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Abstract: This work describes a straightforward implementation of detecting and tracking pedestrian
walking across a public square using computer vision. The methodology consists of the use of
the well-known YOLOv3 algorithm over videos recorded during different days of the week. The
chosen location was the Piazza Duca d’Aosta in the city of Milan, Italy, in front of the main Centrale
railway station, an access point for the subway. Several analyses have been carried out to investigate
macroscopic parameters of pedestrian dynamics such as densities, speeds, and main directions
followed by pedestrians, as well as testing strengths and weaknesses of computer-vision algorithms
for pedestrian detection. The developed system was able to represent spatial densities and speeds of
pedestrians along temporal profiles. Considering the whole observation period, the mean value of
the Voronoi density was about 0.035 person/m2 with a standard deviation of about 0.014 person/m2.
On the other hand, two main speed clusters were identified during morning/evening hours. The
largest number of pedestrians with an average speed of about 0.77 m/s was observed along the exit
direction of the subway entrances during both morning and evening hours. The second relevant
group of pedestrians was observed walking in the opposite direction with an average speed of about
0.65 m/s. The analyses generated initial insights into the future development of a decision-support
system to help with the management and control of pedestrian dynamics.

Keywords: pedestrian flow; pedestrian detection; pedestrian tracking; computer vision; convolutional
neural networks

1. Introduction

Object detection represents one of the most important challenges in computer vi-
sion [1]. Targeting objects inside an image and classifying them based on a list of available
classes is at the bottom of several applications, such as instance segmentation [2], image
captioning [3], and object tracking [4]. The latter has recently received a great interest in
the context of crowd dynamics [5–7], and it is the focus of the present work, in which the
recognition of pedestrians is performed by means of video recording.

The fast development of deep-learning techniques observed in recent years has
brought new insights into object detection, pushing it forward to a research hotspot [8].
Therefore, object detection is widely used in many applications, such as autonomous
driving, robot vision, and video surveillance.

The increasing use of pedestrian facilities such as building complexes, shopping malls,
airports, and train stations in densely populated cities demands pedestrian-flow data
for planning, design, operation, and monitoring. When planning pedestrian facilities,
quantities such as density and speed are commonly used to assess their safety and level
of service [9]. Computer vision is a good methodology to automate density heat maps
over an observation area. This facilitates the prompt localization of intervention areas at
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a resolution of meters, enabling the identification of the most frequent crowded hotspots.
Finally, walking direction represents an important parameter to identify origin and desti-
nation areas, making it a valuable piece of information for mobility-management plans in
crowded areas.

The present work was performed to implement a new sensing technology for crowded
tracking over Centrale Station in the city of Milan, Italy. It is based on the previous work
by Dumitru et al., 2023 [10], where similar techniques were applied over the same square.
Here, we used a larger and homogeneous dataset to perform a deeper and more complete
statistical analysis, allowing the daily and hourly profiles related to pedestrian presence in
the study area to be reconstructed and the distributions of average speed and density to
be estimated.

In addition, we also report a more detailed description of the methodology and
of the weaknesses of the approach, at the same time removing uncertainties related to
the analysis of different parameters on non-homogeneous datasets. In both works, the
proposed technology is based on wireless cameras recording video streams to perform
object detection through a computer-vision algorithm. The output of these elaborations was
used to reconstruct the spatial distribution of pedestrian flows together with heat-density
and speed maps.

The main contribution of this work is to assess the effectiveness and limitations of
applying a tracking algorithm in a real-world pedestrian context for characterizing its
dynamics by means of key quantities such as density, average speed, and direction [11–14].

In Section 2, the general used methodology is described for both the detection process
and the tracking model, Section 3 presents the experimental setup, and Section 4 describes
the metrics used to analyze the observed data, as well as results related to single steps of
the recognition and tracking processes. In Section 5, general results are described, and
conclusions close the paper in Section 6.

2. The Computer-Vision Model
2.1. The Detection Process

A common way to perform object detection is through a unique neural-network
model (one-stage detector) implemented for image recognition. For the present work,
detection and tracking of pedestrians through videos recorded from a fixed camera were
implemented with the model YOLO (You Only Look Once), together with the neural
network Darknet-53 [15,16]. The choice of YOLO was motivated by its execution speed,
which makes it very convenient for processing videos of long duration.

With the introduction of convolutional neural networks (CNNs) in the field of image
recognition, the YOLO network [15] was the first one-stage detector model for object
detection within the deep-learning techniques. There are different versions of YOLO
with very similar architectures and with the latest versions offering a reduced computing
memory and higher average precision. For the present work, YOLOv3 was chosen because
of its good speed performance in detecting objects compared to more recent versions of
YOLO [17].

Although later versions of YOLO are characterized by improved performance in target
detection together with higher computational speed and precision compared to YOLOv3,
they also increase the algorithm complexity and memory consumption. Therefore, the
choice of YOLOv3 was based on its maturity as an algorithm framework with a clear
neural-network structure and real-time accuracy during online processing.

