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Abstract: Black carbon (BC) and PM2.5 chemical characterizations are crucial for insight into their
impact on the health of the exposed population. PM2.5 sampling was carried out over selected
residential sites of Jamshedpur (JSR) and Kharagpur (KGP), east India, during the winter sea-
son. Seven selected elements (SO4

2−, Cl−, Na+, NO3
−, K+, Ca2+, and Mg2+) were analyzed us-

ing ion chromatography (IC). Black carbon (BC) sampling was also done at two different sites
in JSR and KGP to understand its correlation. The PM2.5 ionic species mass concentration in
JSR was in the order of SO4

2− > Cl− > Na+ > NO3
− > K+ > Ca2+ > Mg2+, whereas in KGP, it was

SO4
2− > NO3

− > Cl− > Na+ > K+ > Ca2+ > Mg2+. The back-trajectory analysis showed that most of
the air masses during the study period originated from the Indo Gangetic Plain (IGP). The Pearson
relations of BC-PM2.5 indicate a better positive correlation (r = 0.66) at KGP compared to JSR (r = 0.42).
As shown in the diagnostic ratio analysis, fossil fuel combustion and wood burning account for
51.51% and 36.36% of the total energy consumption in JSR city, respectively. In KGP city, the appor-
tionment of origin sources were fossil fuel and wood burning at 43.75% and 34.37%, respectively.
This study provides the first inventory of atmospheric particulate-bound chemical concentrations
and BC profiles in middle-east India and informs policymakers and scientists for further studies.

Keywords: black carbon; particulate bound; fossil fuel combustion; policymakers; source apportionment

1. Introduction

Black carbon (BC) is one of the main pollutants in the atmosphere and contributes
to fine particulates. It is also often referred to as soot particles and elemental carbon [1].
BC is emitted from the incomplete combustion of fossil fuels such as the burning of coal,
diesel, petrol, burning biomass as agricultural waste, stubble, peat fires, forest wildfires,
shrubs, and dry leaves as well as biofuel burning such as dung cakes, waste materials,
and wood [2,3]. BC has a significant impact on regional and global climate changes due to
its strong radiative absorption nature [4,5]. BC absorbs the incoming solar and outgoing
terrestrial radiation. As a result, it can naturally regulate the earth–atmosphere energy bud-
get [6]. According to recent studies [7–9], BC might be the second-highest contributor to the
greenhouse effect (GHE) after CO2. The deposition of BC on the snow surface can also cause
glacier melting [10]. Apart from climatic impacts, the ambient air BC has been correlated
with the deterioration of human health, leading to early deaths [11–15], either as a carrier
of another chemical or in its own way [16]. As a result of its fine particle size, irregular mor-
phology, and large specific surface, BC readily adsorbs mutagenic/carcinogenic pollutants,
such as volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs),
and passes into the respiratory system of humans [12,17]. BC exposure has been associated
with ischemic heart disease (IHD), cardiovascular health effects, acute bronchitis, lung
cancer, chronic obstructive pulmonary disease (COPD), neurodevelopmental effects, and
poor birth conditions in children [18]. Several studies have shown that emissions from Asia
were a major source of BC to the global budget [19].
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Particulate matter (PM) is emitted from either natural sources or anthropogenic sources,
resulting in complex, organic compounds, alloy, ore, and inorganic (ionic) species [20]. PM can
be transported to longer distances or from one region to another [9]. The rapid urbanization,
automation, and energy requirements have led to a growing tendency of PM emissions
in the southeast and south Asia [21,22]. Elevated PM levels significantly impact human
health and the earth’s atmosphere [23,24]. PMs can also change the earth’s radiation
balance by directly absorbing and scattering solar radiation and indirectly acting as cloud
condensation nuclei [9,25,26]. According to the World Health Organization [27], most of the
metropolitan cities of India have exceeded the limit of particulate matter exposure limits
(PM10-20 µg/m3 and PM2.5-10 µg/m3). PM’s major components are Na+, Ka+, and Cl−,
which are water-soluble inorganic ionic species and are positively impacted by emissions
sources, meteorological conditions, and their element behavior [4,28,29]. Furthermore, other
significant PM components are SO4

