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Abstract: From 1990 to 2018, built-up areas in Tallinn, Estonia’s capital city, increased by 25.03%,
while its population decreased by −10.19%. Investigating the factors affecting urban expansion
and modeling it are critical steps to detect future expansion trends and plan for a more sustainable
environment. Different models have been used to investigate, predict, and simulate urban expansion
in recent years. In this paper, we coupled the cellular automata, agent-based, and Markov models
(CA–Agent model) in a novel manner to address the complexity of the dynamic simulation, generate
heterogeneity in space, define more complicated rules, and employ the suitability analysis. In
the CA–Agent model, cells are dynamic agents, and the model’s outcome emerges from cellular
agents’ interactions over time using the rules of behavior and their decisions concerning the adjacent
neighboring cells and probabilities of spatial changes. We performed the CA–Agent model run
two times for 2018 and 2030. The first simulated results were used to validate the performance of
the model. Kappa showed 0.86, indicating a relatively high model fit, so we conducted the second
12-year run up to the year 2030. The results illustrated that using these model parameters, the
overall built-up areas will reach 175.24 sq. km with an increase of 30.25% in total from 1990 to 2030.
Thus, implementing the CA–Agent model in the study area illustrated the temporal changes of
land conversion and represented the present spatial planning results requiring regulation of urban
expansion encroachment on agricultural and forest lands.

Keywords: urban expansion; CA–Agent model; cellular agent; adjacent neighborhood; Markovian
probability transition

1. Introduction

Urban expansion is the process of conversion of lands to urban [1]. Shifts from
agricultural lands [2–4], forest lands [5,6], water [7–10], and wetlands [6,11,12] are among
the most critical transitions to urban lands. This causes adverse impacts on the physical
environment and is one of the leading causes of natural ecosystem degradation [13]. It
causes loss of the agriculture and croplands, habitat fragmentation, heat island effects, and
reduction of surface watercourses [14–16]. It also causes changes in landscapes [17–20] and
urban transportation needs by increasing travel distance and commuting trips between the
city and suburbs, demand for private cars, and fuel consumption [21,22].

Land use/land cover (LULC) maps are the products of the classification of satellite
remote-sensing images [23], which enable quantitative spatiotemporal analysis across
geographic regions [24] and provide helpful information about the transformation of
lands [25,26] to a temporal extent. Eventually, extracting urban areas from LULC maps
and modeling provides a critical investigation into urban expansion’s driving mechanisms,
future trends, and LULC transitions [27].

Since urban expansion is a dynamic and complex process, many spatial models
have been constructed to investigate, predict, and simulate it. Simulation models can
develop scenarios for future-oriented decision-making [28] by preparing a projection of
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land-use changes, expecting the future urban land demands and spatial distribution of
these demands [29]. Among others, these models include the cellular automata (CA)
model [30–32], CA–Markov model [33–35], logistic regression model [36–38], agent-based
model [39,40] and multi-agent-based model [41,42]. Of these models, CA has been the
most popular model employed by researchers since its conceptualization by Ulam and Von
Neumann in the 1940s [43,44]. A countless number of studies on the application of CA in
modeling urban expansion exist. For example, Ma et al. [45] attempted to examine CA to
simulate urban expansion in China. Putting seed data and control layers, they explored the
parameters for their model and reached high accurate simulation results. White et al. [46]
employed the constrained CA model based on the development intensity or dynamic
constraints in space and time to predict urban land-use dynamics. Mozaffaree Pour and
Oja. [47] modeled urban expansion in Harju County in Estonia to investigate its driving
forces and predict the future trend in a regular cell space.

Integrating CA with other models increased the popularity, efficiency, and quantity of
the simulation [48] in the field of urban expansion. Integrated CA–Markov has been imple-
mented in research, considering that the trend and pace of changes in the urban expansion
are similar in the past and future. In a study performed by Li et al. [34], they explored
the capabilities of CA–Markov to simulate urban expansion in China. Prediction of urban
expansion employing the CA–Markov model in Iran was performed by Jafari et al. [49]
and revealed expansion on the periphery of population centers with encroachment to the
forest and agricultural lands. The integrated logistic–CA model was conducted in some
research [50–52], exploring the spatial feature of urban expansion and defining transition
rules. In the research by Mustafa et al. [50], they took advantage of multinominal logistic
regression and CA to assess the probabilities of causative factors and neighborhood effects
in the urban expansion of Belgium. To explore the relationships between land conversion
and driving factors of urban expansion, Arsanjani et al. [52] employed integrated logistic–
CA–Markov models to simulate land use maps consisting of built-up lands and calculate
the quantity of land-use change using a transition area matrix in Tehran, Iran.

