
Citation: Gautam, A.S.; Joshi, A.;

Chandra, S.; Dumka, U.C.; Siingh, D.;

Singh, R.P. Relationship between

Lightning and Aerosol Optical Depth

over the Uttarakhand Region in India:

Thermodynamic Perspective. Urban

Sci. 2022, 6, 70. https://doi.org/

10.3390/urbansci6040070

Academic Editor:

Luis Hernández-Callejo

Received: 23 August 2022

Accepted: 3 October 2022

Published: 9 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Relationship between Lightning and Aerosol Optical Depth
over the Uttarakhand Region in India: Thermodynamic
Perspective
Alok Sagar Gautam 1, Abhishek Joshi 2, Sagarika Chandra 3, Umesh Chandra Dumka 4,* , Devendraa Siingh 3

and Ram Pal Singh 5

1 Department of Physics, Hemvati Nandan Bahuguna Garhwal University, Birla Campus,
Srinagar 246174, India

2 Department of Physics, Hemvati Nandan Bahuguna Garhwal University, SRT Campus, Badshahihaul,
Srinagar 249199, India

3 Indian Institute of Tropical Meteorology, Dr. Homi Bhabha Road, Pashan, Pune 411088, India
4 Aryabhatta Research Institute of Observational Sciences, Nainital 263001, India
5 Department of Physics, Banaras Hindu University, Varanasi 211005, India
* Correspondence: dumka@aries.res.in

Abstract: The current study is mainly focused on the monthly variation in the lightning flash rate
(LFR) and related thermodynamic parameters using the data for the years 2000–2013, and the trend
of lightning variation is explored. Lightning data are used from a lightning imaging sensor (LIS)
and an optical transient detector (OTP) boarded on the tropical rainfall measuring mission (TRMM).
Additionally, aerosol optical depth (AOD) data at 550 nm for the same period were considered
from a Moderate Resolution Imaging Spectroradiometer (MODIS). The assessment of lightning and
AOD using monthly data makes it difficult to study seasonal contributions, and higher-resolution
(hourly) data may be more appropriate, but unfortunately, no data were available with a higher
resolution than monthly. The dependency of LFR is also investigated using thermodynamic/dynamic
parameters. The LFR shows a moderate correlation with a correlation coefficient of 0.56, 0.62, and
0.63 for AOD, CAPE, and vertical velocity, respectively. The increasing AOD in the pre-monsoon
season is associated with higher lightning flash rates over this region. The possible sources of
aerosols that cause an increase in lightning activities are identified from the classification of aerosols
based on the characteristic values of the AOD and the Ångström exponent. The thermodynamic
relation of the Product of Bowen ratio with the sum of the precipitation rate and evaporation rate has
been used as a proxy to evaluate the lightning flash rate density over Srinagar, Uttarakhand region
(78.55◦ E–79.05◦ E, 29.97◦ N–30.47◦ N), with nine models from the Coupled Model Inter-comparison
Project-Phase 5 (CMIP5). The model-simulated LFR has also been used for the projection of lightning
in the late 21st century, and the projected LFR over the study area shows a 7.41% increase during
the (2079–2088) period as compared to the historic period (1996–2005). The results of the study
region indicate caution in using any single climate variable as a proxy for projecting a change in the
lightning–climate relationships in the scenario of global warming.

Keywords: lightning; CAPE; AOD; NDVI; LFR; CMIP5

1. Introduction

Lightning is a naturally occurring phenomenon that originated in the high voltage
differences in thunderstorms and exhibits currents as large as hundreds of kiloamperes. It
is influenced by various atmospheric phenomena, as well as surface processes. Lightning
causes damage to commercial installations, electrical and electronic equipment in homes
and industrial facilities, and life [1–3]. Lightning and its intensity are governed by the
form of moist convection, which is controlled by dynamics/thermodynamics, including
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the roles of aerosols [1–9]. Several studies were conducted to understand the impact of
aerosols on lightning [10–15]. The reduced droplet size in the presence of a high aerosol
concentration [16–19] suppresses the collision and coalescence processes of droplets into
raindrops, which eventually inhibits the warm rain process [20]. Atmospheric aerosols play
an important role in the regulation and integration of deep convective clouds [16,21,22],
which leads to higher lightning flashes in the moist environment [18,19,23,24]. Previous
studies suggested that weak updraft generally corresponds to rainfall; on the other hand,
deep and strong updraft leads to thunderstorm/lightning [24]. Increased aerosol con-
centrations (swelling effects) are reported in the presence of clouds with more than 99%
humidity [25–28]. The observed positive correlation between effective cloud droplet radius
and aerosols is explained to be caused by the humidity effect [29].