2−, NO3
−, and NH4

+, which are commonly emitted
from anthropogenic activities [9,30–32]. Hence, many studies have bidden to apprehend
the mass size distribution and chemical composition of PMs in different areas of the Indo-
Gangetic Basin (IGB) such as at Kanpur [33], Allahabad [34], Agra [29,30], Patiala [28],
Kolkata [35], Delhi [36], and Kharagpur [37]. However, studies on this aspect in the eastern
part of India remain sparse. Therefore, a detailed analysis of BC mass concentrations along
with PM2.5 mass concentrations and chemical compositions of PM2.5, and their emission
sources are highly required in the eastern parts of India. It will provide valuable input to
the government to prepare the necessary environmental policies. In the present study, the
status of wintertime BC variation and characterization have been reported. The importance
of this study is to understand the variations of selected chemical composition concerning
BC and the influence of biofuel and biomass combustion on ambient BC at the urban sites
of eastern India during the winter season.

2. Materials and Methodology
2.1. Geographical Location of Sampling Sites

The concentration of BC and PM2.5 and their chemical compositions were measured
at two different cities in eastern India, namely, Jamshedpur (JSR) and Kharagpur (KGP).
JSR city (22◦80′ N, 86◦20′ E) is situated over the Chhota Nagpur Plateau (CNP) in the
Jharkhand state of India. It is an industrial city located in eastern India, has a surrounding
territory of around 224 km2, and has a high population density (1.3 million population;
Census India, 2011). The AIDA (Adityapur Industrial Development Authority), with
more than 1000 industries (small, medium, and major units), is close to JSR city. The
globally known massive sectors, such as TISCO (Tata Iron and Steel Company, Jamshedpur,
India), Tata Powers, Tata motors, Tata Hitachi Construction Machinery, JUSCO, Indian
Steel and Wire Products Limited, Tata Pigments, Linde Plc. (one of Asia’s largest Air
Separation units), Tayo Rolls Limited, and UCIL, are located in JSR city. The climate of JSR
is tropical wet and dry. The temperature variation of the city is from 19 to 35 ◦C in the wet
season. The minimum recorded temperature was 5 ◦C during the dry season. Due to the
complex industrial background of JSR city, it is necessary to understand the impact of the
industrial-cum-residential environment.

KGP city (22◦33′ N, 87◦32′ E), with a total area of 127 km2, is located in the Medinipur
district in the West Bengal state of India. The total population of KGP is around 293,719
(Census India, 2011). This is the fourth largest city (area-wise) and the fifth most populated
city in West Bengal. KGP city is surrounded by a network of National Highways (NH),
a railway network, a railway workshop, and Vidyasagar industrial park. Many indus-
tries/plants around the KGP region include Bengal Energy, Tata Bearings, Tata Metaliks,
Tata Hitachi, Godrej, BRG Group, Rashmi Metaliks, and Ramco Cements. The climate of
KGP is tropical savanna. The average temperatures in the summer and winter seasons are
around 30 ◦C and 22 ◦C, respectively. The average annual rainfall is about 1400 mm. Both
cities have significant air pollution caused by industrial activities, road construction, traffic
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emissions, and urban building construction. Figure 1 shows the maps of two different cities
and detailed pictures of the sampling sites and surroundings.
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Figure 1. Locations of JSR and KGP observation sites and surrounding regions (courtesy google map;
assessed on 1 August 2022).

2.2. Measurement of BC Mass Concentration

There are several ways to measure the concentration of BC mass concentration, such
as the sample haze tape coefficient, photometer of particle soot absorption, and thermal
oxidation/reflectance [38]. Among these, a portable aethalometer (Model AE-33, Magee
Scientific Company, Berkeley, CA, USA) is one of the most direct methods to quantify the
real-time BC mass concentrations at seven different wavelengths of 370 nm, 470 nm, 525 nm,
590 nm, 660 nm, 880 nm, and 950 nm. In this method, the measurement of light attenuation
is used to quantify the mass of the particles collected on the filter tape. The filter tape is
advanced automatically when the user-selectable loading threshold is reached, typically
once every hour. The sample collection media of BC include glass fibers and polyethylene
terephthalate (PET) polymerized polyester fibers. A high-intensity light beam at 880 nm
from a light-emitting diode (LED) lamp is transmitted through the sample collected on
the filter strip. The beam at 880 nm is widely used for the detection of BC mass, as other
aerosol constituents have negligible absorption at this wavelength [39]. From October
2019 to February 2020, real-time BC mass concentration measurements were conducted in
eastern India at two different cities, namely, JSR and KGP.
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2.3. Measurement of PM2.5 and Chemical Analysis