Furthermore, several studies enhanced the CA model with agent-based models to
explore the drivers of urban expansion, boost the behavioral rules by defining the dynamic
agents, and determine more realistic neighborhood effects to simulate urban expansion.
Mustafa et al. [29] have considered a combination of CA–Logit and agent-based modeling
to capture the dynamics of neighborhood interactions and static drivers of urban expansion
in three levels of agents with homogeneous characteristics and behaviors. Liu et al. [53]
constructed a land-use simulation and decision-support system (LandSDS), integrating
agent-based and CA modeling in China for two homogeneous agents. However, models
of urban expansion simulation vary in terms of data requirements, mechanisms, and
application scales [48]; these models have limitations, and considerably new integrated
model approaches are required to meet the complexity of urban expansion nature, which
deal with spatial heterogeneity, local interactions, and neighborhood effects.

To this aim, we coupled the CA model with the agent-based model (CA–Agent model)
to address the complexity of the dynamic simulation, generate heterogeneity in space,
define more complicated rules, and employ the suitability analysis in a novel way.

Cellular automata as a bottom-up model is based on regular or irregular cell space de-
pending on the complexity of the representation of reality [54] and consider the interactions
between cells and their neighbors implemented by transition rules. Defining transition
rules is the critical step in CA models. While transition rules are invariant through time [32],
considering the spatial heterogeneity among the cells and uneven development in simula-
tion requires improvements of transition rules [55]. Applying the appropriate thresholds is
a way to address the spatial heterogeneity [56]. One of the key benefits of our CA–Agent
model is implementing different transition rules manipulated by suitability thresholds for
cellular agents.

Moreover, a heterogeneous neighborhood impacts the spatial heterogeneity [57] and
the model simulation results. Taking advantage of the suitability analysis, we enhanced
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the CA–Agent model performance to simulate the most suitable areas for new areas
expansions [39]. Eventually, the CA model is flexible with an adaptable structure capable
of integrating with other models [58,59].

Additionally, agent-based models as generative simulation modeling [60] employ the
behavioral factors of agents and their interactions with the environment and with one
another to simulate the urban evolution [61] and track the dynamic changes from one agent
to the whole area [62]. Agents could be defined as human or physical entities [63]. We
defined cells as the dynamic agents in our model. The model’s outcome emerges from
agents’ interactions over time [60] and the probability and randomness of the agent’s
behavior [64]. The CA–Agent model’s significant advancement is exploiting the Markov
model to enhance the allocation of probabilities to the model. The Markov model as a
stochastic model describes the state of the cells regarding their previous states by speci-
fying a series of random values to each cell, and the results represent the probability of
transition [65–67]. The Markov model prepares an estimation of the quantities of LULC
changes [68] appropriate for describing the complex structure of urban systems.

Coupling these models in a GIS environment is a novel approach that leads to a better
understanding of the dynamics of urban expansion driving forces. The main distinction
of the CA–Agent model compared to the previous models is implementing dynamic
factors [61], enhancing the spatial behavioral rules [41,42,61,69–73] of the autonomous
cellular agents, their decisions concerning the neighboring cells, and probabilities of spatial
changes. Additionally, agents acting in a cellular space can change their behaviors over
time, so it is possible to understand the evolution of spatial patterns [32]. Additionally, the
CA–Agent model can highlight the spatiotemporal dynamics of urban expansion at the
local level.

As the process of expanding the cities mainly occurs in the immediate neighboring
lands from main cities [61], in line with the observations of Mozaffaree Pour and Oja [74] on
the expansion of Tallinn in Harju County, we considered the buffer of 15 km from the center
of Tallinn. The buffer of 15 km was chosen as this is where most of the new development
occurred between 2000 and 2018, and the nearest cities and surrounding municipalities
started expanding.

