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Abstract: Structural analysis in a transit network is a key aspect used to evaluate in a planning
process. In this sense, the use of network science was applied in this work to generate a framework
of the main structural features of a transport network. In this case, an alternative transport network
in Guadalajara, Mexico was taken as an example. The network properties selected were grade of
accessibility, spatial friction, and vulnerability. In the case of the grade of accessibility, this propriety
makes reference to the efficiency of the travel time that the network gives due to its structural features.
The spatial friction measures how direct in terms of distance the trips that the network provides are,
and the vulnerability relates to the ease with which the network can comprise its performance by
affectations to their nodes or links. In this sense, this work presents a detailed methodology and a set
of open-source tools that can be used to measure these key structural elements for decision making.

Keywords: transport networks; accessibility; network sciences; GTFS; data mining

1. Introduction

Humankind is involved in a civilizational crisis derived from human activity and
an economic model that has been dominant up to now. The environmental degradation
of natural resources and ecosystems coupled with climate change have the potential to
destabilize entire regions. In this context, the rapid shifting to a sustainable development
model is crucial in order to mitigate the potential crisis derived from the current human
relationship with natural resources. Within the key changes in the parading of sustainable
development, the change and improvement of critical infrastructure such as energy and
transport are key elements in this transition. In the case of transport, there are multiples ap-
proaches with which to shift to a sustainable mobility system (understanding a sustainable
mobility system as a one which minimizes the environmental impact, its energy demand,
and that is competitive and economically viable). Some of these approaches include: Sup-
porting infrastructure for non-motorized trips; land use plans which increase city density
and improve the variety of land uses (15-min city); Increasing the competitiveness of public
transport; Car management, to reduce its attractiveness (reducing parking spaces, zone
restrictions, fuel prices, taxes, etc.); Acceleration of the electrification of the transport sector,
and the migrating to a sharing economy paradigm of the transport sector.

Transit planning involves the integration of several fields of analysis, such as mobility
dynamics, land use, and transit systems, to mention a few. In the case of the transit system,
key conventional elements must be integrated into the analysis, such as the operation cost,
emissions, energy demand, and general structure proprieties such as headway, the distance
between stops, spatial coverage, the capacity of the lines, etc. [1,2].

However, there are some other key elements to analyze that help notoriously with the
decision-making process and the evaluation of the performance of a transport network that
is related to the physical and structural efficiency of the transport system. To measure these
physical and structural features, transport planners have resorted to network sciences and
the measure of network properties derived from this field. Network proprieties are rarely
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taken into consideration in transport planning, despite the remarkable information that
can be generate related to the performance of a transport network [3].

Network science is an academic field that uses discrete mathematics in order to
understand the structural proprieties of a network. To do this, there is a necessity to have
a network representation of the phenomena of study. This representation materializes in
nodes and links that represent the dynamics and relations of a specific phenomenon [4].
Network science has become popular, especially since the 1990s, due to the improvement in
computational power and the development of Geographical Information Systems (GIS) [5].
However, the difficulties in creating large datasets of networks have historically been a
challenge in the field.

Nevertheless, the integration of complex transport networks is very recent [6]. In
overall terms, these approaches have had a strong emphasis on routing optimization and
transport costs [7]. To evaluate the proprieties of the transport system, a network represen-
tation must be done, this representation changes over time and over the kind of transport
network subject to analysis. This characterization is generally a static representation; this
allows the analysis of the structural or topological features of the transport system [8].

In the case of a transit system, most of the studies focus on a static approach, which
tries to highlight the general features of the network in terms of topology, geometry,
morphology, and traffic flows [6]. In terms of representation, transport networks can be
represented as nodes and links where the nodes are the stops of the transport system and
the links are the paths among each stop. This conception is the base of the representation
of the transit system’s configuration into a network, and is the baseline in order to analysis
its structural features. Figure 1 shows this concept.
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Figure 1. Example of the representation of a transport network.

Within this field of network science applied to transport networks, there are many
network proprieties that can be measured in a transit system, such as the Diameter, Detour
index, Network density, Pi index, Eta index, Theta index, Beta index, Alpha index, Gamma
index, Koening number, Shimbel index, and Hub dependence, among others [9]. However,
this paper measures three network properties, which are the Shimbel index, Detour index,
and Hub dependence.