A mini volume sampler was used to conduct the PM2.5 sampling (Envirotech Model
APM 550) with a constant flow of 16.5 L/min. A polytetrafluoroethylene (PTFE-47 mm,
Merck, Catalog No. PM2547050, Lot N0-W5350001) filter was used to collect PM2.5 particles,
followed by analysis to determine the chemical constituents. The PM2.5 concentration was
measured using the gravimetric technique. The PTFE filter was weighed before and
after the sampling to estimate the mass of PM2.5 on it. For this purpose, a sole pan-top
digital weight balance (VWR, model no: VWR1611-2263: with Balancing Compartment
L ×W × H: 162 × 171 × 225 mm) was used. We checked background impurity using
operating blanks (unexposed filters), which were processed simultaneously with the field
samples. For further analysis of anion and water-soluble cations, these filter samples were
stored in a refrigerator at 4 ◦C. The sampled filters were split into four sections. One-fourth
portion of the filter was extracted in 20 mL of deionized water (18.2 MΩ). Additionally,
the collected solution was ultrasonically filtered using Whatman filters after 35 min of
ultrasonication. Again, the filter extract solution was filtered using syringe filters (0.22 µm).
The extracted filtrate was analyzed using ion chromatography (IC) to identify and quantify
the anions and water-soluble cations in the solution (Metrohm, 930 Compact IC Flex,
Ionenstrasse, Herisau, Switzerland).

2.4. Source Apportionment of BC and PM2.5

The ‘aethalometer model’ has been utilized for the source appointment of BC [40].
This model is the most straightforward and most recent compared to different models or
techniques such as PCA [41], PMF, the radiocarbon method [42], chemical mass balance
(CMB) [43], macro-tracer [44], and some other specified methods [45]. PCA was applied
to this data matrix and the standardized principal components were rotated in order
to identify possible sources. PMF was applied to the same data matrix and the results
were normalized in order to find components with physical interpretations. This model
recognizes expansive source classes such as traffic emissions, petroleum products, and
wood burning by analyzing the wavelength-dependent absorbance [46–48]. To describe
distinctive neighborhood sources of BC in the urban areas of KGP and JSR, we determined
the rate contrast of BC estimated at two different wavelengths of 370 nm (BC370) and
880 nm (BC880). The rate distinction of BC can be composed as

% difference of BC = (BC370 − BC880)/BC880 (1)

From Equation (1), two conditions, namely Condition-I for wood burning and Condition-II
for petroleum derivatives, can be evaluated.

Condition-I: The positive fractional BC values suggest significant emissions from the
burning/combustion of coal, forest fire, dry leaf, etc. [49].

Condition-II: The negative fractional BC values suggest significant contributions from
diesel and petrol combustion [50].

We additionally described the source identification of BC and PM2.5 by analyzing the
air mass back trajectories. The backward trajectories indicate the transport of air parcels
from various sources located in different directions. The trajectories were calculated using
the Meteorological Data Explorer (METEX) created by the Center for Global Environmental
Research (CGER), Japan, and using Igor programming. The trajectories were calculated
using the NCEP (National Centers for Environmental Prediction) Climate Forecast System
(CFS) data. In the following section, we discuss the MERRA-2 BC data and analysis.