It is important to note that until 1990 (during the Soviet period), the use of land
adjacent to Tallinn was relatively strictly regulated, and agricultural land change into set-
tlements was almost excluded. Urbanization-related land-use changes were not happening
around Tallinn due to state-established limiting regulations. After regaining the indepen-
dence of Estonia in 1991, regarding the land reform and revision of planning principles on
the one hand, and economic growth and increase in personal wealth on the other hand, the
location of new constructions considerably changed to a scattered form in Tallinn’s neigh-
boring suburbs. At the same time, wealthy people moved to the suburbs to improve their
living conditions in detached houses [75–77]. Thus, the consequences of urban expansion
require effective decision making implementing such models in spatial planning.

To monitor the footprints of urban expansion, we used SCP (Semiautomatic Classifi-
cation Plugin) in the open-source software QGIS 3.10 (Free Software Foundation, Boston,
MA, USA). Using SCP allows the possibility of downloading the satellite data directly,
processing the data, classifying supervised and unsupervised remote sensing images, and
post-processing the data [78]. To run the CA–Agent model and prepare the simulation, we
employed the Repast platform and AgentAnalyst extension in ArcMap 10.6 (Esri, Califor-
nia, USA). Further, to analyze the Markov model and validate the simulation result, we
used IDRISI TerrSet software (Clark Labs, Worcester, MA, USA).

This paper is structured as follows. Section 2 represents the study area in Tallinn and
its 15 km buffer zone, the data collection, processing, analyzing, and framework of the
CA–Agent model. The third section shows the results of model implementation in the
study area and validation. Section 4 discusses the output and innovation of the proposed
approach, and finally, the paper concludes with an overview of the whole process.
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2. Materials and Methods
2.1. Study Area

In this paper, our focus was on built-up areas in Tallinn and its 15 km buffer zone to
monitor the process of urban expansion and simulate its future trend (Figure 1). Tallinn is
the capital city of Estonia and is located in the northern part of the county and neighboring
the Gulf of Finland. The latitude and longitude coordinates of Tallinn region are 59.43 and
24.75. Tallinn covers a 159.37 sq. km area. Considering the 15 km buffer zone, the study
area is about 506 sq. km. Essentially, the sea area in the buffer has been excluded. Between
2000 and 2017 in Estonia, 138 km2 of new built-up areas appeared, most of them around
Tallinn. Mostly new dwelling areas replaced previous agricultural lands [79].

Figure 1. Study area: Tallinn and 15 km buffer zone.

Statistics indicate that the population of Tallinn in 1990 was 479,666, which decreased
by 10.19% by 2018 and reached 430,805 in total. The decrease in population has not been
linear. The fastest decrease happened in the first half of the 1990s; by 2003, the population
of Tallinn was 82% of that in 1990. Since 2007, a slow increase started.

Population changes in the surrounding in Harju County follow a similar pattern; the
decrease from 1990 to 2000 was around 13%, increasing from then, which has brought the
population back to the same level as in 1990. The dominating migration has been from
Tallinn into surrounding municipalities (feeding the new settlement areas) and from other
regions of Estonia to Tallinn. The particularity of the Tallinn region is that the extension of
the urban area happened without significant population growth.

2.2. Data Collection

In this study, the built-up areas of 1990, 2006, and 2018 were extracted from LULC
images (Table 1) resulted from the Landsat images classification using the SCP plugin in
QGIS 3.10. The SCP plugin has an option to download the data from the United States
Geological Survey (USGS) with radiometric and geometric corrections and the spatial
record (level 1C). Using processed and georeferenced data, the projection used for this
study was Lambert Conformal Conic (Estonian national grid of 1997, EPSG 3301).
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Table 1. Landsat products.

Product Description Date of Acquisition Ground Resolution

TM_Landsat5 1990/05/13 30 m
TM_ Landsat5 2006/06/10 30 m

OLI/TIRS_Landsat8 2018/05/26 30 m

The other spatial layers were road networks (main and local roads, railways), wa-
terbodies (watercourses and lakes), and the administrative boundary of Tallinn were
downloaded from the Estonian Topographic Database (ETAK) and geoportal of the land
board of Estonia. Polygon data of airport and wetlands was extracted from the CORINE
Landcover database. The reference year of these data was 2018 and was resampled to 30 m
resolution to be consistent with the LULC data and applicable for modeling purposes.