The YOLOv3 model applies a single neural network to the whole image, which is
divided into a fixed number of smaller regions wherein identified objects are highlighted
with a bounding box. The backbone of the YOLO architecture is represented by Darknet-53,
consisting of a convolutional neural network (CNN) with a depth of 53 convolutional layers
that act as a base for the object-detection network (Figure 1). The 53 layers are pre-trained
during image classification using the COCO (common objects in context) dataset [18].
Down-sampling is applied to reduce the spatial dimension of the image to identify its
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structural features. Down-sampling of the image starts with 32 averaging filters (or kernels
representing the weights of the neural-network layer) of 3 × 3 size that are doubled (32,
64, 128, 256, 512, 1024) at every convolutional layer and at each residual block. The
residual block consists of skipping the training of one or two layers by means of skip
connections or residual connections using an identity function in place of a non-linear
activation function [19–21], such as the rectified-linear-unit (ReLU) function [22]. In other
words, residual connections are used to allow the applied filters to directly access the
next layer without passing through a non-linear activation function to avoid exploding
gradients or vanishing gradients towards 0. As shown in Figure 1, each residual group
has a bottleneck 1 × 1 filter, followed by a 3 × 3 filter, which is in turn followed by a
residual skip connection. For the purpose of this work, we applied the weights used in the
convolutional filters obtained in a recent paper that supplied trained configurations and
weights, as well as the class names of the COCO dataset [18], on which the Darknet model
was trained [23,24]. The convolutional filters slide all over the input layer to generate
activation maps that are successively stacked together to form a convolutional layer. The
ReLU is applied after each convolution to generate activation layers that are used to feed
the next “stack” of layers. Basically, the ReLU function sets the threshold of all activation
layers at 0.

Urban Sci. 2023, 7, x FOR PEER REVIEW 3 of 19 
 

trained during image classification using the COCO (common objects in context) dataset 

[18]. Down-sampling is applied to reduce the spatial dimension of the image to identify 

its structural features. Down-sampling of the image starts with 32 averaging filters (or 

kernels representing the weights of the neural-network layer) of 3 × 3 size that are doubled 

(32, 64, 128, 256, 512, 1024) at every convolutional layer and at each residual block. The 

residual block consists of skipping the training of one or two layers by means of skip con-

nections or residual connections using an identity function in place of a non-linear activa-

tion function [19–21], such as the rectified-linear-unit (ReLU) function [22]. In other words, 

residual connections are used to allow the applied filters to directly access the next layer 

without passing through a non-linear activation function to avoid exploding gradients or 

vanishing gradients towards 0. As shown in Figure 1, each residual group has a bottleneck 

1 × 1 filter, followed by a 3 × 3 filter, which is in turn followed by a residual skip connec-

tion. For the purpose of this work, we applied the weights used in the convolutional filters 

obtained in a recent paper that supplied trained configurations and weights, as well as the 

class names of the COCO dataset [18], on which the Darknet model was trained [23,24]. 

The convolutional filters slide all over the input layer to generate activation maps that are 

successively stacked together to form a convolutional layer. The ReLU is applied after 

each convolution to generate activation layers that are used to feed the next “stack” of 

layers. Basically, the ReLU function sets the threshold of all activation layers at 0. 

 

Figure 1. Schematic representation of the YOLOv3 model implemented with the neural network 

Darknet-53. 

After every convolutional layer, a residual group consists of a series of repeated re-

sidual blocks as 1×, 2×, 8×, 8× and 4×. These refer to the number of times each layer of the 

sequence is repeated, and therefore they can be considered an indicator of the depth of 

the neural network. In the last three residual groups, the original input image becomes 

down-sampled at three different resolutions of 32 × 32, 16 × 16, and 8 × 8 pixels (small, 

medium, and large, respectively) to prevent the loss of low-level features and improve the 

ability to detect smaller objects (Figure 1). The use of residual blocks is aimed at avoiding 

saturation when increasing the number of convolutional layers [25]. The last step of the 

detection process consists of combining low-level features (8 × 8 pixels), detected in the 

Figure 1. Schematic representation of the YOLOv3 model implemented with the neural network
Darknet-53.

After every convolutional layer, a residual group consists of a series of repeated
residual blocks as 1×, 2×, 8×, 8× and 4×. These refer to the number of times each layer of
the sequence is repeated, and therefore they can be considered an indicator of the depth
of the neural network. In the last three residual groups, the original input image becomes
down-sampled at three different resolutions of 32 × 32, 16 × 16, and 8 × 8 pixels (small,
medium, and large, respectively) to prevent the loss of low-level features and improve the
ability to detect smaller objects (Figure 1). The use of residual blocks is aimed at avoiding
saturation when increasing the number of convolutional layers [25]. The last step of the
detection process consists of combining low-level features (8 × 8 pixels), detected in the
last layers of the network, with high-level features (32 × 32 pixels), detected in the previous
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layers of the network [26], using a methodology similar to the feature-pyramid network
(FPN), where large-scale features and medium-scale features are up-sampled to detect
medium-scale objects and small-scale objects, respectively.

Compared to other R-CNNs (recurrent convolutional neural networks), YOLOv3
is definitely faster [16,27]. This is possible because YOLOv3 does not split the object-
recognition process into multiple phases but rather produces a bounding box, inside which
the probability and class of each object detected in the image are estimated. Despite
the high speed in object detection, YOLO suffers from a reduced accuracy in localizing
small-dimensional objects.