3. Results and Discussion
3.1. PM2.5 and BC Mass Concentration

The PM2.5 mass concentrations were measured in the ranges of 98.65–210.64 µg m−3 and
90.64–179.98µg m−3 with the mean values of 156.69± 33.62µg m−3 and 126.41± 21.78 µg m−3,
at JSR and KGP, respectively. The average concentrations in JSR were 146.11 ± 39.55,
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161.76 ± 36.47, 157.99 ± 36.98, 171.36 ± 27.30, and 147.59 ± 28.64 µg m−3 in October,
November, December of 2019, January, and February of 2020, respectively. In KGP, the
PM2.5 concentrations were 119.45 ± 12.24, 118.93 ± 15.45, 148.99 ± 20.92, 132.48 ± 25.20,
and 113.06 ± 17.07 µg m−3 in October, November, December, January, and February, re-
spectively. The monthly mean PM2.5 mass concentration variations from October 2019
to February 2020 are plotted in Figure 2a. A comparison of the PM2.5 mass concentra-
tion along with different parts of India and other countries around the globe is shown
in Table 1. The daily concentrations of PM2.5 were higher than the standard limits of
25 µg m−3 recommended by the WHO, of 60 µg m−3 by the National Ambient Air Quality
Standard of India (NAAQS), and of 35 µg m−3 by the US Environmental Protection Agency
(USEPA). According to a recent study, it is observed that the PM2.5 mass concentrations
at Kolkata (131 ± 58 µg m−3), Delhi (117 ± 79 µg m−3), Lucknow (130 ± 73 µg m−3), and
Agra (144 ± 79 µg m−3) exceeded the NAAQS threshold [51]. The higher PM2.5 concen-
trations in these cities can be attributed to fast urbanization, development, and other
anthropogenic activities during the year 2014. However, in the Indo–Himalayan region,
PM2.5 concentrations at Darjeeling (24 ± 14 µg m−3), Dehradun (53 ± 38 µg m−3), Kashmir
(20± 13 µg m−3), and Kullu (31± 17 µg m−3) are found within the limits recommended by
the NAAQS. The decrease of PM2.5 concentrations from 2014 to 2015 over Kolkata, Patiala
(93 ± 35), Varanasi, and Delhi were reported, while data at Agra and Lucknow show
enhancements. The concentrations of PM2.5 both at Jamshedpur (156.69 ± 33.62 µg m−3)
and Kharagpur (126.41 ± 21.78 µg m−3) exceeded the NAAQS limit during the present
study period. The mean observation value of the concentration of PM2.5 is close to the
mean values described at two locations (Jamshedpur and Kharagpur) in east India. The
mean concentrations of PM2.5, for example, at Kharagpur 117± 79 [52], 203 ± 40 µg m−3 at
Kanpur [53], 285 ± 87 µg m−3 at Varanasi [54], and 232 ± 131 µg m−3 at Delhi [55]. More-
over, refs [56,57] have also reported PM2.5 concentrations of 123 µg m−3 and 121 µg m−3 in
Delhi and Agra cities, respectively.

Table 1. Comparison of PM2.5 mass concentration observed in this study with previous studies
conducted in Indian cities.

Sites Type PM2.5 (µg m−3) Sampling Period References

Kanpur Urban 203 ± 40 December 2004 [53]
Delhi Urban 232 ± 131 January–December 2007 [55]

Raipur Semi-urban 150.9 ± 75.6 July 2009–June 2010 [55]
Chennai Urban 73 January–February 2008

Delhi Urban 123 ± 87 2008–2011 [56]

Agra Semi-urban 121.2 2010–2011 [57]
Varanasi Semi-urban 81.78 ± 66.4 January–December 2014 [54]

Darjeeling Hilly area 24.3 ± 13.5 Winter 2015 [58]
Lucknow Urban 130 ± 73 Winter 2015 [58]
Kashmir Hilly area 20.3 ± 13.1 Winter 2015 [58]

Kullu Hilly area 30.8 ± 17.2 Winter 2015 [58]
Delhi Urban 125.7 ± 56.6 Winter 2015 [58]

Varanasi Semi-urban 134 ± 48 November 2016–February 2017 [59]
Jamshedpur Urban 131 ± 58 October 2019–February 2020 Present study
Kharagpur Semi-urban 117 ± 79 October 2019–February 2020 Present study
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Figure 2. Monthly (average ± standard deviation) mass concentrations of (a) BC and (b) PM2.5 from
October 2019 to February 2020 at JSR and KGP observation sites.