2.3. Data Analysis
2.3.1. Image Processing

In this paper, we applied a supervised classification technique using the SCP complement
for QGIS. Training samples bounded by polygons named Regions of Interest (ROIs) were
obtained for four land use classes of built-up, water, vegetation, and others. Different numbers
of ROIs were collected for each class. We applied the maximum likelihood (ML) classifier to
obtain better results as many authors used this classifier in their research [38,80–82]. To assess
the accuracy of maps, Google Earth [24] and the same Landsat images were used as the ground
truth images. Validation of the classification was calculated based on the “Kappa coefficient”,
which takes into account the agreement between observed correct and expected correct in
the classified map and ground truth map [83] and “overall accuracy”, which determines
the percentages of correctly classified pixels by reference pixel samples [84,85]. The Kappa
coefficient mathematical expression is given as follows:

kappa =
P0 − Pe

1 − Pe
(1)

where P0 indicates the observed agreement and Pe is the expected agreement [63].
Overall accuracy is calculated using Equation (2):

Overall Accuracy =
1
n ∑N

K=1 Akk (2)

where N is the number of classes in the LULC classification, n indicates the total number of
collected sample units; Akk, which are the items in the major diagonal in the error matrix,
represent the number of samples correctly identified [78].

The accuracy assessment results in Table 2 revealed excellent classification with accu-
racy of 98.20%, 97.80%, and 97.00% for the LULC maps of 1990, 2006, and 2018.

Table 2. Statistical results of classification accuracy assessment.

Landsat Images
Accuracy Assessment

Overall Accuracy (%) Kappa Hat Classification

TM_Landsat5 (1990) 98.20 0.96
TM_Landsat5 (2006) 97.80 0.96

OLI/TIRS_Landsat8 (2018) 97.00 0.95

2.3.2. CA–Agent Model Framework

In our research, the framework’s base model is an agent-based urban growth model
developed by Li [86], a scenario-based model for a city with heavy population growth. The
base model was performed on the level of cadastral parcels with the ownership information
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in a base year and presented urban growth scenarios for 20 years. To implement our CA–
Agent model, it was necessary to improve the application of the base model’s parameters,
input data, procedures, and behavioral rules. To this end, the enhanced methodology and
adjustment rules are defined as follows:

(a). Cellular agent: In the CA–Agent model, a discrete cell space describes an agent’s
quantity or degree of development. We unified two approaches to upgrade the performance
of the model. The built-up areas were dispersed in irregular polygons with different areas;
however, the undeveloped cells were resized to the square polygon grids of 90 × 90 m
using a fishnet tool in the GIS environment. While the processing took a long time, breaking
the very large cells into smaller sizes with the fishnet tool will increase simulation results’
accuracy and cover the whole cells homogeneously. This unified vector space can provide
a more realistic representation [54] of the CA–Agent model. While each cell’s status value
is identical and related to the previous state, the adjacent neighboring cells and behavioral
rules of the simulation model are not uniform, such that, based on different restrictions on
lands, the degree of suitability of cells changes.

(b). Agent state: the state of a cellular agent is based on its temporal changes in
built-up expansion. Temporal expansion of built-up areas allows investigation of agents
as developed in the past or present and dedication to appropriate behavioral rules and
probabilities. While the state of the agent is defined by its status and neighbors, its
development status is affected by several factors such as cell size, a factor of buildable
area and the least area needed for building a dwelling, the probability to be developed
depending on the location of the cellular agent, whether it is in a previously developed
area or an undeveloped area, also considering if it is in or near the Tallinn or suburban
area, and determining the adjacent neighboring cells.

(c). Neighborhood status: the cellular agent uses the cell’s neighbor information
through a list of adjacent neighbors. Using the ArcGIS polygon neighbor tool, we explored
the developed and undeveloped neighbors and each cellular agent’s total number of
neighbors. Table 3 represents an example of cellular agents and their adjacent neighbors
after implementing the neighbor tool. The model extracts the neighbor information in each
step to decide the cellular agent’s development and percentage of its change in each time
step to see if a neighbor has direct or indirect neighboring state as well as accessibility to
local roads, which could be a grant for a cell to be accessed through its neighbors. Therefore,
the dynamic changes of a neighbor’s status is a factor in a cell’s suitability. The neighboring
cells influence the cells’ development status within defined information, updated in each
step. To delineate the heterogeneity of neighborhood effects, we defined the adjacent
neighbors implemented in the base model [86] instead of using the Moore neighborhood,
which is the most frequently used neighborhood [54] or applying a specified distance
neighbor, which depends on the distance of neighbors from a kernel cell [44].