Three anchor boxes (or bounding boxes) are predicted for each layer, obtained from
down-sampled features at three different resolutions of 32 × 32, 16 × 16, and 8 × 8 pixels,
respectively. An anchor box is a bounding box of multiple aspect ratios pre-defined using
the training dataset (COCO) by running a K-means partitioning algorithm among the
possible available choices of identified objects. For each anchor box a prediction is made
for (a) the centroid coordinates (x,y), as well as the width and height (w and h, respectively);
(b) the objectness score P(Object) to indicate whether the considered box contains an object
(0 if it contains objects, 1 if it does not); and (c), the class probabilities, indicating which class
the box belongs to (i.e., faces, cats, dogs, cups, etc.). Since the YOLOv3 model is trained
with the COCO dataset, we can have up to 80 possible different classes to which objects
can be assigned. However, the number of anchor boxes is reduced with the non-maximum-
suppression algorithm (NMS, see below) to highlight the box that best overlays the detected
object. The model also evaluates the accuracy of the dimension and localization of the
bounding box with respect to the object itself. This is evaluated through the intersection
over union (IoU) [28], defined as:

IoUtruth
pred =

area(box(truth) ∩ box(pred))
area(box(truth) ∪ box(pred))

(1)

where IoUtruth
pred is the ratio between the extensions of the intersection and the union of the

ground truth and the predicted box.
The computer-vision model identifies objects that are highlighted with bounding

boxes. These boxes are represented by the coordinates of the object in the image over
which the rectangular region is built through the hand choice of the aspect ratio as well as
the hand choice of the possible labels of the bounding boxes. This process is carried out
by manually tagging about 100 images to be used as the ground truth. A comparison is
then carried out between the ground truth and the real person(s) belonging to the tagged
test images. A detected person is linked to a particular ground-truth object if there is a
minimum ratio of 50% between the overlap and the union of the detected bounding box
with the ground-truth bounding box (see Equation (1)). Therefore, the ground truth refers
to the bounding box defined around the real object (person). More precisely, ground-truth
bounding boxes are a priori defined by specifying center coordinates and dimensions of
the rectangular region enclosing the targeted objects. The image dataset is divided into a
training set to train the object detector and a testing set to validate it. Both the training and
testing sets consist of the actual images and the bounding boxes associated with the objects
in the image.

IoU values close to 1 indicate a good correspondence between ground truth and
prediction. This can also be considered an index to determine how much the ground-truth
box overlaps with the anchor box. The probability that an object is enclosed within the
bounding box is called the confidence score and is defined as:

Con f (Object) = P(Object)× IoUtruth
pred , (2)

where P(Object) is the a priori probability of finding the object in the box. As said above,
for each grid scale the model predicts three anchor-bounding boxes, and therefore multiple
anchor boxes could predict the same object. To overcome this issue, the non-maximum-
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suppression (NMS) algorithm is applied to remove possible duplicate results. Basically,
this method determines the detection box characterized by the highest object-confidence
score, higher than a given threshold, and adds it to the result while removing all other
boxes with a lower IoU. Therefore, the final detection step assigns only one bounding box
to each identified person, as shown in Figure 2. In the present work, a confidence-threshold
value of 0.7 and an NMS threshold of 0.5 were chosen. The detection range is the result of
fine tuning the computer-vision model to detect and track the largest number of targeted
pedestrians over consecutive images. We have observed that an increase in detection range
is not always followed by correct tracking of the targeted person. Therefore, a compromise
was found between detection and tracking accuracy to build the time path of pedestrians.
The obtained predicted bounding boxes correspond to the probability Con f (person) that,
for the detection of the pedestrian, the obtained object corresponds to the class of “person”.
Therefore, the individual bounding-box confidence prediction is defined as:

Con f (person) = P(person)× IoUtruth
pred (3)

where P(Person) indicates the probability of finding a person within the bounding box.
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Figure 2. (a) Camera system for video collection located in the middle of the square Piazza Duca
d’Aosta at Centrale Station in Milan, Italy. (b,c) Sample frames extracted from a video sequence.
Bounding boxes indicate successfully detected people in the image within a time interval of 10 ms.
Each bounding box is associated with a unique identifier.

2.2. Tracking Model

Object detection across frames in a video sequence raises the issue of performing
multiple-object tracking (MOT). Tracking algorithms assign unique tracking IDs to every
object found in each frame and try to maintain the same ID in subsequent frames using
some sort of correspondence.
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To track IDs assigned to pedestrians, we applied the SORT model as a tracking
framework focusing on frame-to-frame prediction and association [29]. In this model, the
inter-frame displacement of each object is approximated with a linear velocity independent
of any other object in the video [30]. Tracking of a pedestrian is initialized when the
correspondence between the real position of the pedestrian (ground truth) and its prediction
is larger than a threshold value IoUmin. In that case, a tracker is initialized as a bounding
box with an initial velocity set to zero. At each time step, a prediction is made for each
target’s bounding box considering previous steps. Trackers are usually terminated if the
associated target is not detected in the subsequent frame. Figure 2b,c show an example of a
detected person whose assigned ID was tracked along their trajectory while walking across
Piazza Duca d’Aosta in front of Centrale Station in Milan. Figure 3 shows a typical case in
which a detected ID is tracked in several consecutive frames until it disappears. For each
ID, a time series is built, including the centroid of the detected person and the timestamp
(Figure 4).
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2 frames per second are shown. Two entrance points of the subway are indicated. Axis labels refer to
the pixel scale of the image.
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the tracked path, only 2 frames per second are shown. Axis labels refer to the metric system,
epsg = 32,624.
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To characterize the movement of a pedestrian walking across the square, it was
necessary to switch from a 3D- to a 2D-view representation (from pixels to meters) and
re-project the centroid coordinates to the metric system. This allowed us to observe the
path followed by the tracked person at several timestamps. Figure 4 shows the trajectory
followed by a tracked ID at a time resolution of 1 second. The sequence of the timestamps
defines the position at the beginning of detection (origin) and the position at the end of
detection (destination). The direction of each track was defined as the angle between its
origin and destination.