The average BC mass concentrations were recorded as 9.46± 3.35µg m−3 (5.06–19.22 µg m−3)
and 8.58 ± 1.60 µg m−3 (5.50–11.52 µg m−3) at JSR and KGP, respectively. The monthly
mean (±standard deviation) variation of BC concentration from October 2019 to February
2020 is shown in Figure 2b. In JSR city, the monthly BC concentrations were 6.7 ± 2.05,
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7.8 ± 2.10, 9.1 ± 2.67, 12.7 ± 4.1, and 11.5 ± 2.2 µg m−3, while in KGP, the BC mass
concentrations were 9.5 ± 0.9, 8.4 ± 1.3, 8.9 ± 1.6, 8.0 ± 1.5, and 7.7 ± 2.0 µg m−3 in
the months of October, November, December of 2019, and January and February 2020,
respectively. A comparison of the average BC mass concentrations reported for various
locations in India and other countries is shown in Table 2. The average BC mass concen-
trations at JSR (9.46 µg m−3) and KGP (8.58 µg m−3) were higher than those reported in
other cities, i.e., 7.6 µg m−3 in Sao Paulo, Brazil [60], 6.64 µg m−3 in Delhi [61], 5 µg m−3

in Trivandrum [62], 4.2 µg m−3 at Bangalore [62], and 4.1 µg m−3 at Pune [63]. Lower
values compared to other cities include 16.5 µg m−3 at Kharagpur [64], 35 µg m−3 and
13.5 µg m−3 at Kolkata [51], 29 µg m−3 and 13.5 µg m−3 at Delhi [51], 10.30 µg m−3 at
Ahmedabad [65], and 20.6 µg m−3 at Agra [47,48]. In other cities of the world, the BC con-
centrations of 14.7 µg m−3 at Xi’an (China: [66]), 21.7 µg m−3 at Lahore (Pakistan: [67,68]),
and 14 µg m−3 at Paris (France: [63]) were found to be higher than the 9.46 µg m−3 found
at Jamshedpur and 8.58 µg m−3 at Kharagpur in the present study. Typically, at almost
all sites, the BC mass concentration levels were higher in the winter season compared to
other periods. In addition to higher emissions, the shallow mixing layer height (MLH) in
the winter season could also be an important factor leading to higher concentrations of
BC. Further, the monthly average maps of BC surface mass concentrations obtained from
the MERRA-2 model (M2TMNXAER v 5.12.4) are plotted in Figure 3. The maps depict the
occurrence of increased BC mass concentrations throughout the IGP, including the area of
interest during the winter season. We are confident enough to employ the geographically
weighted regression (GWR) PM2.5 product to corroborate the spatiotemporal distribution
of MERRA-2 PM2.5. this is due to the significant correlation coefficient (R = 0.73) that
demonstrated outstanding agreement between GWR PM2.5 and ground-based PM2.5.

Table 2. Comparison of BC mass concentration (µg m−3) measured at various locations in India and
other countries.

Place Location Period BC (µg m−3) Reference

Sao Paulo, Brazil Urban July to September 1997 7.6 [60]
Paris, France Urban August to October 1997 14 [63]

Bangalore, India Urban November 2001 4.2 [62]
Trivandrum, India Urban Costal August 2000 to October 2001 5 [62]

Delhi, India Urban December 2004 29 [60]
Kharagpur, India Semi-urban December 2004 16.5 [64]

Agra, India Urban December 2004 20.6
Pune, India Urban January to December 2005 4.1 [63]

Lahore, Pakistan Urban November 2005 to January 2006 21.7 [65]

Xi’an, China Urban September 2003 to August 2005 14.7 [66]
Kolkata, India Urban December 2009–10 35 [37]

Delhi, India Urban January to December 2011 6.64 [61]
Ahmedabad, India Urban January 2014 to December 2015 10.30 [65]

Kolkata, India Urban 2016 to 2018 12.08 [51]
Delhi, India Urban 2016 to 2018 13.57 [51]

Jamshedpur, India Urban October 2019 to February 2020 9.46 Present study
Kharagpur, India Semi-urban October 2019 to February 2020 8.58 Present study
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3.2. Characteristics of Ionic Species

The PM2.5 aerosols have been characterized by the abundances of anions (Cl−, NO3
2−,

SO4
2−) and cations (Na+, K+, Ca2+, Mg2+). A summary of the mass concentration of

ionic species in PM2.5 at JSR and KGP is given in Table 3 and the violin and box plots of
the percentage contribution of ionic species in PM2.5 are shown in Figure 4. The mass
concentrations of significant PM2.5 ionic species are in the order of SO4

