure IoT data transmission in a multi-tier network that comprises: IoT devices, 
middleware, and some cloud-hosted applications and services. Though our focus is on wearable IoT 
devices, the architecture is generic enough to support interactions with devices in mainstream IoT 
services such as: Home, Work, and Vehicular IoT. To facilitate this, the work explores provenance 
and broadcast-subscriber scenarios. 

APPLICATIONS AND 
PERSONALISED DEVICES

(SENSOR TAGS, BT DEVICES, ETC.)

THIRD PARTY CLOUD SERVICES

(Android Push Notification, iOS Push 
Service, Storage)

Cloud Storage

Analyst

Home 
Sensor

Home 
Sensor

Sensor 
Tag

Sensor 
Tag

CLOUD STORAGE FOR ANALYTICS

HOME

WORK
VEHICULAR IoT

WEARABLES

M2I MIDDLEWARE

 
Figure 1. The generic IoT architecture showing major segments where interactions can occur. 

This is the reason the overall architecture has cloud-hosted backend services and the client IoT 
devices. The proposed middleware enables data collection for provenance tracking and can also act 
as a centralized authority. The Push Notification component comprises third party cloud services from 
Google, Apple, and BlackBerry that allow us to send messages to a mobile notification center. These 
types of push information are consumable by both end-users on their mobile devices and the 
machines especially in decision making scenarios. The analytics layer is where the final composed 

Figure 1. The generic IoT architecture showing major segments where interactions can occur.

This is the reason the overall architecture has cloud-hosted backend services and the client IoT
devices. The proposed middleware enables data collection for provenance tracking and can also
act as a centralized authority. The Push Notification component comprises third party cloud services
from Google, Apple, and BlackBerry that allow us to send messages to a mobile notification center.
These types of push information are consumable by both end-users on their mobile devices and the
machines especially in decision making scenarios. The analytics layer is where the final composed
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data is stored in a well formatted fashion. This data can then be used by the analysts to perform the
audit trail which is offered through the provenance data.

With regards to the types of devices employed for testing, the following devices are considered in
this work.

Limited range that communicate primarily via short span protocols such as Bluetooth, Bluetooth
Low Energy (BLE), Near-field communication (NFC), and Radio-frequency identification (RFID).
Example is shown in Figure 2A, specifically, the CC2650 SensorTag [20] manufactured by Texas
Instruments. In Figure 2B,C the various readings from the device during pairing via a BLE on a
tablet and smartphones respectively are shown.
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Another smart device engaged in the work is the Optical Heart Rate Monitor with BLE. Likewise,
the Raspberry Pi 3 with an integrated 802.11n wireless LAN and Bluetooth employs a similar
functional architecture.

Mobile devices (e.g., smartphones, tablets, and smartwatches) as the main access point of data
between the sensor devices and the cloud services.

In the implementation, the Xamarin [21] development tool is used that guarantees programming
in C#. This enables the development of a native app that integrates with the sensor API.

The storage facility employed is CouchDB [22]. A sample IoT data stored in the CouchDB storage
is shown in Figure 3.
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The architecture is designed so that the wearable IoT devices can exchange data with the back-end
component. The shared services segment is a pure data-centric exchange medium which has been
designed as a typical data distribution service; meaning, the IoT data delivery is based on subscriptions
where the users will have to register their devices in a subscription pool to which dissemination can
take place. Our proposed system can also be integrated into other gateways such as Kura [23].

3.2. Provenance and Audit Trail

Now that the entire data flow process in the wearable IoT architecture is explained, we can tell the
various levels where data can be stolen and consequently breach privacy. Even though hardware and
software level encodings are proposed, sniffing and masking attacks can still happen. Also, there are
several communication interfaces that can be exploited. Moreover, just proposing a broadcast-subscriber
mechanism is not enough as attackers can attempt to enter the subscription pool. Thus, we proposed
device level meta-data encryption first before offering provenance for digital auditing.

This means devices will have to share unique features (such as device UUID, MAC address, etc.)
which will be used as part of the generated key. In this regard, any device which will be making a request
with say an unidentified UUID will not be honored. The main concern that arises is how the system is
monitored to ensure that unauthorized access is prevented to ensure privacy. This is where provenance is
proposed in the following phases. Our proposed provenance approach is adapted from [24].