Aerosol loading, along with local meteorological parameters, affects the thermo-
dynamic properties of the atmosphere and hence convective available potential energy
(CAPE), which directly controls updraft strength and hence lightning intensity [30,31].
CAPE determines atmospheric instability in moist convection [32,33] and can be used as
a proxy to lightning [34]. Many previous studies reported a positive correlation between
lightning flash rate and CAPE [25–28,35–40]. Penki and Kamara [28] reported up to 22% of
the change in lightning flash rate to be associated with CAPE. The role of orographic lifting
was also observed in the increase in CAPE over the northeast region of the Himalayan
foothills. A positive correlation (R~0.66, 0.69) was found between the surface temperature
with lightning over the Bay of Bengal and the Arabian sea [24]. A recent study reveals the
positive relation between CAPE and surface temperature [41].

CAPE, moisture content, and local aerosol loading are also affected by vegetation
cover and the health of vegetation, which is usually expressed in terms of the Normalized
Difference Vegetation Index (NDVI). It plays an important role in global climate as well
as it may also trigger mesoscale circulation. Vegetation cover interacts with the overlying
atmosphere by changing the hydrological budget and surface energy. Deep-rooted forest
areas can hold a significant amount of water which influences the latent heat flux, associated
convective growth, and lightning activities. The role of NDVI in the distribution of lightning
over the dry (northwest) and moist (northeast) regions of the Himalayas is noted [31]. A
noticeable difference was found in the lightning flash density with a different type of
vegetation cover in northern Australia [42]. Higher convective clouds over the deciduous
forest in the hilly regions were reported in contrast to that in flat regions, while more
convective cloud cover was observed over the farmlands located in the flat area.

Urban aerosol is also a big concern to mankind in terms of increased lightning activities.
In this present study, we have analyzed the impact of aerosol loading on lightning over the
western Himalayan region, which may be interesting to the scientific community as parts
of the Himalayan region are among the hot spot of the World from a lightning flash rate
point of view. In a recent study, Lal et al. [37] reported the impact of aerosol on lightning
activity over the Indo-Gangetic Plain (IGP), a nearby region, but the western Himalayan
region is still unexplored from this point of view [37]. So, in this study, we attempted to
study the role of aerosol in lightning activities over this region.

In the present work, we mainly focused only on the monthly climatology of LFR
concerning the other thermodynamic parameters to understand the pattern and trend of
lightning. Apart from the aerosol, NDVI, CAPE, and other thermodynamic parameters,
precipitation, evaporation, and surface heat fluxes (sensible heat flux and latent heat flux)
play a major role in the formation of lightning flashes over any place. In a recent study [42],
estimated that the NDVI plays a very important role in the transportation of heat in the form
of latent heat flux from the vegetation, which may further act as a triggering mechanism for
the formation of lightning activity in the northeast and northwest part of the Himalayan
region. In some parts of the Himalayan region, it becomes difficult to pinpoint the suitable
mechanism for the explanation of the connectivity/lightning. Therefore, some parameters
or empirical relations may be required to determine the proper cause and estimation of
lighting over the Himalayas. Recently [38], defined a proxy relation using this parameter
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for the projected lightning flash rate over the Southeast Asian region. It was observed that,
in some places, the effect of aerosol and vegetation index is very negligible, and the seasonal
variation may be very less, but surface heat fluxes, precipitation, and evaporation were
observed to play a very important role in the convective activity and lightning formation.
Chandra et al. [38] used a thermodynamic relation [BR (Pr + Er)], where BR is the Bowen
ratio, Pr is the precipitation rate, and Er is the evaporation rate. They also used this relation
as a proxy for the Lightning Flash Rate Density (LFRD) over the Southeast Asian region. In
the present study, the same thermodynamic relation is used. Moreover, we are attempting
to project the LFRD over the study region with this proxy relation using nine models from
the Coupled Model Inter-comparison Project-Phase 5 (CMIP5). The present study may
provide a direction for the use of the weekly/hourly or daily data in the near future for
the forecast/prediction of LFR over this region; hence, it may be helpful for mitigation of
lightning activity.