Table 3. An example of cellular agents and their adjacent neighbors after implementing the neighbor tool.

Cellular Agent Adjacent Neighbors Number of Neighbors

4 13,586, 14,345, 21,995, 22,301, 28,192, 30,848, 55,813,
62,819, 62,831, 62,857 10

5 9226, 11,980, 64,507 3
6 3788, 6010, 14,613, 58,190, 68,473, 68,575 6
7 855, 1223, 9146, 16,959, 21,055, 23,646, 26,114, 26,526 8

(d). Markovian transition probability: Adding a probability and randomness to the agent’s
behavior is critical in the simulation [64]. In the base model, the probability was determined in
a random term. In contrast, the Markovian transition probability in the CA–Agent model was
performed to add complexity to the agent’s behavior and calculate the transition probability in
built-up for two time periods from 1990 to 2006 and 2006 to 2018.

(e). Suitability factors and constraints: Analysis of suitability, which acts as envi-
ronmental rules, was carried out using different accessibility factors that shape a cellular
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agent’s behavior’s suitability decision considering the dynamics of the study area’s envi-
ronment, neighborhood, and spatial characteristics. Constraints mainly refer to the factors
preventing expansion [87]. The distance analysis was based on the Euclidean distance tool,
and the constraints were analyzed using the buffer tool and fuzzy overlay analysis in the
GIS environment. Like the base model with different selected suitability factors and con-
straints, in the CA–Agent model, the constraints are permanent during the run process and
are precalculated to extract the number of unbuildable cells ahead of time. The ranges of
suitability factors are between 0 and 100. During the model run, cellular agents normalized
suitability rates to reach the actual value for each factor. The constraints and factors were
converted to raster, and all the operations of cells run in the raster environment.

(f). Thresholds role in the agent’s development status: Expansion of a city may face
different physical limitations known as development thresholds [87]. Defining a threshold
for the factors is necessary to give the complexity and reality to an agent’s model and
development status and boost the spatial heterogeneity. The CA–Agent model employs
the exact terminology of allocating the thresholds to the agents. Thresholds are calculated
based on the integration of constraints and factors during the initialization of the model.

(g). Behavioral rules: The behavioral rules form the development status of agents. These
rules depend on different factors: the status of a cell, its neighbors, suitability criteria, constraints,
and accessibility factors. Among other things, “if the cellular agent’s ratio of unbuildable area to
total area exceeds the threshold, then the agent will not be developed”; “if it falls in a constraint
area, then it exhibited change”; and “if more neighbors are built up, then it is likely to develop”
are the most critical behavioral rules. Consequently, the CA–Agent model can consider many
rules that reflect the actual urban expansion process over time and space. Therefore, the number
of cells changing their states is entirely defined by behavioral rules.

Two-time steps of 12 years were used in this research for two simulated maps of 2018
and 2030. In the first simulation, the model run 12-time steps representing years between
2006 and 2018, resulting in the simulated map of 2018. After performing the validation, we
executed the second model run resulting in the simulated urban expansion map of 2030.

Figure 2 is a flowchart representing the methods for spatial data analysis and CA–
Agent analysis; a process is performed in this paper.
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3. Results
3.1. Spatiotemporal Patterns of Urban Expansion from 1990 to 2018

According to the LULC classification in this study, we adopted four classes: water
(including rivers, ponds, and lakes), built-up (consisting of residential, industrial, and other
impervious surfaces), vegetation (including evergreen forest, agriculture, and areas mostly
of grass), and other (covering bare earth, rocks, and wetland areas). As shown in Figure 3,
changes are represented for three years of 1990, 2006, and 2018. To visualize the urban
expansion and its distribution, the built-up areas were extracted in the GIS environment
for the mentioned years.
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As shown in Table 4, urban areas during the 28 years increased by 40.80 sq. km
(+25.03% change) in Tallinn and its 15 km buffer zone. Urban expansion during 1990–2006
was 27.10 sq. km (18.15% increase), faster than the expansion of urban areas between 2006
and 2018, which was 13.70 sq. km and a rise of 8.40% in this timestamp.