The Shimbel index is bond to the grade of accessibility which measures the structural
efficiency in terms of travel time through the network [9]. On the other hand, the Detour
index represents the spatial efficiency of the network, comparing the travel distance and the
Euclidean distance among the origin and destination. Finally, the Hub dependence is a set
of structural indicators bond with the resilience and vulnerability of the network [9]. The
importance of measuring the network properties of a transit system relies on the premise
that every main aspect of the performance of the transit system is bonded with its structure.
Aspects such as operational cost, pollution, energy demand, and travel time, among others,
are linked with the technology and structure of the transit network. This relation can be
visualized in Figure 2 that represents the relationship that the structure and technology of
the transit system have with other main aspects, such as operation cost, pollution, energy
demand, and structural proprieties. As can be seen, the structure and technology of the
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network are the main aspects that influence the performance of the rest of the relevant
aspects of the transit system. If the transit system has efficient structure and technology,
the operation cost is going to reduce, as well as the environmental impact and the energy
demand. This influences network properties such as travel time, resiliency, and space
friction. For this reason, transport planners must integrate the process of planning the
network proprieties of the transit.
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In this sense, the objective of this paper is to analysis some of the main structural
features that should be taken into consideration in the planning process of a transits system
and to generate a framework and a digital tool with which to carry out this analysis
(accessibility, spatial friction, and vulnerability). This structural evaluation was taken into
consideration as an alternative transit network proposed for Guadalajara, Mexico [10].
The network representation of this alternative transit system was made mainly using the
general transit feed specification (GTFS). The GTFS is an accurate network representation,
as it integrates the location of stops, the bond between stops in a route, and the travel time
of the buses along each route [11]. To use and exploit the GTFS properly, a set of software
tools were used. These tools mainly included the open route engine tool Open Trip Planner
(OTP) and R as a programming platform.

Finally, this paper is divided into four sections: Section 1 gives a little introduction to
the applications of network science in transit analysis, Section 2 addresses the methodology
and the materials used, and Section 3 contains the results and discussion. Finally, Section 4
concludes of the work.

2. Materials and Methodology
2.1. Materials

In order to measure the network proprieties of the transit system, the following row
data was used: zoning, centroids, GTFS, and street pattern. The zoning represents the
area of interest within the Guadalajara Metropolitan Area (GMA); in total, the area of the
GMA is around 628 km2. However, the area of interest is near 330 km2. Within the area of
interest is 97% of the total population of the GMA, which reached 5 million inhabitants
in 2020 [12]. Figure 3 shows the zoning and centroids created for the service area which
consists of 398 hexagons with an apothem of 670 m.

On the other hand, Figure 4 shows the centroids of the area of interest. Each cen-
troid represents the origin and destination for each trip where the network will provide
the service.

Additionally, the street pattern data was obtained from Open Street Map. This data
was used to integrated the walking distance of each trip. Finally, the last row data used to
determine the network proprieties were the GTFS files for the alternative transit system.
The GTFS of the alternative transit system had to be generated, and represents 2033 stops
and 39 routes, with an orthogonal design (verticals and horizontal routes) that minimizes
the use of routes, thus encouraging a transfer model network.
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2.2. Methodology

The 3 network properties proposed for analysis in this work were: the Shimbel index
(which represents the grade of accessibility and, hence, the travel time efficient), the Detour
index (which represents the spatial friction), and the Hub dependence (which indicates the
resilience and vulnerability of the network). Each of these network properties are described
in the following points.

2.2.1. Shimbel Index and Grade of Accessibility

Shimbel index and the grade of accessibility express the efficiency in terms of travel
time that the network gives, which can be interpreted as the travel time impedance [13].
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In the case of the Shimbel index, it is a unique magnitude that expresses the efficiency in
travel time in the whole network. In the case of the grade of accessibility, it can represent
the efficiency in travel time at a nodal level. Both magnitudes are mainly influenced by
the geometry of the transit network, its commercial speed, the headway of the lines, and
the connections among the lines. Together, these aspects significantly determine the travel
time efficiency. The following equations express both concepts:

C(x) =
N − 1

∑y d(x, y)
(1)

where:

- C(x): The Shimbel index
- d(x, y): Travel time between node x and node y.
- N: Total number of nodes of the network

ATT(x) =
∑x d(x, y)

N
(2)

where:

- ATT(x) = Average travel time of the node x
- ∑x d(x, y) = The total sum of the travel time from node x to the rest of the nodes

represented by y
- N: Total nodes

2.2.2. Deuter Index

The Deuter index is a measure of the efficiency of a transport network in terms of
distance. It can be understood as the spatial friction that the network gives. In this sense,
the index takes 2 variables into consideration, which are the Euclidean distance between
one pair of nodes and the real travel distance through the best route between a pair of
nodes [9]. The following expression represents this relation:

DI =
D(S)
D(T)

(3)

where:

- DI = Deuter index
- D(S): Euclidean distance between two points
- D(T): Real distance using the network

As it is presented in Equation (2), the Deuter index, while closer to 1, is spatially more
efficient as it reduces the friction of distance among the points. On a practical level, this
means that the trips are more direct in spatial terms.

2.2.3. Hub Dependence of the Network

Hub dependence is the general term bond with the resilience and vulnerability that
a network can have. Unlike the rest of the network indicators, there is no single network
propriety that can be totally linked with the resilience and vulnerability of a network.
For this reason, a set of network properties were proposed in this work to have a set of
indicators relating to resilience and vulnerability [14]. These indicators are betweenness
centrality, central point dominance, average path length, and spectral gap. Additionally, a
set of scenarios were generated to see the affectation in terms of connectivity (measuring
the average path length and the number of nodes connected using the Dijkstra algorithm).
These scenarios were generated by removing random nodes and strategic nodes to see the
impact that the network has.

The betweenness centrality measures the number of times a particular node is used as
a bridge between the shortest path of two nodes. The measure can identify critical locations
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of the network in case the network has a strong dependence on a few nodes (that is to say,
that a few nodes are used extensively as part of the optimal path), meaning that there will
be a problem of vulnerability. The performance of the total network could be compromised
due to a disruption in this critical location of the city. The mathematical concept of the
betweenness centrality is shown in the next equation.

Ci = ∑
(j,k)

bjik

bjk
(4)

where:

- Ci = Indicates the betweenness centrality of node i.
- bjik: Indicates the total number of shortest paths between the node j and k that goes

with using the node i.
- bjk: Represents the total number of shortest paths between the node j and k.

In the case of central point dominance, this network propriety consists of the average
difference between the betweenness centrality of the most central point Bmax and all
the other network nodes Bi [14]. In simple terms, this means a measurement of node
polarization of the networka lower value in the central point dominance means a more
homogenous use of the nodes to make a trip, which, at the same time, means a more
resilient network. This can be mathematically expressed in the following formula:

CB =
1

n− 1 ∑
1
(Bmax − Bi) (5)

where:

- n = Number of nodes.
- Bmax = Maximum centrality.
- Bi = Centrality of a given node.

On the other hand, the average path length is an indicator of the connectivity of the
network. Its value indicates the average steps that the nodal has along the shortest paths to
the rest of the nodes (it is the propriety of a network-level of aggregation, that is to say that
the value of the average path length is for the entire network). In this sense, it measures
the connectivity of the network. Additionally, the measurement of the average path length
was performed in different scenarios of the removal nodes. One set of these scenarios was
done by removing the random nodes of the network, changing the percentage of the nodal
removal from 0% to 70%; the random nodal remotion was done in a cycle of 1000 times,
generating a mean of the average path length of the 1000 repetitions. On the other hand,
the other set of scenarios was performed by removing the critical nodes, which were the top
nodes with the highest values of closeness centrality, and changing the value of remotion
from 0% to 70%. This set of scenarios was done to see the affection of the connectivity of
the network in cases of strategic nodal affectation in the center of the city. The following
equation expresses the average path length:

lg =
1

n (n− 1)
. ∑

i 6=j
d
(
vi, vj

)
(6)

where:

- lg = Average path length
- n = Number of nodes
- vi, vj = Shortest path among vi and vj

Additionally, the spectral gap is defined as the difference among the moduli of the two
largest eigenvalues of a matrix. The spectral gap provides information of the robustness
of the network. It is used to detect networks with “good expansion” properties. A small
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spectral gap would probably indicate the presence of articulations points or bridges that
might cause serious disruptions of the flow in the network when removed [14]

∆λ (7)

where:

- λ: eigenvalue

To get a clear idea behind the concept of spectral gap Figure 5 [15] shows an example
of different configuration of networks and how it affects the value of the spectral gap and
its bond with the robustness of the network. As it can be observed the spectral gap has a
range value from 0 to 10. This is the real range of possible value of the spectral gap. In the
Figure 5a there is an artificial network formed by two isolated components, which shows a
spectral gap ∆λ = 0. On the other hand, Figure 5b shows a network with a single connection
among the two components which presence of a bottleneck. In this case the value of the
spectral gap is 0.408. The inclusion of more links between the two components of the
network increases the spectral gap for network in Figure 5c, which reach the maximum for
the complete graph Figure 5d, where every pair of nodes is connected to each other [15].
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two components by a single link (b) represents an example of a network lacking good expansion
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inclusion of more links between the two components of the network increases the spectral gap for
network in (c), which reach the maximum for the complete graph (d), where every pair of nodes is
connected to each other.

In the case of closeness centrality, this indicates a measurement of spatial centrality.
It identifies the nodes that have a better location in the center of the network [16]. In this
work, the measurement of closeness centrality was not integrated as a direct indicator
of resilience. However, it was used to identify the nodes with the most centrality and
use those nodes to remove strategic nodes from the network representing affectation in
the center of the city. The following equation shows the mathematical expression of the
closeness centrality and expresses the average path length:

Cc(i) =
n− 1

∑n
j=1 d(i, j)

(8)

where
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- Cc(i): Closeness centrality of the node
- n: Total number of nodes

-
n
∑

j=1
d(i, j): The sum of the shortest length among node i and the rest of the nodes

Moreover, to measure the number of nodes connected in a normal scenario, and in
the set of scenarios of random nodal remotion and strategic nodal remotion, the Dijkstra
algorithm was used. The Dijkstra algorithm aims to find the shortest path of one node to
each of the rest of the nodes [17]. In this case, the algorithm was used just to identify the
number of nodes connected.

2.2.4. Generation of Row Data with OTP

To generate the raw data necessary to measure the network properties (specifically,
the Shimbel index and the Deuter index), the use of OTP and R was necessary. The reason
to use OTP and R was for the generation of an N × N matrix of all the centroids of the
area of service, and to generate a global data frame which contains the raw data (travel
time and travel distance) used to generate the network proprieties of the Shimbel index
and the Deuter index [18,19]. The steps followed for the generation of this row data can be
summarized in the next points:

- Selection of the area of study;
- Creating zoning and centroids;
- Set up of OTP in R, including data of street network and GTFS;
- Generation of an N × N matrix among all the centroids;
- Clean and process the data frame;
- Generate Shimbel index and Deuter index.

The points presented above summarize the process used to generate the data frame
that contains most of the row data used to generate the Shimbel index and the Deuter
index. Figure 6 shows an example of the graphical of OTP.
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Figure 6. Example of the graphical view of OTP.

With the set-up of OTP in R, it is possible to generate a massive N × N matrix wherein
every trip request generates the data presented in Table 1 which summarizes the main data
generated by a trip request in OTP. However, extended data processing must be carried
out in order to have the final result of the Shimbel index and the Deuter index.
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Table 1. Data generated by a request in OTP.

Duration Start Time End Time Walk Time Transit Time Waiting Time Walk Distance

2680 s 14 January 2021 8:24 14 January 2021
9:08 368 s 2132 s 180 s 400 m

Transit Distance Euclidian Distance Transfers Route From Place To Place

12,436 m 9142 m 0 H4 651 987

2.2.5. GTFS Transformation into Network Format

To generate the properties bond with the hub dependence (betweenness centrality,
central point dominance, and average path length), it is necessary to convert the GTFS
into a total graph format (specifically, to the format igraph used in R to analyze network
proprieties). To convert the GTFS, a previous work was taken as a reference [20]. The main
steps of this process are summarized in the next points:

- Lecture of the GTFS;
- Bind GTFS files;
- Join near stops within a given distance;
- Update coordinates of the new clusters of stations;
- Identify transport modes and routes for each trip;
- Identify links between stops;
- Calculate travel time between stops;
- Remove stops without connections;
- Build igrpah object.

The process presented above transforms the GTFS into an igraph object which is
subject to fundamental network propriety measures.