2. Area of Study

Figure 1 shows the lightning flash rate density distribution over the Indian subcon-
tinent in which the study region is marked. There are two hotspots in the northeast and
northwest regions of the northern Indian subcontinent. The moist convection over these re-
gions is a result of the unique topography of both regions [43] (see Figure 2). A higher flash
rate was observed over the NE region during the pre-monsoon season and over the NW
region during the monsoon season [34]. Several lightning hotspots and deep convective
storms were reported over these two regions [44]. It was observed in previous studies that
the higher altitude regions (25◦–39◦ N) of the Indian subcontinent receive higher lightning
events as compared to the low elevation region [45]. The northern region of the Indian
subcontinent shows an arc of elevated lightning rate, which also includes the Himalayan
foothills [26].
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Figure 2. A topography map of the study region over the Indian subcontinent. The data were
obtained from United State Geographical Survey (USGS) earth explorer digital elevation models
(DEM) data.

The present study is focused on the central Himalayan foothill region between
27◦–32◦ N and 77◦–82◦ E (5◦ × 5◦), which includes Uttarakhand and western Uttar Pradesh
(which is a part of the central IGP) of India. This region contains the highly elevated moun-
tain tops and the plains of the Indo-Gangetic Basin, including the diversity of topography,
vegetation cover, population density, and emission sources from industry. In this region,
the central Himalayan high hills also support the orographic lifting of moist air, which
results in higher convective activities over this region during the monsoon season. The
IGP region of the Indian subcontinent contains heavy loading of aerosol originating from
natural, as well as anthropogenic, activities. Urbanization and industrialization are the two
main sources of higher aerosol production in this region, in addition to the transported
aerosols from nearby western countries. For the projection of LFR over the study region, we
only choose a small portion of the region with (0.5◦ × 0.5◦) box of Srinagar, Uttarakhand
(78.55◦ E–79.05◦ E, 29.97◦ N–30.47◦ N).

3. Data and Methodology

The lightning flash rate was obtained from the space-borne observation of the lightning
imaging sensor (LIS) and optical transient detector (OTD) onboard the tropical rainfall
measurement mission satellite for 14 years (2000–2013) [46]. This dataset contains the
total composite of bulk lightning production of both Intra-cloud (IC) and cloud-to-ground
(CG) lightning with a nearly uniform detection efficiency of 73 ± 11% during daytime and
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93 ± 4% during nighttime. LIS has an observation time of 90 s for a point on the Earth’s
surface which is significant/sufficient to estimate the lightning flash rate over the region.
High-resolution monthly climatology (HRMC) and low-resolution monthly time series
(LRMTS) datasets were used in the present study with 0.5◦ × 0.5◦ and 2.5◦ × 2.5◦ spatial
resolution, respectively.

Monthly averaged dataset of the aerosol optical depth (550 nm) and Ångström ex-
ponent (α) (412–470 nm) over the study region for the same period is obtained from
the MODIS-TERRA Collection 6.1 [47]. Moderate Resolution Imaging Spectroradiometer
(MODIS) is an instrument aboard terra (EOS AM-1) satellite and timed such that it passes
the equator in the morning time covering the entire earth’s surface in 1 to 2 days. The
datasets are measured at 1◦ × 1◦ resolution. The NDVI dataset (MOD13C2 v006) is also
obtained from the MODIS-Terra platform with a spatial resolution of 0.05◦ × 0.05◦. It may
be noted that seasonal contribution of lightning and AOD could be better resolved if higher
resolution (hourly) data were used in the analysis than monthly data but unfortunately no
such data are available.