3. Experimental Setup

As already stated, the study area chosen for our analysis was Piazza Duca d’Aosta
in Milan, Italy, located in front of Milan Centrale Station. The area represents one of the
strategic multimodal hubs of the city. With about 600 trains a day, Centrale Station is
currently the second largest station in Italy in terms of size and traffic volume. Visited by
more than 350,000 people per day, besides offering high-speed railway and lines to other
European countries, the station is an interchange spot for buses, trams, trolleybuses, and
two subway lines, as well as airport shuttles. The surrounding area hosts taxi and other
mobility services such as bikes, scooters, and car sharing. The station has three large central
entrance doors facing the main square, Piazza Duca d’Aosta, where two access points to
the subway are located.

The dataset used to characterize pedestrian mobility over Piazza Duca d’Aosta con-
sisted of a collection of videos recording the square with a strong perspective view, showing
the flow of people around the main entrance of the station and the two access points of
the subway (Figure 2a). For this purpose, a video-recording system was setup along one
side of Piazza Duca d’Aosta facing the main entrance of Milan Centrale Station. The main
purposes of this system were (a) to collect the video streaming coming from a camera
adopting standard internet protocol, (b) to process a video stream by analyzing each frame,
(c) to detect the presence of people within the frame, (d) to assign a unique identifier (ID)
to each person, and (e) to track each person inside every video frame.

The camera was set up by the Azienda Mobilità Ambiente e Territorio (AMAT), with
the purpose of acquiring the video stream from Piazza Duca d’Aosta and counting and
analyzing the movements of pedestrians. Most of the video streaming was processed offline.
The system was programmable remotely and could be controlled through a dedicated
app [31]. The video stream was set to capture video in MP4 format in HD through an IP
camera connected to a 4G router with a SIM card and a remotely reachable DDNS profile.
The video stream had a frequency rate of 20 fps and was analyzed for a period of 14 days
during the month of April 2022. The system power was supplied by an 80 W solar panel
with a direct current of 12 V that was also charging a 12V, 75 Ah gel battery. The camera
was mounted on the end of a telescopic pole that extended up to 4 m. The location of
the camera was chosen to cover a wide view of Piazza Duca d’Aosta to detect and track
pedestrians entering the station or accessing public transportation. Videos were recorded
during 14 days, from 1 to 7 April and from 17 to 23 April 2022 between 07:00 and 20:00. We
chose not to analyze any image during days with adverse weather conditions, since the
number of people in the observation area was very low. Consequently, it was not possible
to provide an estimation of the detection and tracking accuracy in those conditions. With
respect to the previous work characterized by a similar methodology [10], this work is based
on different dates, and the data collected for the analysis described in the following sections
are more homogeneous, since the entire analysis was performed on the same dataset.

4. Metrics

To estimate the mean pedestrian speed, direction, and density over the study area, the
capability to detect pedestrians in static images was assessed through the mean-average-
precision (mAP) evaluation metric. As said above, a threshold value for the IoU of 0.5 was
initially set to establish whether a pedestrian was detected or not, classifying the object
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as true positive (TP) or false positive (FP) in the case of IoU > 0.5 or < 0.5, respectively. If
the ground truth was present in the image but the model failed to detect the object, it was
classified as false negative (FN).

The average precision is usually defined as AP = TP/(TP + FP). In general, the
mean average precision at IoU = 0.5 (mAP50) is calculated as the mean average preci-
sion of all the different classes of objects detected within a single image, based on the
following expression:

mAP50 =
1
N

N

∑
i=1

APi (4)

where N is the number of classes, which is equal to 80 in YOLOv3, and APi is the average
precision for a single class of detected objects. The results, presented in Figure 5, showed a
confidence score of about 67.6%. The IoU distribution showed a mean value of about 81%,
whereas the mAP50 showed a mean value of about 61%.
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Figure 5. Distribution values obtained for 3 metrics used to evaluate the YOLOv3 model performance
over the observations: confidence of the detection for the class “pedestrian” (Con f (person)), intersec-
tion over union (IoU), and mean average precision at IoU = 0.5 (mAP50) for the class “pedestrian.”
Results refer to an observation period of 14 days during the month of April 2022. Blue dotted lines
represent the mean value of the distributions.