2− > Cl− > Na+ >
NO3− > K+ > Ca2+ > Mg2+ at JSR and SO4

2− > NO3
− > Cl− > Na+ > K+ > Ca2+ > Mg2+ at

KGP. The contributions of these major ionic species to the total PM2.5 mass were found at
~33.89% (anion) and 16.62% (cation) at JSR and 23.83% (anion) and 17.61% (cation) at KGP.
The Cl−/Na+ ratio varied in the ranges of 0.30–5.11 and 0.65–2.10, with average values
of 1.28 and 1.08 at JSR and KGP, respectively. The ratios for the study sites differ greatly
from those of ~1.8 for ocean water, indicating that the ocean salt has a relatively minor
impact. A moderate correlation (~0.66) between Na+ and Cl− species indicates significant
similarities in their emission sources. A recent study also reported the minor influences
of ocean salt airborne in different regions of IGP during the winter season [36,39,52,57]
and over Varanasi [9,58]. The ratio of Mg2+/Na+, Ca2+/Na+, SO4

2−/Na+, Cl−/Mg2+, and
Na+/Mg2+ were 0.11, 0.41, 2.14, 11.08, and 11.29, respectively. Nonetheless, the ratios of
Mg2+/Na+ and Ca2+/Na+ in the present study are found to be lesser than their ratios in
the seawater, while the ratio of SO4

2−/Na+ was higher. At the same time, the ratios of
Cl−/Mg2+ and Na+/Mg2+ are very high, indicating the major influences of anthropogenic
and terrestrial emissions [69]. The non-ocean salt (nos) parts of water-soluble ions are
determined by utilizing Na+ as a reference component for oceanic salt abundance [70,71].
The contributions of other ionic species such as SO4

2−, K+, and Ca2+ to total PM2.5 ions
(measured) are found to be 36.91%, 12.14%, and 4.75% at JSR and 21.46%, 15.46%, and
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7.65% at KGP, respectively. The significant sources of nos-SO4
2− could be coal burning,

non-renewable energy sources, biomass/biofuel burning, vehicular exhaust, and SO2
oxidation in the atmosphere [72,73]. The emissions from environmental variables such
as paint and cement factories that discharge multiple chemicals into the atmosphere may
be the other possible causes of anions. The higher concentrations of K+ in November
could be due to firecrackers during the Diwali festival celebration and extensive emissions
from biomass/crop-residue burning sources. It is to be noted that the abundance of K+

has been considered an important indicator/trace for biomass burning emissions [34,74].
Likewise, [75] reported the significant role of crop residue burning (CRB) in the northern
parts of India, leading to higher concentrations of fine PMs (0.1–1 µm) including BC during
the post-monsoon period.

Table 3. Statistical analysis of major ionic species concentration (µg/m3) in PM2.5.

Species
JSR KGP

Min Max Average SD Min Max Average SD

SO4
2− 14.19 46.21 29.22 9.52 4.16 20.72 11.24 4.35

Cl− 4.89 23.66 13.17 4.93 4.89 17.13 9.42 2.85
NO3

2− 3.29 26.58 10.72 5.36 5.10 17.16 9.46 2.93
Na+ 2.67 24.89 11.63 4.93 3.98 16.00 9.16 2.62

Mg2+ 0.26 2.06 1.05 0.41 0.43 2.11 0.99 0.43
K+ 2.98 18.14 9.61 4.19 2.89 13.21 8.10 3.08

Ca2+ 1.08 6.38 3.76 1.32 1.09 8.16 4.01 1.83
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3.3. Source Apportionment of PM2.5 and BC