Monthly averaged meteorological parameters, including temperature, relative humid-
ity, vertical velocity, total precipitation, CAPE, mean rates of precipitation, evaporation,
surface sensible heat flux, and latent heat flux, were obtained from the ERA5 platform by
ECMWF (European Centre for Medium-Range Weather Forecasts) reanalysis dataset [48].
Total precipitation data were later converted into the precipitation rate. The horizon-
tal resolution of the datasets was 0.25◦ × 0.25◦ for obtained reanalysis datasets. All
datasets were averaged spatially to study the monthly and seasonal variations. To esti-
mate proxy [(defined as the ratio of sensible heat flux to latent heat flux) and BR (Pr + Er)],
with a grid resolution of 0.5◦ × 0.5◦ were derived from the improved version of the
European Centre for Medium-Range Weather Forecasts (ECMWF), ERA5 reanalysis prod-
ucts (https://cds.climate.copernicus.eu, accessed on 1 March 2022). For the projection
of LFR, the Simulated precipitation rate (Pr), air temperature (T), and evaporation rate
(Er) are obtained from the Coupled Model Inter-comparison Project Phase 5 (CMIP5,
http://cmip-pcmdi.llnl.gov/cmip5/, accessed on 1 March 2022) data archive. In this
work, a total of nine models are evaluated (CANESM2, CNRM-CM5, FGOALS-G2, GFDL-
CM3, GFDL-ESM2M, GFDL-ESM2G, MIROC5, MIROC5-ESM-CHEM, and MIROC5-ESM).
Models are selectedas per the availability of all required parameters. These models were
previously used and yielded better results [49–52]. In this study, the years 1996–2005 of the
CMIP5 “historical” experiment represent the current climate, while the years 2079–2088
of the “RCP8.5” experiment represent the late 21st-century climate. For the simulation
of LFR with different models, we use the relation, LFR = K × BR (Pr + Er), where LFR
is the density of lightning flash rate in flashes km−2 day−1, Pr is the precipitation rate in
kg m−2 day−1, and Er is the evaporation rate in kg m−2 day−1. The precipitation rate has
been taken in kg m−2 day−1 instead of mm day−1, and 1 mm of precipitation has been
used in 1 kg m−2 of liquid water. The magnitude of BR describes the energy gained or lost
from the earth’s surface to the atmosphere. K is the proportionality constant with units as
several flashes per kilogram of water. A detailed description of the proxy and the value of
K is given in [45].

4. Results and Discussion
4.1. Spatial Distribution of Lightning

The spatial distribution of lightning flash rate density (LFRD) along with AOD, NDVI,
and CAPE for seasonal climatology throughout the observation period are shown in
Figures 3–6. The maximum number of lightning occurred during the pre-monsoon season
(Figure 4), with the highest flash rate density over the central part of the study region
(between 29◦–30◦ N and 79◦–80◦ E). During the same season, more aerosol loading is
observed over the lower part of the study region (containing the western part of Uttar
Pradesh, India). However, the vegetation index and CAPE are significantly low during
the pre-monsoon season (Figure 4). This may be due to high temperature and less vapor
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pressure. In contrast, in the monsoon season (Figure 5), the focus of the lightning density
and the aerosol concentration shift toward the NW direction. In this season, the vegetation
cover (>0.6) and CAPE values (>800 J kg−1) are observed to be the highest over the
Himalayan foothills. The increased vegetation cover and deep-rooted forest area may
have released latent heat [53]. A similar variation of vegetation cover was also reported [54].
Broader leaf plants release a large amount of water vapor into the atmosphere, which
supports deep convection and increased CAPE [55].
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It is clear from the spatial distributionthat the CAPE and vegetation index have the
least contribution to the lightning activity over the central Himalayan region. However, the
highest CAPE values were observed during the monsoon season (Figure 5), but the same is
not reflected in the lightning activity. Increased aerosol loading is also observed over this
region in winter (Figure 3) and post-monsoon season (Figure 6). Earlier studies suggested
that the strong subsidence of aerosols leads to aerosol trapping generated by agricultural
waste burning, and local industrial emission elevates the AOD values over the IGP region
during the post-monsoon and winter season [56–58]. It is not reflected in lightning activity
due to low convective activities as it was observed in the pre-monsoon season.
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4.2. Dependency of Lightning on Thermodynamic Parameters