Table 4. Urban expansion in Tallinn and its buffer zone from 1990 to 2018.

Built-Up Areas Increased Area by sq. km Percentage of Change

1990 2006 2018 1990–2006 2006–2018 1990–2018 1990–2006 2006–2018 1990–2018

122.22 149.32 163.02 27.10 13.70 40.80 18.15 8.40 25.03
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3.2. Application of CA–Agent Model in Tallinn and Its Buffer Zone

In our model, an irregular polygon stated a cell. The cells are the dynamic agents.
As shown in Figure 4, cellular agents have three different values; Value 1 is allocated
to the cells developed to be built up between two timestamps, Value 3 is the previous
development to be built up, and Value 2 shows the undeveloped cells. It is an irregular
spatial unit that provides the situation closer to reality. The cell’s size in the undeveloped
area with Value 2 ranges from 127 to 8100 sq. m, while the agents with Value 3 are defined
to show the initial development of Tallinn and surroundings; during the model run, Value
2 agents have less likelihood to be developed in the neighboring areas unless they have
high probability of being located in Tallinn or being a large cell. Neighboring with Value 1
agents who developed later than Value 3, the probability of being large, isolated, in Tallinn,
or the buffer zone will be evaluated.
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We took advantage of Markovian transition probability results to allocate the prob-
abilities in our model, which is presented in many factors such as the probability of a
cellular agent to be developed depending on its size and its location if it is in a previously
developed area, within the built-up area or suburban (Table 5).

Additionally, suitability factors consist of “distance to Tallinn”, “distance to main
roads”, “distance to local roads”, and “neighborhood status”. Six constraints were defined
to limit the buildable lands, which was a fuzzy overlay combination of “50 m buffer of
main lakes”, “30 m buffer of railways”, “25 m buffer zone of watercourses”, “50 m buffer of
main roads”, “50 m buffer of the airport”, and “50 m buffer of wetlands”. The constraints,
regardless of their land LULC classes, play leading roles in determining the buildability
of the agents. We applied different restrictions on constraints based on the guidelines
of Estonian legislation on new constructions named “Riigi Teataja”. This building code
was prepared to promote sustainable development and ensure constructions’ safety and
purposeful performance in Estonia. It has differentiated the construction restrictions upon
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the type of the protected zones, whether roads, railways, water, or other zones. Figure 5
represents the results of indices analysis.

Table 5. Markovian transition probability used in the model.

Probability Definitions Probability in Model (Range
between 0 and 1)

Markovian Transition Probability
(Range between 0 and 1)

Development probability of large cells 0.35
Development probability of isolated cells 0.05 0.84

Development probability of cells in Tallinn 0.30
Development probability of cells in the

buffer zone 0.14
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3.3. Simulation of Urban Expansion by 2018

In this step, each cell has one value. Based on the built-up states, if a cell is developed
before 1990, its value is assumed to be 3. If a cell is developed between 1990 and 2006, its
value is 1, and if it is undeveloped, its status value is 2. The cellular agent can change its
status in each time step. At each iteration, the agent re-evaluates its current conditions
based on the several probabilities of changes and behavioral rules and decides whether
to change them or not. The simulated map of urban expansion for 2018 is represented in
Figure 6.
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Table 6 illustrates the results of the statistics of the model run. From the total of
73,815 cells, 54,707 were undeveloped cells with a state of 2. Considering the cells’ size,
cellular agents’ spatial location, adjacent neighborhood, the suitability factors, and proba-
bility of transition, 1770 cells determined unbuildable cells. The model verified the sum of
the suitable land and reached the threshold of 88%. After the 12 runs of the model’s total
number of developed cells reached 20,844, cells increased by 1736 cells during the 12-year
simulation. The total area of built-up added in this time was 7.06 square kilometers.

Table 6. Statistical results of simulation map of 2018.