3. Results
3.1. Shimbel Index and Grade of Accessibility

As was mentioned before, the Shimbel index and the grade of accessibility in a
network indicates the travel time efficiency that the transit system gives. To have a spatial
visualization of this propriety, the Figure 7 shows the grade of accessibility of each of the
node (represented by a hexagon) each node contains a certain value of the average travel
time that ranges from 45 min to 115 min.
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The average travel time is affected mainly by two factors. The first factor is due
to its spatial location (the centroids that are more central have a lower average travel
time), and the second factor is the features of the transport network. The features of the
transport network, such as the geometry of the lines, the commercial speed, the headway,
and the connectivity of the lines, have a significant impact on the efficiency of the reported
travel time.

As it can be seen, the average travel time ranges from 46 min in some central areas
of the city to 115 min in the periphery of the city. Figure 8 shows a box plot of the total
travel time of every OD pair within the service area. 50% of the average travel time of all
the centroids ranges from around 55 min to 70 min. Additionally, it can be observed that
75% of the trips have a travel time under 70 min.
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Finally, Table 2 contains the Shimbel index of the hole network, as well as the break-
down of average travel time. In the case of the average travel time, the value is 70 min
composed by 52 min in vehicle travel time, 12 min of walking time and 6 min of waiting
time. On the other hand, the Shimbel index has a value of 0.015. It is important to mention
that, in order to compare the Shimbel index with another network, they have to contain the
same number of nodes. If this does not happen, the Shimbel index is not compatible, and
therefore able, to compare directly.

Table 2. Shimbel index and the average travel time.

Parameter Magnitude Units

Shimbel index 0.015 Dimensionless
Average travel time 70 Minutes
Vehicle travel time 52 Minutes

Walking time 12 Minutes
Waiting time 6 Minutes

3.2. Deuter Index and Distance Friction

In the case of the Deuter index, after the data processing, it was possible to generate
a table that contains the distance of every trip using the transit system and the Euclidian
distance for every origin and destination. Figure 9 shows a box plot of the distribution
of the travel distance using the transit system and the Euclidian distance. The left side
indicates the travel distance distribution on the transit system. As it can be seen, 75% of
the trips are under 25 km. On the other hand, the Euclidian travel distance distribution has
a travel distance of less than 15 km in the 75% of the trips.
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Additionally, Table 3 shows the final result of the Deuter index, the average travel
distance using the transit system, and the average Euclidean distance. In the case of the
Deuter index, it has a value of 0.63 (higher values means trips more direct in spatial terms),
which was generated by dividing the Euclidian travel distance of 11.91 km and the regular
travel distance using the transit system with a value of 18.81 km.

Table 3. Examples of the date generate calculating Deuter index.

Parameter Magnitude Units

Deuter index 0.63 Dimensionless

Average travel distance using the transit network 18.81 km

Average Euclidean distance 11.91 km

3.3. Hub Dependence and Resilience of the Network

The transformation of the GTFS into a graph object allowed us to measure the set
of resilience and vulnerability indicators expressed previously. These indicators are be-
tweenness centrality, central point dominance, and average path length. In the case of the
set of indicators proposed for this section, the nodes are represented as a stop or a cluster
of stops, and the links remain as the path that follows a route among each stop. Table 4
shows the results for the set of indicators. As can be observed, there are three measures
of betweenness centrality, which are the highest, the average, and the lowest. The highest
value reaches 746,551, which is the number of times a specific node was used as a bridge
among the optimal path of an OD pair. The average value is of the betweenness centrality,
and was 65,824. Meanwhile, the lowest was 0. These is a significant difference between
each of the indicators. On the other hand, the average path length in typical conditions is
36.27. Finally, the spectral gap has a value of 0 which is a very low number that indicates a
low level of robustness in the network.

Additionally, Figure 10 shows the boxplot of the distribution of the value of the
betweenness centrality of all the nodes. As can be observed, 75% of the values in the
betweenness centrality distribution are under around 75,000 units. The compact shape of
the box indicates a highly similar distribution in the values of the betweenness centrality.
However, as can be seen, the box plot has long whiskers that represent outliers in the value
distribution. This means a much higher centrality in a few nodes compared with the rest of
the nodes.
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Table 4. Examples of the data generated for the betweenness centrality.