The dependency of the lightning flash rate on thermodynamical parameters, including
surface air temperature, relative humidity, precipitation rate, vertical velocity, CAPE, NDVI,
and AOD, has been determined using the Pearson correlation coefficient (Table 1). All the
parameters showed a good positive correlation with the lightning flash rate, excluding
precipitation and relative humidity, in the pre-monsoon season, with a significance level of
95%. The corresponding p values for a significance level of 95% (p = 0.05) are calculated
along with the correlation coefficient. p-values less than 0.05 represent a significant corre-
lation. A negative correlation (−0.65) was observed between lightning and NDVI during
this season, which indicates reduced vegetation cover during the pre-monsoon season.
More agricultural waste burning in plain regions of IGP and forest fire activities over the
hilly regions of the central Himalayasis observed, which leads to a reduction in vegetation
cover and increased aerosol loading. A lower value of vegetation cover was reported over
the dry NW region of Indian subcontinents [42]. A dry surface leads to the possibility
of increased lightning activity in the future [55]. Another study also verified the higher
lightning activities over dryer NW regions as compared to that over moist NE regions [26].

CAPE showed a good correlation with the lightning flash rate for winter, pre-monsoon,
and post-monsoon seasons (0.73, 0.73, and 0.70, respectively), with a significant level of
95%. In the monsoon season significantly high value of CAPE is obtained, but there is a
scarcity of lightning, which results in a low correlation (~0.03). During monsoon season,
the scavenging process by precipitation causes a low aerosol concentration [59]; therefore,
it has a low correlation with lightning.

Figure 7 shows the monthly climatological average of different parameters with the
lightning flash rate density. Peak values of lightning flashes were obtained in May and
June, while the CAPE values hit themaximum in August. CAPE tends to increase from
April and follow the trend of lightning till June; after that, the lightning flash rate decreases
continuously, but CAPE increases till September and drops significantly in October, with a
minimum in December and January. Similarly, vertical updraft shows an increasing trend
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till July; after that, it decreases in the following months. Higher humidity and precipitation
rates are observed to be at their maximum during the monsoon season, which also showed
an increased vegetation index.
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Parameters Winter
(DJF)

Pre-Monsoon
(MAM)

Monsoon
(JJAS)

Post-Monsoon
(ON)

CAPE
cc (r) 0.73 0.74 0.03 0.70

R2 (p-value) 0.54 (3.23 × 10−8) 0.54 (2.54 × 10−8) 0.0007 (0.84) 0.49 (3.37 × 10−5)

AOD cc (r) 0.05 0.58 0.64 0.31
R2 (p-value) 0.003 (0.74) 0.33 (6.53 × 10−5) 0.41 (1.15 × 10−7) 0.09 (0.12)

Precipitation Rate cc (r) 0.75 0.41 0.03 0.46
R2 (p-value) 0.56 (1.52 × 10−8) 0.16 (0.008) 0.0007 (0.85) 0.21 (0.01)

NDVI
cc (r) 0.58 −0.65 −0.73 0.73

R2 (p-value) 0.34 (6.25 × 10−5) 0.42 (3 × 10−6) 0.53 (2.1 × 10−10) 0.53 (1.2 × 10−5)

Vertical velocity cc (r) 0.05 0.76 0.32 0.41
R2 (p-value) 0.003 (0.74) 0.57 (7.85 × 10−9) 0.11 (0.01) 0.17 (0.03)