The backward trajectory analysis is widely applied to understand the source (lo-
cal/regional) and transport routes of air pollutants. In this study, the trajectories were set
up with the assistance of Igor programming. The input data required for the trajectory
calculation was taken from the CFS and METEX created by the Center for Global Environ-
mental Research (CGER), Japan, and the National Centers for Environmental Prediction
(NCEP). The back trajectories were analyzed for both cities from east India (Figure 5).
The analysis of the back trajectories suggests that air masses originated from different
heights and regions. In both study locations, airborne particulate matter transport from the
sources located in the north, northwest, and east can be observed in October. In addition
to continental origin, the transport from marine regions of the Arabian Sea and the Bay of
Bengal (BoB) seems to influence the study sites. Therefore, oceanic air masses could have
contributed to salt particulate matter content during the study period. In the JSR region, the
contribution of salt particulate matter is less compared to the KGP region. This is because
of KGP’s location on the shore and its closeness to the coast; the meteorology shifted the
wind direction from the Bay of Bengal to KGP, as did the influence of the sea breeze on
the coastal districts. Regionally, transports of air masses from the neighboring states of
Bihar, Utter Pradesh, Odisha, and central parts of India were prominent. Besides the air
masses originating from different parts of India, the trajectories indicate the transport from
different neighboring countries (Nepal, Pakistan, Bhutan, etc.) to some extent. It can also
be noted that the transport from north, northwest, and northeast regions prevailed in the
month of January. Most of the trajectories have been traced to the northwest during this
month, including Pakistan, Afghanistan, Iran, Nepal, Bhutan, and China. The overall
trajectories suggest that the most significant influences were from the IGP region.
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Figure 5. Fractional contribution of BC measured at 370 and 880 nm at (a,b) sites. (Green—wood
burning; pink—fossil fuel combustion; blue—mixed fuel burning).

The coal-burning sector continues to be the primary source of energy, accounting for
76% of the requirements in India, and this sector remains the main source of BC [76]. We
used the ‘aethalometer model’ to investigate the primary sources of BC influencing the
study sites. However, the projected model focused on a few selective sources such as wood
burning and traffic emissions. Figure 6 shows how the BC differed from the city in its
source distinction between wood burning and fossil fuels. The wood-burning contribution
was about 36.36% for ambient BC mass concentration and the fossil fuel contribution was
approximately 51.51% at JSR. At KGP, the wood-burning contribution was 43.75% and the
fossil fuel contribution was 34.37% for the BC mass concentration measured during the
present study.
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In summary, the contributions of fossil fuel-based emissions to ambient air BC mass
concentration in the JSR region are higher than that in the KGP region. This is consistent
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with the higher volume of vehicular traffic in the JSR region than in the KGP region. The BC
and PM2.5 concentrations in the JSR site were higher than those in the KGP site. As shown
in Figure 6, the BC and PM2.5 concentrations showed a moderate correlation (r = 0.42) at JSR
and a good positive Pearson correlation (r = 0.66) at KGP. The BC and PM2.5 concentrations
were thus likely emitted from the same sources as wood burning, fossil fuel burning, coal
burning, traffic emissions, construction works, etc. The present research helps policymakers
and future researchers by providing the first inventory of atmospheric particulate-bound
chemical concentrations and BC patterns in middle-east India.

3.4. Role of Transport Using Air Mass Back Trajectory

Investigations were carried out with the help of a 7-day HYSPLIT back-trajectory
analysis for the role of transport to learn more about the cause of the disparity in magnitudes.
Additionally, we looked at the impact of air mass trajectories, which serve as available
paths for aerosol movement, to further investigate the connection between air mass sources
and BC. The 7-day isentropic cluster mean air mass backward trajectories are shown in
Figure 5. Using PC-based HYSPLIT, the variation in height (m) representing the contour
was calculated at 500 m AGL across KGP and JSR. Reference [77] provides a comprehensive
description of this investigation. As they account for the adiabatic vertical movements of air
parcels during transit and are less subject to inaccuracies in the fundamental meteorological
data, trajectories were taken into consideration. According to Figure 7, the cluster means
backward trajectories over JSR exhibit almost the same pattern as those over KGP. This
cluster analysis pathways throughout the campaign time were extremely evident.

Urban Sci. 2022, 6, x FOR PEER REVIEW 13 of 17 
 

 

 

Figure 7. Seven-day air mass back trajectories over JSR and KGP sites starting at 500 m from 

ground level. 