Parameter Magnitude Units

Highest betweenness centrality 746,551 dimensionless

Average betweenness centrality 65,824 km

Lowest betweenness centrality 0 dimensionless

Central point dominance 680,726 dimensionless

Average path length in normal condition 36.27 Stops

Spectral gap 0.155 dimensionless

Urban Sci. 2021, 5, x FOR PEER REVIEW 13 of 18 
 

  

Central point dominance  680,726 dimensionless 
Average path length in normal condition  36.27 Stops 

Spectral gap 0.155 dimensionless 

Additionally, Figure 10 shows the boxplot of the distribution of the value of the be-
tweenness centrality of all the nodes. As can be observed, 75% of the values in the be-
tweenness centrality distribution are under around 75,000 units. The compact shape of the 
box indicates a highly similar distribution in the values of the betweenness centrality. 
However, as can be seen, the box plot has long whiskers that represent outliers in the 
value distribution. This means a much higher centrality in a few nodes compared with the 
rest of the nodes. 

 
Figure 10. Boxplot of the betweenness centrality distribution. 

On the other hand, the value of the betweenness centrality can be visualized spatially 
in Figure 11. The figure shows some key areas of the network. One of the most interesting 
is the segments of lines that cross the city horizontally in the south part of the service area. 
This specific area of the city is used as a bridge in so many trips. Other key areas can be 
identified in the center of the city and, as indicated by vertical line, in the western area. As 
a whole, these three areas are used very frequently as a bridge among the optimal trips 
within the service area. 

Figure 10. Boxplot of the betweenness centrality distribution.

On the other hand, the value of the betweenness centrality can be visualized spatially
in Figure 11. The figure shows some key areas of the network. One of the most interesting
is the segments of lines that cross the city horizontally in the south part of the service area.
This specific area of the city is used as a bridge in so many trips. Other key areas can be
identified in the center of the city and, as indicated by vertical line, in the western area. As
a whole, these three areas are used very frequently as a bridge among the optimal trips
within the service area.

The spatial visualization of the betweenness centrality allows the identification of key
areas that can compromise the performance of the network (any perturbation in this area
such as traffic, an accident, etc., can largely compromise the functionality of the transit
system). On the other hand, the significant difference in the distribution value showed by
the boxplot in Figure 10 indicates a great polarization of values.

In the case of the average path length, there were several scenarios of measurements.
The first scenario of the average path length was performed in typical conditions (that is to
say, all the nodes, stops, or areas of the city worked well without affecting the flow of trips
among any stop), and has a value of 36.27 stops. On the other hand, different scenarios
were done by randomly removing nodes from 0% to 70% of the nodal remotion (every one
of these scenarios was measurement within a cycle of 1000 times in order to get the mean
magnitude of the average path length in each scenario).

Finally, as was mentioned in Section 2, another set of scenarios were performed, re-
moving strategic nodes (in this case, the nodes with the highest magnitude of closeness
centrality and highest betweenness centrality results are presented in Figure 12. Figure 12
integrates three different scenarios. The first scenario is the average path length (connec-
tivity) under random nodal remotion, the second scenarios is under strategic remotion
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affecting the nodes with highest values in betweenness centrality and the third scenario is
strategic nodal remotion for highest values in closeness centrality.
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Figure 12. Average path length affectation in different scenarios of random nodal remotion.

The data used for built the Figure 12 can be seen in Table 5. As it can be observed in
Table 5 the critical point under random remotion happened until the remotion of 15% of
the nodes of the network in that point the connectivity passed from an average path length
of 36 to 46 which is and affectation of 27%, this can be translated to travel time affectation
which passed from an average of 70 to 89 min.

On the other hand, in the scenarios of strategic remotion using the nodes with highest
betweenness centrality the critical point was reached at 10% of nodal remotion with a higher
affectation passing from an average path length of 36 to 69 which means an affectation
of 91%.

Finally, the critical point remotion the closeness centrality nodes was reached until
the remotion of 50% of the nodes passing from an average path length of 36 to 62 which
means an affectation of 72%. Under these scenarios can be visualized the most import
affectation is done under scenarios of betweenness centrality remotion. This data showed
the importance of identification the nodes with highest betweenness centrality, due to
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these nodes are the most used within the shortest trips the affectation in these nodes have
remarkable affectation in the connectivity of the network.

Table 5. Average path length and travel time affectation in different scenario of nodal remotion.