Temperature cc (r) 0.15 0.71 0.52 0.66
R2 (p-value) 0.024 (0.33) 0.50 (1.86 × 10−7) 0.27 (3.63 × 10−5) 0.44 (1.2 × 10−4)

Relative Humidity cc (r) 0.55 0.42 −0.13 0.70
R2 (p-value) 0.30 (1.8 × 10−4) 0.17 (0.006) 0.02 (0.35) 0.48 (3.81 × 10−5)
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4.3. Lightning and Aerosols

Figure 8 shows the time series of monthly average lightning flash rates with AOD
over the study region. Two prominent peaks are observed in May 2001 and June 2011 for
lightning flash rates, whereasthe peaks of AOD are observed in July 2002 and July 2011.
The fit straight lines in Figure 8 show a decreasing trend in LFRD and an increasing trend in
aerosol loading. However, Figure 9 shows a positive correlation (r = 0.58, p = 1.59 × 10−16)
between LFRD and AOD, with a significance level of 95%. In this figure, the yearly averaged
time series of LFRD and AOD are plotted. Except for the early years of the study period, the
average aerosol concentration over the study region follows the same trend as LFRD. There
are matched peaks for the years 2008 and 2011, with subsequent drops in 2005, 2009, and
2012. A similar trend was reported over the IGP region [37]. A strong positive correlation
with a variance of 58% has been found between LFRD and AOD. This is seen in the scatter
plot between LFRD and AOD (Figure 10a). From this plot, it is also found that the critical
value of AOD (0.2) represents the minimum value of AOD, which may act as aerosol charge
particles responsible for the lightning activity over this region. From Figure 10a, it is also
found that the value of AOD (0.3–0.5) is the most suitable range of aerosol chargeparticles
for lightning over this region. The time series of flash per AOD (Figure 10b) also depicts
that the maximum flash rate per AOD is observed inApril and May, whereas the minimum
is observed during the winter months (December, January, and February) of the year. In a
recent study, Yadava et al. [60] analyzed 16 years (1998–2013) of lightning data and reported the
maximum lightning events in the pre-monsoon season over northwestern parts of India. This
ratio between LFRD and AOD indicates the amount of AOD responsible for lightning initiation.
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The monthly climatology of LFRD with AOD is represented in Figure 11 and shows
that the aerosol concentration tends to increase from March and reaches its maximum
in July. The monsoon reaches the central Himalayan region in mid-June; after that, the
aerosol concentration decreases significantly due to precipitation caused by the scavenging
processes. The LFRD follows the increasing trend of aerosol during the pre-monsoon
season, but it decreases during the monsoon period due to precipitation, which reduces
the convective and lightning activity after July. The increased aerosol loading during
pre-monsoon was found to be a combined effect of agricultural waste burning activity,
forest fire, anthropogenic emission, and long-range transport, as well containing dessert
soil/dust, organic matter, gaseous product (sulfate and nitrate), and soot particles [61]. A
previous study has reported a similar pattern of increased lightning flash density over the
land area of the Indian subcontinent during pre-monsoon months, with a peak in June, and
the study also reported an increase in aerosol in July through external inflow and a sudden
decrease in the subsequent months, possibly due to the monsoon precipitation [62].