Scheme Preparation: In this phase, the middleware does the instantiation of the required
configuration. Considering a security parameter k, the middleware initially creates the bilinear
parameter (p, g1, g2, G1, G2, Gt, e) by running Gen(k), and chooses two secure cryptographic hash
function H, H1 where H : {0, 1}∗ → G1 and H1 : {0, 1}∗ → Z∗p . Then, the middleware chooses
an element h ∈ G1, and ξ1, ξ2 ∈ Z∗p, and sets u, v ∈ G1 such that uξ1 = vξ2 = h. With these
settings, the middleware keeps the master keys (ξ1, ξ2) secretly, and publishes the public parameters
Pubs = (p, g1, g2, G1, G2, GT , e, h, u, v).

The middleware, say TSj ∈ {TS1, TS2, · · · } chooses a random number γj ∈ Z∗p as its private

key, and publishes the corresponding public key wj = gyj
2 . These random numbers can be based on the

unique identifiers of the IoT devices.
When an IoT device Ui ∈ U is registered to the middleware TSj, TSj chooses a random number

xi ∈ Z∗p such that γj + xji 6= 0 and computes Aji = g
1

γj+xji
1 , and returns

(
xji, Aji

)
as the private key of

Ui. In addition, the middleware keeps
(
Ui, Aji

)
in a list for the provenance monitoring later.

Provenance Record Creation: The data provenance generation for a single document’s creation,
write and read operations in a middleware TS1, where the private-public key pair of TS1 is
(γ1, w1 = gγi

2 ) is explained based on the document creation and monitoring steps.
Document Creation: When an IoT device Ui wants to log into the middleware TS1 to broadcast

data (which requires write operation), the following steps has to be followed first for the purpose
of authentication:

Step 1: Choose some random numbers α, β, rα, rβ, rxi, rδ1, rδ2 ∈ Z∗p, and compute
T1 ← uα, T2 ← vβ, T3 ← A1ihα+β

δ1 ← x1iα, δ2 ← x1iβ, R1 ← urα , R2 ← vrβ

R3 ← e(T3, g2)
rxi · e(h, w1)

−rα−rβ · e(h, g2)
−rδ1

−rδ2

R4 ← T
rxi
1 · u

−rδ1 , R5 ← T
rxi
2 · v

−rδ2

Step 2: Choose the current time stamp CT and compute the challenge c, where

C ← HI(CTT1T2T3R1R2D3R4R5)

Step 3: Compute {
sα = rα + Cα, sβ = rβ + cβ

sx = rxi + cx1i, sδ1 = rδ1 + cδ1, sδ2 = rδ2 + cδ2
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Step 4: Send the timestamp CT and σ =
(

T1, T2,T3,c, sα,sβ,sx,sδ1, sδ2

)
to the middleware

for authentication.

Upon receiving CT and σ, the middleware TS1 first checks the timestamp CT to avoid replay
attack. Then, the middleware runs the following steps to verify σ =

(
T1, T2,T3,c, sα,sβ,sx,sδ1, sδ2

)
:

Step 1: Compute R1, R2, R3 , R4 and R5:
R̃I ← u8α /Tc

1 , R̃2 ← ν8β /Tc
2

R̃4 ← T8x
1 /u8δ1 , R̃5 ← T8x

2 /ν8δ2

R̃3 ← e(T3, g2)
8z e(h, w1)

−8α−8β e(h, g2)
−8δ1

−8δ2

(e(T3, w1)/e(g1, g2))
c

Step 2: Check the following equation

c ?
= H1

(
CT‖T1‖T2‖T3‖R̃1‖R̃2‖R̃3‖R̃4‖R̃5

)
If it holds, the middleware TS1 can confirm that the request is from a subscribed IoT. Otherwise,

the middleware TS1 rejects the attempt to acquire the data. Once a device is authenticated, that device
say Ui can create a new document M, and store it in the middleware TS1. Then, the middleware TS1

generates an authenticated provenance for the document creation operation as follows:

σ1 = H(h1MvP1)
γ1,

with
h = Create′′

where “Create” represents the document creation task, Mv1 indicates version-1 of the document M,
and P1 = CT || T1 || T2 || T3 is the provenance.

Data Provenance Monitoring: Suppose the created document under consideration is in version j
in a late time, the middleware and the IoT device which is the originator of the data can pool resources
to track the identity of the IoT device which created this version. This requires the following steps to
be followed:

Step 1: The IoT device or the middleware first takes a version of the provenance record[
hi || MVi || Pi || σ1

]
and sends the provenance information Pj = CT || T1 || T2 || T3 to

an independent trusted authority, which is part of the middleware but a detached component.
Step 2: The trusted authority, say TA uses its master key (ξ1, ξ2) to compute and based on the outcome

return A← T3/
(

Tξ1
1 · T

ξ2
2

)
to the middleware TS1.