Average Path Length under Different Scenarios Travel Time Affectation (Minutes)

Percentage of
Nodal

Remotion

Random
Remotion
Scenarios

Remotion of Top
Betweenness

Centrality

Remotion of
Top Closeness

Centrality

Random
Remotion
Scenario

Remotion of Top
Betweenness

Centrality

Remotion of
Top Closeness

Centrality

0 36 36 36 70 70 70

5 37 51 39 73 99 75

10 41 69 49 80 133 94

15 46 43 50 89 82 97

20 39 36 51 77 69 99

25 25 29 55 49 56 106

30 16 22 54 31 42 105

35 11 15 55 22 30 107

40 8 16 56 16 31 107

45 6 11 57 13 21 110

50 5 6 62 10 11 119

55 4 4 35 9 8 67

60 4 3 34 8 7 67

65 3 3 34 7 6 66

70 3 3 19 6 5 37

In addition to this analysis, as was mentioned in Section 2, the measurement of
the total nodes connected was conducted using the Dijkstra algorithm for the different
scenarios. Figure 13 illustrates the total number of connected nodes. All the scenarios
(random remotion, and both strategic remotion) present numbers of total connected nodes
very similar. All of them start in 3.48 million of possible connection. In the case of the
random remotion, it ends with 877,032 connected nodes. On the other end, the scenario of
Betweenness centrality remotion ends with 884,540 nodes and 478,172 for the scenario of
Closeness centrality. In general terms there is not a significant different in the total possible
connection among all the scenarios. In this sense, the network has a notable difference in
the performance of its connectivity under the different scenarios but all of them still are
able to connected about the same number of nodes.

As it can be observed in this section, the variety of results of network proprieties
indicators give a good overall view of the structural performance of the network in terms
of travel time (grade of accessibility), spatial friction (Deuter index), and vulnerability.
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4. Conclusions

The methodology presented in this work is a robust framework, able to be applied to
any transit network using the code developed for this work. The aspects for measurement
proposed (accessibility, spatial friction, and vulnerability) are some of the main relevant
aspects that a planner must take into consideration in order to compare the performance of
different transit network scenarios within a planning process. In this sense, the work done
here is a solid framework and a tool that can be used widely.

The results presented here show a clear panorama of the performance of the structural
aspects of the transit system. In the case of accessibility, it showed a better performance
in the center of the city. This follows a basic principle of centrality: the areas of the city
in the center will have better connectivity to the rest of the area of interested due to its
location. However, other variables get into account which are the commercial speed of
the buses, the geometry of the lines, the headway and the connectivity among the routes.
However, in order to take this as a real indicator for decision-making, a comparison
between transit system or modes of transport should take place, in order to see understand
the performance among different scenarios or modes of transport and select generate a
decision towards the best scenario. In the case of the alternative network examined in this
study, the average travel time was 70 min, and it showed a travel time distribution close to
a normal distribution. In general terms, this distribution and the magnitude of the travel
time are good indicators of the performance of the network in this aspect.

In the case of spatial friction, due to the fact that the alternative network was based
on a grid layout, that is to say, a network based on transfers that allows the user go from
and to anywhere with one transfer, the spatial friction was low. In this case, the Deuter
index was 0.63. Finally, the vulnerability analysis was the most significant. In the case of
the vulnerability analysis, it showed a poor performance with a great polarization to some
of the nodes (stops) of the network.

This was very visible with the shape of the box plot in Figure 10 and with the central
point dominance that had a value of 680,726 when the mean of the betweenness centrality
was 65,824. This polarization paved the way for affectation in the connectivity. The impact
in the connectivity was visible in Table 5. This analysis showed the key relevance that
has the nodes with highest betweenness centrality to the connectivity of the network. The
remotion in these nodes trigger the most remarkable impacts to the connectivity passing
from an average of 70 min to 133 min in the critical point which was at 10% of nodal
remotion. As a conclusion from this analysis in order to keep the performance of the
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transit system transport planners must identify the key nodes of the network and generates
policies dedicated to keep the optimal flow of the transit system in those zones. As it was
seem in this work little perturbations on these nodes can led to deep impacts in the average
travel time for users.

While it is true that the results are solid numbers for the alternative transit network
used in this work, it is difficult to make a general judgment about the network’s efficiency
due to the fact that there is no other network with which to compare it to, as a consequence
of a lack of data (GTFS) related the actual transit network within the service area. This lack
of data made it impossible to do these full analyses by comparing two transit networks in
the same area of service.

For this reason, it is hard to generate a final judgment of the performance of this
alternative network. However, some elements of this work must be highlighted, such as
the fact that an open-source tool in R was generated in order to have a solid framework
with which to analyze the structural features of transit networks [21].
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