Aerosol types are classified into different groups based on the correlation value of the
aerosol optical depth (at 550 nm) and Ångström exponent (α) (412–470 nm) (Figure 12). The
threshold values to classify the aerosol type were used earlier [63] under different synoptic
meteorological conditions. The variation in the range depends on the aerosol type and
sources of emission. In the present case, slightly different threshold values than previous
studies [64] are used that are similar to those used for the Dehradun region [65]. Desert dust
(DD) is associated with an AOD > 0.6 and α < 1.0, while clean condition (CC) is assigned
to AOD < 0.2 and α > 0.5 values. Biomass burning (BB) is detected for AOD > 0.8 and
α > 1.0. The range 0.3–0.8 of AOD with α > 1.0 is associated with anthropogenic aerosols
(AAs), while the values of AOD and α within the range 0.2–0.6 and 0.4–1.0, respectively,
are classified as mixed aerosols (MAs). The discrimination of well-mixed aerosols is a
bit difficult. According to the above classification, most of the aerosol was found to be
associated with anthropogenic sources, while the aerosols observed in pre-monsoon lie
within the range of mixed as well as anthropogenic aerosols. The effect of biomass burning
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is observed in the monsoon season. As per the literature, we know that higher values
of α indicate the presence of fine-mode particles, while lower values correspond to the
coarse-mode aerosol particles in the atmosphere [66]. Hence, from the scatter plot, it is
found that a higher concentration of coarse particles during the pre-monsoon is a combined
effect of anthropogenic, long-range transported, and mixed sources of aerosols. During
post-monsoon and winter seasons, all emissions are confined to the local anthropogenic
sources, with long-range transport from other regions being the least impactful. The
accumulation of fine-mode (α~0.8), coarse-mode (α = 0.4–0.5), and fine-mode (α = 0.7–0.8)
aerosol particles during winter, pre-monsoon, and post-monsoon seasons were classified,
respectively, over the IGP in an earlier study [66]. Another study also suggested that the
classification of aerosol observed for Gandhi College, Balia (India), and Kanpur (India) as
dessert dust (α < 0.7), mixed-type (α = 0.7–1), and fine-mode (α > 1.0) aerosols [66]. Previous
studies suggested that many regions show higher lightning activity during polluted days
of AOD ranges (0.2 < AOD < 0.4) than clear days globally [61,62]. Wang et al. [14] discussed
the impact of the type of aerosol on lightning under moist and dry climatic conditions and
reported that lower values of AOD lightning are caused by aerosol–cloud interaction. On
the other hand, for higher values of AOD, aerosol’s radiative effect plays an important role
in the initiation of lightning [14]. In the present study, an increased lightning flash density
is observed for the months of pre-monsoon and post-monsoon seasons, with AOD values
corresponding to the range of 0.2–0.4, and mostly, the aerosols present during this period
belong to the anthropogenic emissions.
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4.4. Spatial Variation of Proxy and the Future Projection of LFR

The dependency on the local thermodynamic phenomena is very high for the forma-
tion of lightning in any specific region. In the previous section, it was reported that the
thermodynamic parameters such as CAPE, precipitation rate, temperature, and relative
humidity are highly correlated with the lightning flash rate over the considered region.
Therefore, for the determination of LFRD, we adopted a thermodynamic relation and used
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it as a proxy. Figure 13 depicts the annual spatial distribution of the proxy and LFRD over
the selected region. The spatial distribution of LFR is equivalent to the proxy, especially
in the middle part of the study region. The spatial distribution of the proxy is highly
matched over the northern part of Uttarakhand. The maximum amount of energy, i.e.,
4 kg m−2 day−1, has been observed from the northern part of the region, which is spatially
matched with the LFR distribution. This indicates that the maximum amount of energy
is responsible for the formation of lightning. Chandra et al. [38] also describe the spatial
distribution of LFRD and proxy for the Southeast Asian region.
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Using this proxy for projecting the LFR over the small part of the study region of
Srinagar, it is observed that the maximum similarity is observed between the proxy and
LFR, as seen from the spatial distribution in Figure 12. Because of large changes in the
thermodynamic parameters and matching of the proxy to the LFRD, corresponding changes
in lightning are expected in the future. Using the present data, the LFRD distribution for the
late 21st century, from 2079 to 2088, is simulated and compared for this region as compared
to the historic period (1996–2005). The difference in LFRD between the historic period
and the annual simulated mean of the models at the end of the 21st century, assuming
the Representative Concentrations Pathway-8.5 (RCP-8.5) scenario, has been taken for the
determination of future increase/decrease in LFRD over the study region. Changes in
the precipitation rate, evaporation rate, and atmospheric temperature are projected for
the end of the 21st century from the historic period. However, the ensemble means of all
the GCMs considered in this study are based on the assumptions that the precipitation,
evaporation, and temperature will increase, with a mean increase of approximately 6.25%,
13.16%, and 2.3%, respectively, by the end of the 21st century over Srinagar, Uttarakhand.
Using the method of percentage change between the years 1996–2005 and 2079–2088, the
ensemble means of all GCMs predict that the annual mean LFRD is expected to increase in
Srinagar, Uttarakhand, by 7.41%. Previously, many researchers estimated LFR in global
warming scenarios over an extensive range and indicated both increasing/decreasing
trends in lightning activity [19,24,35]. There is a well-known thermodynamic relation made
by Romps et al. [67], using CAPE and the precipitation rate for the determination of LFRD
over the CONUS region. In their experiment, they used CMIP5 model data in the RCP8.5
scenario to determine the future increase in cloud-to-ground lighting by 12% from 2079 to
2088 over the same region.