Step 3: The middleware TS1 then looks up the tracking list with A. If an entry (Ui, A1i) is found with
A1i = A, the IoT device Ui which created the questionable version is tracked. The correctness
is that, if the version is really generated by Ui, we will have

A =
T3(

Tξ1
1 · T

ξ2
2

) = A1i·
hα+β

uαξ1·vβξ2 = A1i·hα+β/
(

hα·hβ
)
= A1i

The proposed provenance methodology is able to achieve user privacy preservation in a wearable
IoT system. This is because when an IoT device Ui subscribes into the middleware TS1, it provides the
anonymous authentication information (CT, σ), and maintains user identity privacy and the login
unlinkability of the same device. Moreover, when an IoT device creates a questionable document or
document version, the collaboration between the middleware and the other devices can track the real
identity of a particular requesting node within the subscription pool.
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Also, the proposed provenance methodology can offer user privacy disclosure independence
within the wearable IoT system. The use of the device meta-data as part of the formation of the random
public and private key generations will be difficult to duplicate. Even if hackers are able to guess a
unique device information say the UUID, the fact that the number is randomly generated and the
UUID is not used directly will deter attacks.

4. Evaluation

In this section, empirical evaluations are provided to validate the proposed privacy enhanced
wearable IoT architecture. Four separate evaluations are conducted to determine: (1) the device
resource utilization cost, (2) the data propagation speed for different communication protocols, (3) the
robustness of the provenance-oriented IoT system, and visual analytics of the data trace routes.

The BLE SensorTag is used as the sensor nodes in conducting the evaluations due to its support
for different network protocols as well as varied data generation. Some of the quality of service (QoS)
properties under consideration in the work are provided in Table 1.

Table 1. QoS properties.

Property Definition

Resource Utilization The percentage of resources taken by the encryption schemes.
Network Types Different communication protocols such as ZigBee, HTTP, Bluetooth, and BLE.

Encryption/Decryption Schemes AES (aes_128_cfb), DES (des_cfb), 3DES.
Hashing Schemes MD5, and SHA (SHA-256).

Soft-Real Time Acceptable window within which data should be synchronized.
Fault Injection Attempts to hack the proposed broadcast-subscriber system for the purpose of testing.

4.1. The IoT Device Resource Utilization Cost

Proposing privacy mechanisms in an IoT architecture must first of all be grounded on the feasibility
of the device to handle the required processing load. We considered encryption algorithms such as:
AES, DES, 3DES and hashing algorithms such as: MD5 and SHA. We categorize the utilization of the
CPU and RAM based on the various encryption and hashing algorithms. The security components
of the application (described in Table 1) is installed on the SensorTag and the utilization is observed.
The recorded data is the candidate dataset under consideration and plotted in Figure 4.
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The hashing algorithms are employed specifically for integrity check especially when the data
is corrupted. In that case, the sending device and the receiving devices can use the hash values as
checkpoints. The encryption techniques however, are proposed as a data protection measure. The data
plotted represents the overall utilization for both the encryption/decryption processes as well as the
hashing techniques. This experiment is repeated several times with five (5) different sensors and
four (4) smartphones. A summarized view of the experiment is presented in Table 2, highlighting
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the minimum, average and maximum utilization points within the test duration. Starting from 30 s,
the utilization points are recorded until 600 s for the different device resources.

Table 2. Summarized utilization result.

Resource
Utilization

Min (%) Avg (%) Max (%)

CPU

AES 6.75 11.15 16.75
DES 10.44 16.51 20.44

3DES 11.89 17.10 23.96
MD5 16.02 18.84 23.00
SHA 15.65 18.68 22.66

RAM

AES 4.25 5.66 8.96
DES 5.23 7.82 10.95

3DES 5.87 9.00 12.44
MD5 7.33 10.50 14.56
SHA 8.22 12.67 19.22

Clearly, we can see that the average device processor utilization of the device is approximately 16%
which is really encouraging because it means that majority of the CPU is dedicated to other activities
and the user experience will not be affected. This is similar for the memory (RAM) with average
utilization of 9%. Regarding the variation of the utilization points across the various algorithms,
the difference is not much noticeable even though some have lower utilization than others. It must be
pointed out that our aim is not to validate the superiority of one algorithm over the other, but rather,
how each supports the privacy enhancing process of the proposed system. However, the result is
worth discussing. When no crypto module is in use (i.e., the encryption/decryption and hashing),
the maximum CPU usage is around 9.41% and the maximum RAM usage is around 6%.