Evaluation of multiple-object tracking was carried out with the standards Multiple
Object Accuracy Tracking (MOTA) and Multiple Object Tracking Precision (MOTP) [32].
MOTA [33] is one of the most widely used metrics in object tracking. This metric matches
the ground truth (GT) to predicted objects per detection. It considers the number of identity
switches, false-positive (FP) detections, and false-negative (FN) detections across all video
frames and is defined as:

MOTA = 1− ∑i FNi + FPi + MIDi

∑i GTi
(5)

where MID is the mismatch error occurring when the object in the ground truth is erro-
neously associated with another object due to wrong tracking. Basically, MOTA measures
the overall accuracy of both the tracker and the detection and can be considered a measure
of the tracker’s performance at detecting objects and maintaining their trajectories. In
general, assuming that MOTA values are usually normally distributed, with a mean value
larger than 80%, many of the objects are considered tracked. On the contrary, with a mean
value between 20 and 80%, objects are considered partially tracked.

However, MOTA does not consider localization, which must be measured by a sep-
arate metric, such as Multiple Object Tracking Precision (MOTP) [33,34], which averages
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localization scores across all detections within a video and therefore estimates the accuracy
of the detection model in localizing the object with respect to the ground truth:

MOTP =
1− IoUtruth

pred

TM
(6)

where TM is the total matches made between ground truth and the detection output.
Basically, MOTP shows the ability of the tracker to accurately estimate object positions and,
at the same time, to be consistent with trajectories. Well-performed tracking systems have
a MOTP close to zero.

Figure 6 shows the distribution of MOTA and MOTP values obtained for all the
pedestrians tracked during the detection process. A mean MOTA value of about 56% was
observed. This indicates that most of the persons present in the videos were partially
tracked [32]. On the other hand, the distribution of MOTP values showed a mean value of
about 0.6, which, being close to zero, is an indication that the localization capability of the
system was good.
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dotted lines represent the mean value of the distributions.

5. Image Processing
5.1. Speed and Direction

Statistical evaluations were performed after video processing with the computer-
vision model, hereafter indicated as CV, to detect and track pedestrians in each frame of the
recorded videos. As result, an extensive dataset of about 1.7 million images was gathered
during 14 daily timeslots (07:00–22:00) from 1 to 7 April and from 17 to 23 April 2022.
Raw data obtained from the CV model consisted of a time series of unique identification
numbers (ID) assigned to people targeted in each frame. Raw data referred to a 3D view
of the recorded image. Conversion of the coordinates into a 2D view with the ID position
expressed in meters was performed using conversion factors dependent on the view angle
of the camera, the viewpoint depth of the image, and the top-view dimensions of the
observed square, Piazza Duca d’Aosta. The resulting 2D dimension of the observation area
had a depth of 45 m and a width of 50 m.

The statistical analysis was structured in two steps: The first one consisted of the
visualization of time profiles of the mean number of pedestrians in Piazza Duca d’Aosta
during days and hours. The second one consisted of the analysis of the spatial distribution
of pedestrian speed, direction, and density over the square by considering two well-defined
timeslots: from 07:00 to 10:00 representative of the morning time window, and from 17:00
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to 20:00 representative of the evening time window. Indeed, these are the most recurrent
time slots of the week when people access the train station and the subway.

The cumulative number of pedestrians was estimated by adding the number of people
detected and tracked at each hour of the day (Figure 7). A distinction was made for
working days (Monday to Friday) and for the weekend (Saturday and Sunday) during
evening and morning hours. The largest number of people was observed during morning
hours and during weekdays (Figure 7a). The two-week sampling period highlighted
Tuesday as the day with the largest number of people, whereas Sunday showed the lowest
number. Analyzing the hourly profiles, a peak in the number of people was observed
around 10:00–11:00 both on weekends and on working days (Figure 8b). Another peak was
observed around 16:00 but only during working days. On the other hand, a larger number
of people was observed around 21:00 during the weekend compared to working days.
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Pedestrian speed and direction were evaluated from the recurrence of the ID numbers
assigned to each person together with the temporal sequence of their position. More pre-
cisely, for each ID, speed was estimated considering the distance between two consecutive
positions of the pedestrian and the time intercurrent between them. Therefore, the resulting
average speed of pedestrian i is defined as:

Vi =
1
N

N

∑
t

vi
t =

1
N

N

∑
t

xi
t

τi
t
=

1
Nτ

N

∑
t

xi
t (7)

where vi
t is the instantaneous speed of pedestrian i at the timestamp t, N is the total of

discrete uniform time interval τ, and, xi
t is the space covered by pedestrian i at timestamp t.

In addition, it was possible to define the temporal distribution of mean speeds related
to the overall study area by averaging for the entire pedestrian population the individual
speeds at timestamp t:

V(t) =
1
P

P

∑
i

vi
t =

1
P

P

∑
i

xi
t

τi
t
=

1
Pτ

P

∑
i

xi
t (8)

where P is the total number of pedestrians at timestamp t.
Speeds were filtered to account only for moving individuals (v > 0.3 m/s) and to

exclude bicycles and e-scooters (v < 2.5 m/s). Outputs were initially averaged every
15 minutes and then averaged by hour and by day. Daily and hourly profiles of the average
speed did not show any significative trend, with the average value ranging from 0.71
to 0.79 m/s and a standard deviation of 0.2 m/s. Overall, speed distribution over the
observation period showed a Gaussian shape centered at 0.74 m/s (Figure 8a).