4. Summary and Conclusions 

In this study, the BC, PM2.5 mass concentrations, and chemical speciation of PM2.5 

were measured at Jamshedpur (JSR) and Kharagpur (KGP) in the eastern part of India 

during the winter season. The city of JSR had a mean BC mass concentration of 9.46 ± 3.35 

µg m−3, whereas KGP had an average BC mass concentration of 8.58 ± 1.60 µg m−3. JSR 

observed a maximum BC mass concentration of 12.71 µg m−3 in December 2019, while 

KGP observed a maximum of 9.56 µg m−3 in October 2019. In JSR and KGP, BC mass 

concentrations varied between 5.06–19.22 µg m−3 and 5.50–11.52 µg m−3, respectively. The 

mean PM2.5 concentration was 156.69 ± 33.62 µg m−3 at JSR and was 126.41 ± 21.78 µg m−3 

at KGP. In addition to local sources, backward air trajectories showed that the transport 

of air masses originated mainly from the northern part of India (mainly IGP) and the 

neighboring countries. The diagnostic ratio analysis suggests that the BC contribution 

from fossil fuel (51.51%) was higher than that of wood burning (36.36%) at JSR. On the 

other hand, at the KGP site, the fossil fuel contribution (34.37%) is lower than that of the 

wood-burning contribution (43.75%). The higher contributions of BC from fossil fuels at 

JSR are because of more industrialization and the high traffic load. The mass of PM2.5 

ionic species was in the order of SO42- > Cl- > Na+ > NO3- > K+ > Ca2+ > Mg2+ in JSR, while the 

order was SO42- > NO3- > Cl- > Na+ > K+ > Ca2+ > Mg2+ in KGP. The significant commitment of 

complete ionic species mass concentration in PM2.5 was around 33.89% (anion) and 

16.62% (cation) at JSR and 23.83% (anion) and 17.61% (cation) at KGP. The masses of 

SO42-, K+, and Ca2+ in PM2.5 (absolute particles) are estimated to be 36.91%, 12.14%, and 

4.75% at JSR and 21.46%, 15.46%, and 7.65% at KGP, respectively. The concentrations of 

Figure 7. Seven-day air mass back trajectories over JSR and KGP sites starting at 500 m from ground level.



Urban Sci. 2022, 6, 60 13 of 16

4. Summary and Conclusions

In this study, the BC, PM2.5 mass concentrations, and chemical speciation of PM2.5 were
measured at Jamshedpur (JSR) and Kharagpur (KGP) in the eastern part of India during the
winter season. The city of JSR had a mean BC mass concentration of 9.46 ± 3.35 µg m−3,
whereas KGP had an average BC mass concentration of 8.58 ± 1.60 µg m−3. JSR observed a
maximum BC mass concentration of 12.71 µg m−3 in December 2019, while KGP observed
a maximum of 9.56 µg m−3 in October 2019. In JSR and KGP, BC mass concentrations
varied between 5.06–19.22 µg m−3 and 5.50–11.52 µg m−3, respectively. The mean PM2.5
concentration was 156.69 ± 33.62 µg m−3 at JSR and was 126.41 ± 21.78 µg m−3 at KGP.
In addition to local sources, backward air trajectories showed that the transport of air
masses originated mainly from the northern part of India (mainly IGP) and the neighboring
countries. The diagnostic ratio analysis suggests that the BC contribution from fossil fuel
(51.51%) was higher than that of wood burning (36.36%) at JSR. On the other hand, at
the KGP site, the fossil fuel contribution (34.37%) is lower than that of the wood-burning
contribution (43.75%). The higher contributions of BC from fossil fuels at JSR are because
of more industrialization and the high traffic load. The mass of PM2.5 ionic species was in
the order of SO4

2− > Cl− > Na+ > NO3− > K+ > Ca2+ > Mg2+ in JSR, while the order was
SO4

2− > NO3
− > Cl− > Na+ > K+ > Ca2+ > Mg2+ in KGP. The significant commitment of

complete ionic species mass concentration in PM2.5 was around 33.89% (anion) and 16.62%
(cation) at JSR and 23.83% (anion) and 17.61% (cation) at KGP. The masses of SO4

2−, K+,
and Ca2+ in PM2.5 (absolute particles) are estimated to be 36.91%, 12.14%, and 4.75% at JSR
and 21.46%, 15.46%, and 7.65% at KGP, respectively. The concentrations of BC and PM2.5
show a moderate positive Pearson correlation (r = 0.42) at JSR and a good positive Pearson
correlation (r = 0.66) at KGP, east India, indicating similar sources of origin.
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