The AES shows much lower utilization points compared to the other encryption/decryption
algorithms. This phenomenon is consistent across the results for both the processor and memory
consumptions. This result is encouraging for the proposed system to be adopted.

4.2. Sensor Data Propagation

In the IoT environment, one of the key requirements is soft-real time data propagation. Due to the
heterogeneity in a M2M communication, the analysis here focuses on the latency implications of four (4)
protocols namely: Bluetooth, Bluetooth Low Energy (BLE), HTTP, and ZigBee. The evaluation took into
account the data propagation speed between the IoT devices (e.g., sensors) including the generation
and monitoring of the provenance records. The results are plotted in Figure 5. This evaluation is
considered in two broad spectrums, (1) the speed with which the broadcast-subscribe scheme identifies
the type of network required for the M2M communication and (2) the cost of detecting an input and
output (I/O) interface for the data sharing process. In the design of the broadcast-subscriber system,
we developed 40 controller classes which we call the application interfaces. The number of interfaces
that can be activated is based on how many M2M communications and the provenance records a user
wants to track.

In the first setup, we considered the network type detection cost. The average propagation speed
is 13.52 ms for the Bluetooth, 11.55 ms for the BLE, 12.84 ms for the HTTP, and 20.81 ms for ZigBee.
Overall, we observed that the number of application interfaces has no direct impact on the propagation
speed. This observation is consistent across the various M2M protocols. This is because regardless of
the number of application interfaces, it takes the same effort to identify the network type. However, it is
observed that some of the communication protocols have significantly higher latency than others.
An example is say the Bluetooth has lower latency compared to ZigBee. One element that plays into
the differentiation is the range between the devices.

The second setup is the cost of detecting an I/O interface. This evaluation is important because
we need to study the rate at which an IoT device is able to send a request and also respond to an
incoming request. This experiment however has a linear increment in time for increasing number of
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interfaces. For instance, the average time for processing at the I/O level is 16.13 ms for the Bluetooth,
26.75 ms for BLE, 38.10 ms for HTTP, and 78.43 ms for ZigBee. While these statistical averages are
encouraging, a study of the various number of application interfaces shows a linear rise. This is
because, every request has to be processed at the I/O level so smaller number of application interfaces
will have faster times compared to larger number of application interfaces.
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4.3. Fault Injection Analysis

The fault injection analysis is conducted to evaluate the resilience of the proposed privacy-aware
broadcast-subscriber IoT wearable architecture. This evaluation is conducted by the research team
together with user recruits from the Pennsylvania State University. The test group involves 30 user
devices and the worst cases of system compromises that can lead to personal data theft are considered.
Especially, the mask attack, which is a variation of the Brute-force attack is considered. In the Brute-force
attack, a password guess work is required in an attempt to penetrate a system. However, with mask
attack, the assumption is some characters of the password are known so it reduces the number of times
verification is required. This attack is considered more dangerous and realistic in situations where
theft can occur through persons or systems that have prior knowledge about the user.

In conducting the evaluation, users are required to use our broadcast-subscriber IoT system only
to share their personal vital through activity tracking. The users agreed to give us their passwords
which they used for the device-level meta-data encryption. This means for the mask attack to succeed,
the device feature such as the UUID is what must be verified. This is because as posited, the encryption
and decryption of the data is done using keys that are formulated based on user passwords and device
features in the subscription pool. So basically, the fault injection analysis focuses on attacks within
the subscription pool between registered devices, a more severe level of data breaches if there is ever
a comprise of the system. The evaluation results show high level of security resilience as the true
positive and false positive results are plotted in Figure 6. In the same figure, the x-axis shows the
amount of data block, measured in KB, considered for each round of testing. The data block represents
the size of the encryption keys and the amount of IoT data being propagated by the various devices.
The variation in size is determined by how many devices are actively engaged simultaneously.

The true positive results represent the scenarios where the personal vitals is decrypted either
correctly by an authorized subscriber or genuinely, the decryption is unsuccessful because an attack is
detected. Overall, the true positive is encouraging considering the closeness of the attacks we carried
including guessing the passwords and, in some cases, having access to some device UUIDs. Most of
the encryption-decryption algorithms (i.e., AES, DES, 3DES, MD5, and SHA) show high true positive
outcomes in the mid 90%. Our experiments however show that some of the algorithms can be more
superior such as the 3DES.
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The false positive results represent scenarios where a thief is able to decrypt a data or a genuine
registered device within the subscription pool is misclassified as an attacker and subsequently denied
access. This misclassification is the main result plotted in Figure 6 as the case of thieves decrypting the
data is recorded to be almost zero percent. It is observed that the reason for the misclassification in
most cases is because the wearable devices did not communicate their UUIDs but other features which
are unstable such as Bluetooth address. Some devices also communicate their MAC addresses which
in some instances will not match the UUID.