Heat maps were generated to spatially represent pedestrian mean speed and density
number. A square grid with a 2 × 2 m2 cell area was overlaid on the observation area
to achieve regular tessellation to visualize speed and density values in different parts of
the square. This is a different approach with respect to a similar study [10], in which
the Voronoi density was computed on the original Voronoi cells, with no reference to the
regular grid used in the study.

Instantaneous speeds along each pedestrian trajectory were assigned to every crossed
cell. For each cell, daily averages were computed from 30 minute speed averages. In
addition, the direction of each trajectory was estimated from the angle, expressed as 0–360◦,
between the origin and the destination point of each pedestrian. Figure 9 shows that angles
were mainly oriented towards two directions: one from the station or subway entrances
toward the square (250◦ < angle < 280◦) and one from the square towards the station or
subway entrances (80◦ < angle < 120◦) (Figure 9). Therefore, heat maps representing average
speed and direction were filtered along these two main directions. The distribution of the
angles shown in Figure 9 clearly indicates that the direction followed by the majority of
pedestrians was the one from the station or subway entrances toward the square, with
higher numerosity observed during the morning hours. However, to better understand and
visualize the prevalent direction followed by pedestrians during the morning and evening
hours, data clustering was carried out using the well-known K-mean methodology [35] to
cluster the whole datasets of speeds and directions estimated during the observation period.
The results (Figure 10 and Table 1) show that speed and direction could be grouped into
two main categories. The largest numerosity of pedestrians fell within the same clusters
during both morning and evening hours. During morning hours, the largest number of
pedestrians was directed from the subway towards the square, with an average speed of
about 0.77 m/s (Figure 10a), whereas a smaller number of pedestrians was directed towards
the entrances to the subway and to the station at a speed of about 0.65 m/s (Figure 10a).
On the other hand, during evening hours, the number of pedestrians moving towards
the entrances of the subway and the station showed higher numerosity compared to the
morning hours, with an average speed of 0.64 m/s (Figure 10b). However, during evening
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hours most pedestrians were also directed from the entrances to the subway towards the
square at a speed of about 0.78 m/s (Figure 10b). It is important to point out that these
results may also have been affected by the capability of the YOLOv3 model to better detect
and track people along the direction of cluster 1 (see Table 1), therefore potentially resulting
in the underestimation of the numerosity along the other directions.
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10:00) and (c) evening hours (from 17:00 to 20:00) for the entire observation period. The 90◦ angle
corresponds to 12:00. (b,d) Distribution of speeds during the same time windows.
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Table 1. Results obtained from clustering of directions during morning (from 07:00 to 10:00) and
evening hours (from 17:00 to 20:00) for the entire observation period. The 90◦ angle corresponds to
12:00. The numerosity indicates the number of pedestrians classified within each cluster. The average
speed for each cluster is also reported in table.

Morning Evening

Cluster Angle (Degrees) Numerosity Speed (m/s) Cluster Angle (Degrees) Numerosity Speed (m/s)

0 272 ± 26 606,213 0.77 ± 0.4 0 273.0 ± 27 503,053 0.78 ± 0.5
1 86.6 ± 33 295,622 0.65 ± 0.4 1 86.8 ± 34 342,903 0.64 ± 0.4

Figures 11a and 12b clearly show that during morning and evening hours, pedestrians
mainly used one of the subway entrances in the square when walking towards the station.
On the other hand, during evening hours, Figures 11b and 12b clearly show that pedestrians
used both subway entrances to leave and walk towards the square. In addition, as shown in
Figures 11 and 12, peaks in speed were observed in the proximity of the subway entrances.
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Figure 11. Heat map of speed across Piazza Duca d’Aosta during the morning (from 07:00 to 10:00)
along the (a) entrance and (b) exit direction with respect to the station. Arrows indicate the ending
point of a trajectory of a group of pedestrians together with its direction. Results are from two weeks
of observations during the month of April 2022. Directions with high standard deviation were
omitted. Red arrows indicate the entrances of the station. Grey arrows represent the access points of
the subway.
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Figure 12. Heat map of speed across Piazza Duca d’Aosta during the evening (from 17:00 to 20:00)
along the (a) entrance and (b) exit direction with respect to the station. Arrows indicate the ending
point of a trajectory of a group of pedestrians together with its direction. Directions with high
standard deviation were omitted. Red arrows indicate the entrances of the station. Grey arrows
represent the access points of the subway.
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5.2. Density Analysis

Estimation of pedestrian density was carried out using the Voronoi method. The
Voronoi methodology assigns to every pedestrian a cell representing the closest area in
order to calculate an arithmetic average of the perceived densities of each user and define
the total crowding at a given time [10]. The method requires the Voronoi-cell diagram to
be computed for the position of each pedestrian at each timestamp. Since the case study
concerned an open area, the boundaries of a square roughly covering the study domain
were intersected with the neighboring Voronoi cells to obtain finite areas. Voronoi cells
are not of regular size, and they are built around each person by considering the near
neighbors. Similar to the estimation of the spatial speed, a grid composed of square grid
cells of 2 × 2 m2 was overlaid on the observed area and intersected with the Voronoi cells.
In a situation considered homogeneous, densities estimated with the Voronoi methodology
do not show considerable variations; on the contrary, they are defined to highlight possible
inhomogeneities in the density distribution. This latter condition was apparent during
the whole observation period. Therefore, the Voronoi density was estimated considering
the ratio between the number of people within each square cell and the total areas of the
Voronoi cells intersecting the square cell itself. At timestamp t, the Voronoi density for each
cell Ak of the regular square grid is defined as:

Dk
v(t) = ∑

i

Pk
i (t)
|Ai(t)|

(9)

with

Pk
i (t) =

|Ai(t) ∩ Ak|
A

(10)

where |Ai(t)| is the area of the i-th region obtained from the Voronoi tessellation on the
basis of the pedestrian position

→
x i(t), |Ak| = A is the area of each grid cell, and Pk

i (t) is the
normalized weight obtained by sectioning A on the basis of the intersection between the
i-th Voronoi cell and the k-th grid cell.

To obtain a global-density indicator of the overall study area, the average space density
at timestamp t can be estimated as:

〈Dv〉space = Ds
v =

1
N

N

∑
k=1

Dk
v(t) =

1
N

N

∑
k=1

∑
i

Pk
i (t)
|Ai(t)|

=
1

NA

N

∑
k=1

∑
i

|Ai(t) ∩ Ak|
|Ai(t)|

(11)

where N is the total number of grid cells. Finally, to aggregate the density indicators into
time-average profiles, the following equation was used:

〈Ds
v〉time =

1
T

T

∑
t=1

Dv(t) =
1

NT

T

∑
t=1

N

∑
k=1

∑
i

Pk
i (t)
|Ai(t)|

=
1

NAT

T

∑
t=1

N

∑
k=1

∑
i

|Ai(t) ∩ Ak|
|Ai(t)|

(12)

where T is the number of discrete uniform timestamps.
Figure 13 shows the advantage of using the Voronoi-density approach rather than

the standard density. The standard density is usually defined as the ratio between the
number of people present in a cell and the cell area at a given time. However, the standard
density shows higher variability in time with temporal spikes, highlighting the granularity
of a single square cell in the temporal variation. Unlike the standard-density definition,
the Voronoi method does not show strong oscillations when people enter or exit the
measurement area, because in this case every individual produces a density distribution.
This yields smoother temporal profiles compared to the standard density, allowing for a
better visualization of the temporal variation of the density.
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Figure 13. Time sequence of the Voronoi density and the standard density computed over a square
cell in Piazza Duca d’Aosta with high occupancy during the day of 23 April 2022.

For each cell, daily Voronoi-density averages were computed from 15-minute density
averages during the whole observation period. Data consistency was assured by averaging
the total number of pedestrians crossing each cell within the same time range and by
weighting the number of each ID included in the cell with the number of timestamps
occurring every minute. This was fundamental to avoiding mismatches when averaging
data from different time periods.

Having observed that only a portion of the square was mostly crossed by pedestrians
during the observation time, spatial estimation of the Voronoi density was carried out on a
square of reduced area. Figure 14 shows that the subway entrances as well the corridors
in front of the entrance to the station were characterized by higher densities. This was
observed both for morning and evening times. The highest density value observed during
morning and evening hours was up to 0.16 person/m2. This result is consistent with
the time sequence of the Voronoi density shown in Figure 13. On the other hand, when
considering the entire area of the square, the mean value of the Voronoi density was about
0.035 person/m2, with a standard deviation of about 0.014 person/m2 (Figure 8b). This
value is consistent with the one found in the previous analysis carried out at the same
location during a different time period [10]. Compared to typical results on vehicles,
pedestrian densities estimated in this work showed very low variability. In the heat
map of Figure 14, the density variability ranged from 0.02 person/m2 to 0.16 person/m2.
Therefore, unlike the case of vehicles, the low value for the spread of density was not
suitable for performing speed-density plots to estimate the relationship between walking
speed and pedestrian density [36]. However, in another recent work [10], we estimated the
speed–density relationship for the same pedestrian environment by taking advantage of a
microscopic simulator.
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Figure 14. Heat map of the Voronoi density across Piazza Duca d’Aosta during the morning (from
07:00 to 10:00) and the evening (from 17:00 to 20:00) hours during the whole observation period and
over the most crowed part of the square. Blue arrows indicate the entrances of the station.

From the daily profile shown in Figure 15a, low pedestrian density was observed
during Saturday evening and Monday morning, whereas high density was observed during
Monday evening and Tuesday morning. On an hourly basis, during the weekend, density
values started decreasing during the evening from 20:00 to 22:00. On the other hand, during
working days, no hourly trend was observed in the density, with only one peak around
14:00, and density values decreased during the evening from 20:00 to 22:00 (Figure 15b).
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6. Conclusions

In this work, we illustrated the implementation of an algorithm of computer vision
that analyzes images extracted from video frames recorded in front of the Centrale Station
in Milan, Italy. The goal was to provide an estimate and a visual representation of speed,
direction, and density of pedestrians walking across the square. Tracking and detection of
pedestrians was achieved with discrete accuracy. The results clearly show that the main
directions followed by pedestrians are linked to points of interest, such as the entrances
to the subway and to the railway station. In addition, temporal characterization of pedes-
trian number and density highlighted the different pedestrian behavior during weekdays
compared to weekends.