5. Summary and Conclusions

The occurrence of lightning over any specific region depends on local thermodynamic
conditions, including local meteorological parameters, topography, and aerosols present in
the atmosphere, in a complex manner. A significant difference was observed between the
climatology and topography of the NW and NE regions of the Indian subcontinent. There
is more lightning activity in the moist NE region at a lower terrain slope/elevation and
with higher vegetation cover. The NE region has forest areas with deeper roots that hold
more water and have higher latent heat fluxes. The highest leaf area in the forest permits
more transpiration of water vapor into the air and, subsequently, produces higher CAPE
and deeper convection. The large latent heat fluxes in the forested area have the potential
to enhance convection. This may be one of the causes of enhanced lightning activity in the
forest areas with the lower elevations in the moist environment of the NE region. As the
study region is a part of the central Himalayas, the value of NDVI was observed in the
intermediate range. Although the value of NDVI is observed to be low as compared to that
in the moist region of NE and high in comparison to the NW dry region [42].

The dry NW region is more susceptible to lightning activity where terrain slope or
elevation is more, even when there is little or no vegetation cover and low humidity. On
the arrival of the monsoon in mid-June, over this region, humidity and convective activity
tend to increase, but the lightning flashes seem to decrease during the monsoon season.

Aerosol concentration shows a good correlation with lightning flash rate density. It
increases with more aerosol loading in the pre-monsoon season and decreases with the
removal of aerosol during the monsoon. However, elevated AOD levels could not affect
the lightning during the post-monsoon and winter seasons because of the possible lackof
vertical updraft due to low temperatures and shallow boundary layer height. The indirect
effect of aerosol loading on the atmosphere includes the change in the radiation budget of
the atmosphere. The vertical motion of air regulates the water vapor content and change
in moisture gradient, which may result in intense electrification in convective clouds.
Lightning activity over this region seems to be a combined effect of aerosol loading, vertical
motion of air, and surface temperature. Additionally, the thermodynamic parameters such
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as precipitation, evaporation, and surface fluxes play an important role in the formation
of convective activity over here. Therefore, the defined proxy is used for the projection of
lightning over Srinagar as the first attempt. We found a positive result of the proxy over
LFRD; therefore, we used it for the projection of LFRD in the late 21st century. Overall,
using the RCP8.5 scenario, the GCMs predict a 7.41% increase in the LFRD in Srinagar,
Uttarakhand, during the end of the 21st century.

Most of the lightning events occur in hilly regions, but due to the low population
density over hilly regions, the number of lightning-related fatalities is also low. Plane
areas with a high population density are more susceptible to higher fatality by a lightning
strike [19]. According to a recent study, Uttar Pradesh (India) falls in the <5 range in
the ranking of states with lightning-related fatalities, while Uttarakhand is between the
16–20 range. In the study region, the maximum lightning observed during the pre-monsoon
period coincides with the crop cultivation season. Farmers and workers who have been
working in the open fields are more prone to be affected by a lightning strike. High altitude
places and mountain peaks result in much-reduced distance between surface and cloud,
which leads to an easy target for lightning-induced damage.

In the future, the study of ground-based observation of lightning would be helpful in
the mitigation of lightning-related fatality over the Uttarakhand (India) region of the central
Himalayas, but presently no ground-based data on lightning is available for the study region.
It will also improve the understanding of the causality of lightning-related events.
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