The high false positive in some of the algorithms as seen in the plot is also due to the processing
speed variations in the schemes. So, in terms of resilience, they may have marginal differences but in
terms of efficiency, clearly some are more superior.

4.4. Visual Analytics from the Provenance Data

This evaluation is an extension of the fault injection. Here, we focus on the provenance data which
is stored to investigate the interconnectedness between the IoT devices by composing visualizations.
The interconnectedness is built based on the interactions between the various wearable IoT devices
regarding information sharing. This can facilitate us to determine who contacted who. In each
visualization, SENS xxxxx, iPhone xxxxx, and Android xxxxx represents a sensor with serial number,
iPhone with serial number, and Android with serial number respectively. Also, there are some instances
where we have some devices as Unknown which means these devices did not give their UUIDs or
failed to subscribe with a unique identifier.

In Figure 7, the visual analytics shows the data origin and interconnectedness being represented
in an RGraph composition with another RGraph (for node rendering).
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For brevity, we shall explain the visualization on the left and the same logical flow applies to the
visualization on the right. Showing the data shared to the nth degree, the n-value for this visualization is
three (3). The parent node (in the inner circle), also called the root, is the sensor device labelled SENS 4733.

This means from the provenance record, a particular IoT data is traced from its origin, which in
this case is the root, to the device that last acknowledged receipt of the information when the root
broadcasted it. Clearly, the IoT data from the root device is received by four other devices which are
SENS 7345, SENS 3321, Android 8E521L, and an unknown device whose serial number is recorded
only as 62. However, the android 8E521L device shared the same information with five other devices
which include SENS 3721, SENS 0312, SENS 1701, SENS 042, and SENS 381B.

The visual analytics provided data trace routes that transparently aids in identifying which
devices are accessing the data in the wearable IoT. In this case, the identification of privacy breaches is
made easier since users can easily identify suspicious nodes. A typical example is the “Unknown 62”
device that in this case had accessed the data.

5. Conclusions

With the Internet-of-Things (IoT) field solidifying its place in our individual, corporate,
and societal lives, there is a need to explore privacy questions. In wearable IoT for example, systems
which are designed following the broadcast architecture for ubiquitous streaming are at risk. This is
because these devices are always discoverable and susceptible to all forms of attacks.

Hence, this paper proposed the broadcast-subscriber IoT model where users’ personal data are only
shared with intended nodes such as healthcare facilities or devices authorized by the user. This means
only devices with prior subscription approval will be able to easily consume the data. This is achieved by
proposing two major approaches.

A consideration is given to the meta-data level encryption techniques where the unique identifiable
components of the communicating devices (e.g., serial number, MAC address) are encrypted and
the keys are only known to the devices within the subscription pool. This hardware and software
level encryption technique means privacy breaches are minimal as shown in the various experiments.
Several encryption-decryption algorithms are tested including the AES, DES, 3DES, MD5, and SHA.

Also, the provenance technique is proposed in the broadcast-subscriber IoT architecture to ensure
transparency and full digital audit trail. The introduction of provenance facilitates the audit of the IoT
data from source origin authentication to the current state. The interconnectedness of the devices is also
investigated to determine who got what data within the wearable IoT architecture. Several evaluations
are conducted which prove that the proposed system is less resource intensive, has a high propagation
rate of the IoT data, highly secured through fault injection analysis, and visual analytics through the
evaluation of the provenance record. Overall, the work accomplished:

• Provenance is proposed to generate data trace routes in the wearable IoT economy order to ensure
digital audit trail for transparency. The work adopted the broadcast-subscriber IoT architecture
to ensure privacy of users’ data such as vitals especially in wearable IoT; a key concern in the
generic broadcast IoT architecture.

• Both the hardware and software level data encoding methodologies are proposed based on device
meta-data encryption.

The work will be made open source and available on GitHub. The extension of this work is
the full integration into the health information system for real-time monitoring of vital stats by care
providers. This stage will not be concerned much about privacy issues, since the current work has
achieved that satisfactorily according to our industrial research partners.
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