Even though it was not possible to experience high-flow conditions over the analyzed
area, the system can be used offline in the preparedness phase, serving as a support to
plan big events. Furthermore, the outcomes of this system can potentially provide useful
information for commercial actors such as retailer or entertainment marketing statistics.

The present work highlights some strong points but also has some caveats. One
strong point is represented by the value of an autonomous video-recording system: The
self-sufficient operating mode does not need any connection to the power grid or any data
transfer through a wired network. However, the configuration of the camera plays a key
role in obtaining reliable and accurate data. Differences with respect to the results obtained
in a previous similar work [10] are related to the different period of observation, when a
lower number of pedestrians was detected. Moreover, more work needs to be performed
to test the results with different settings of the camera in order to study the possible bias
related to uneven spatial distribution of the detection and tracking performance.

Finally, data provided by the camera system and the methodology described in this
paper can be useful for both mobility managers and security personnel. Detection and
tracking of pedestrians are becoming a popular topic to control mass movements to amelio-
rate accessibility to public areas as well as to maintain a safe environment. Furthermore,
the advancement of new high-performing versions of the YOLO tracking algorithm can
significantly enhance the accuracy in estimating the key quantities required to characterize
pedestrian-flow dynamics.
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21. Jastrzębski, S.; Arpit, D.; Ballas, N.; Verma, V.; Che, T.; Bengio, Y. Residual Connections Encourage Iterative Inference. arXiv 2018,

arXiv:1710.04773. [CrossRef]
22. Szandała, T. Review and comparison of commonly used activation functions for deep neural networks. In Bio-Inspired Neurocom-

puting; Bhoi, A.K., Mallick, P.K., Liu, C.-M., Balas, V.E., Eds.; Studies in Computational Intelligence; Springer: Singapore, 2021;
Volume 903, pp. 203–224, ISBN 9789811554940.

23. Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020,
arXiv:2004.10934.

24. Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M. Scaled-YOLOv4: Scaling Cross Stage Partial Network. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 13029–13038.

25. Balduzzi, D.; Frean, M.; Leary, L.; Lewis, J.P.; Ma, K.W.-D.; McWilliams, B. The Shattered Gradients Problem: If resnets are the
answer, then what is the question? arXiv 2018, arXiv:1702.08591. [CrossRef]

26. Zeiler, M.D.; Fergus, R. Visualizing and understanding convolutional networks. In Proceedings of the Computer Vision—ECCV
2014; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Springer International Publishing: Cham, Swirzerland, 2014; pp. 818–833.

27. Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. arXiv 2018, arXiv:1708.02002. [CrossRef]
28. Rosebrock, A. Intersection over Union (IoU) for Object Detection. 2016. Available online: https://pyimagesearch.com/2016/11/

07/intersection-over-union-iou-for-object-detection/ (accessed on 8 June 2023).
29. Bewley, A.; Ge, Z.; Ott, L.; Ramos, F.; Upcroft, B. Simple Online and Realtime Tracking. In Proceedings of the 2016 IEEE

International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 3464–3468.
30. Kálmán, R. A new approach to linear filtering and prediction problems. J. Basic Eng. 1960, 82, 35–45. [CrossRef]

https://doi.org/10.1109/JPROC.2023.3238524
https://doi.org/10.48550/arXiv.1703.06870
https://doi.org/10.1109/TPAMI.2017.2708709
https://www.ncbi.nlm.nih.gov/pubmed/28574341
https://doi.org/10.1109/TCSVT.2017.2736553
https://doi.org/10.1049/iet-its.2019.0677
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/j.physa.2009.12.015
https://doi.org/10.7717/peerj-cs.1226
https://doi.org/10.1145/3397575
http://n.saunier.free.fr/saunier/stock/ismail09automated-tac.pdf
https://doi.org/10.48550/arXiv.1506.02640
https://doi.org/10.3390/s22020464
https://doi.org/10.48550/arXiv.1405.0312
https://doi.org/10.1016/j.trc.2004.07.015
https://doi.org/10.48550/arXiv.1512.03385
https://doi.org/10.48550/arXiv.1710.04773
https://doi.org/10.48550/arXiv.1702.08591
https://doi.org/10.48550/arXiv.1708.02002
https://pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://doi.org/10.1115/1.3662552


Urban Sci. 2023, 7, 65 19 of 19

31. Dahua Products. Available online: www.dahuasecurity.com/products/All-Products/Network-Cameras/Consumer-Series/
2MP/IPC-HFW1235S-W-S2 (accessed on 12 June 2023).

32. Bernardin, K.; Stiefelhagen, R. Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. J. Image Video Process.
2008, 2008, 1–10. [CrossRef]

33. Milan, A.; Leal-Taixe, L.; Reid, I.; Roth, S.; Schindler, K. MOT16: A Benchmark for Multi-Object Tracking. arXiv 2016,
arXiv:1603.00831. [CrossRef]

34. VisAI Labs. Evaluating Multiple Object Tracking Accuracy and Performance Metrics in a Real-Time Setting. Available online:
https://visailabs.com/evaluating-multiple-object-tracking-accuracy-and-performance-metrics-in-a-real-time-setting/ (accessed
on 22 February 2023).
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