Properties Simulation 2018

Total cells 73,815
Total undeveloped cells 54,707
Total unbuildable cells 1770
Suitability threshold 88

Total number of developed cellular agents 1736
Total area of developed cellular agents 7.06 sq.km

3.4. Simulation Validation Results

The first two built-up maps of 1990 and 2006 were used to validate the simulation
model. Validation aims to explore how actual data fits the model output [82,88]. Us-
ing the Validate option in IDRISI, its statistical analysis results in the quantity of cells
agreement/disagreement and the agreement/disagreement in cells location.

The first simulation for the year 2018 on built-up areas was validated against the
actual map of built-up areas in 2018. Table 7 indicates the statistical results of the validation.
“Kstandard” is the Kappa coefficient, “Klocation” refers to the kappa for the grid-cell level
location to monitor how well the grid cells are located on the landscape, “MediumGrid
(m)” calculates the agreement between the reference map of 2018 and the simulation map
in terms of proportion correct [89], “Qdisagreement”, proposed by Pontius and Millones [90]
as an alternative to Kappa, determines the amount of disagreement regarding the fails



Urban Sci. 2021, 5, 85 12 of 20

in specifying the correct quantity of each category of comparison map with the reference
map, and Adisagreement counts error in match the spatial allocations due to differences in
the location of comparison and the reference map categories [89–91].

Table 7. Validation results of the simulated map and actual map in 2018.

Image Comparison Results (Degree from 0–1)

Kstandard 0.86
Klocation 0.89

MediumGrid (m) 0.91
Qdisagreement 0.02
Adisagreement 0.07

Kappa’s result denotes that the higher the index value, the better the accuracy, while
Kappa > 0.8 indicated very high accuracy [34]. From the results of the image comparison
between the simulated map of 2018 and the LULC map, it was evident that Kstandard (0.86),
Klocation (0.89), and MediumGrid (m) (0.91) demonstrated high accuracy of the simulated
map, while the Qdisagreement (0.02) and Adisagreement (0.07) declared minor cell error match in
the simulation result. Therefore, it is clear that CA–Agent model runs reached an acceptable
prediction, and it can be concluded that the simulated parameters fit the reality.

3.5. Simulation of Urban Expansion by 2030

Employing comparative analysis, the CA–Agent model’s result provides evidence
of the close resemblance with the actual data of built-up. Therefore, simulation of the
built-up area for 2030 can be experimented with by applying this algorithm. Therefore, we
performed the second run of 12-time steps for simulating the urban expansion by 2030; the
simulated results are shown in Figure 7.
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Table 8 illustrates the results of the statistics of the model run. It is evident from the
table that, from the total of 69,624 cells, 58,236 were undeveloped cells. A total of 2342 cells
were determined to be unbuildable cells, and the threshold of the suitable lands reached
94%. After the 12 runs of the model, the total number of 2881 cells were developed, with
the total areas of 12.22 square kilometers adding to built-up areas. The simulation results
revealed that the built-up areas would expand by 6.97% from 2018 to 2030.

Table 8. Statistical results of simulation map of 2030.

Properties Simulation 2030

Total cells 69,624
Total undeveloped cells 58,236
Total unbuildable cells 2342
Suitability threshold 94

Total number of developed cellular agents 2881
Total area of developed cellular agents 12.22 sq.km

4. Discussion

The complexity of simulation of the urban expansion in cities and suburbs needs
decision making about the proper factors affecting the phenomena. While it is not adequate
to observe the simulation over one model [92], hybrid modeling leads to better results.
Coupling the cellular automata, Markov, and agent-based modeling in a GIS environment
in this study led to a simulation of the urban expansion in Tallinn and its buffer zone. It is
worth discussing the implemented components of the CA–Agent model demonstrated in
this paper as follows:

4.1. Interactions of Cellular Agents

Integrating the cellular automata and agent-based models in our research allowed us
to synthesize the probabilities and rules into one model. This capability allowed the cellular
agents to decide the probability of spatial transition and the rules of behavior on interacting
with the other cellular agents and their environment. In line with Wahyudi et al. [72],
we applied interactions between “cellular agents to cellular agents” through making a
query and extracting information from other cellular agents and “cellular agents to the
environment” through influencing it by modifying the cell status from non-urban to urban.
In other words, we have defined the interactions in several steps. First, a cellular agent
searched the lands and collected the information for the probable development status
depending on the cell’s size, the least area needed for building a dwelling, the location, and
adjacent neighboring cells. Then, it assessed the situation based on the behavioral rules,
suitability, and probability of developing it. Reaching the thresholds allowed the cellular
agent to take the development action, where constraints and limitations of transition
defined the cellular agents’ response to be developed during the model run. Thus, the
most crucial step in the model was defining cellular agents’ interactions to reach the
development decision.

4.2. Applying the Adjacent Neighborhood

We have verified that the neighbor’s status is an initial element of behavioral rules and
a prerequisite for a cellular agent’s development action. Research on neighborhood effects
mostly applied a kernel cell influenced by its neighbors such as a Moore neighborhood [93,94]
or a distance decay neighborhood [44]. We did not replicate the previous research; instead,
we applied the adjacent cell’s neighborhood considering the polygon neighbor list, which
could cover all the possibilities of the accessibility by neighbors. The adjacent neighborhood
is based on the spatial and quantity influence of neighbors [95]. It can implicitly address
spatial heterogeneity; through the adjacent polygon neighbor list, the cellular agent assessed
the number and proportion of neighbors that have developed at each time step and made its
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development decision. If no immediate neighbor or neighbor’s neighbor has been developed,
the cellular agent’s probability value to develop was small.

4.3. State of the Cellular Agent

Typically, many studies have employed a lattice of square cells or a raster data surface
as the state of their agents [72,94,96]. In contrast, some other researchers tried to develop
irregular space states for their simulations [73,97]. Regular cells rarely represent the basic
unit of land use, so adopting a conventional regular cell-based CA model could affect
the performance of the simulation. Instead, applying an irregular structure of cells with
different sizes can better represent the reality [98] of urban expansion, which took place in
a non-uniform space. Therefore, in our model, we have integrated the regular environment
and irregular cells in the data model and operations, which performed more realistically in
capturing the geometric details. We showed that the cellular agent’s development status
depends on different factors such as accessibility and suitability. Therefore, a cellular
agent’s final state changed to built-up when a cell passed the whole assessment tests. It is
consistent with what has been found in the research by Dahal and Chow [73] on the level
of irregular cadastral land parcels, Pinto and Antunes [99] on the level of irregular cells of
census blocks, and Chen et al. [98] on the level of patch-based simulation.

4.4. Coupling Markovian Transition Probability with CA–Agent

Using Markov Model integrated with cellular automata is a widely used technique to
describe the likelihood of the state for conversion between two timestamps. It estimates
the transition probability [38,100–102] as the potential changes of the future. Berberoğlu
et al. [103] have shown that conditional probabilities of the Markov model are reliable
for allocating the to-be-changed state of cells. A similar application of the Markov model
was obtained by Aburas et al. [68] in predicting the quantity of urban and non-urban
areas. However, in line with the idea of Xu et al. [69], we agreed that to overcome the
limitations of the Markov model, it is required to integrate results with other models. In
this case, investigating the values of transition probability of Markov in a CA–Agent model
is a new approach that we employed in our model. Instead of randomly assigning the
probability values to the change factors, we used Markovian transition probability, which
extracted the spatial conversion during the time, resulting in a better projection of agent
cell development status.

4.5. Configuration of Suitability Factors

Suitability factors play essential roles in the model configuration, indicating the state
of the agent’s likelihood to develop from a non-developed to a developed one. In our
model, the cellular agents made their decision regarding the influence of some factors
consist of “distance to Tallinn”, “distance to main roads”, “distance to local roads”, and
“neighborhood status”. The different variables mainly depend on the reality of driving
forces of urban expansion in the study area and changes regarding modifying the extent.
In line with the study performed by Mozaffaree Pour and Oja. [47] on the same area, we
reached the selected factors. Additionally, Tan et al. [93] demonstrated that distance to
the city center, major roads, and the main river negatively influences urban expansion.
Similarly, Mustafa et al. [50] used the distance factors to roads, towns, and railways, and
Liu et al. [94] applied spatial variables of distance to the town center, roads, and water as
the suitability factor.

4.6. Urban Expansion Simulation

During the 28 years from 1990 to 2018, built-up areas increased by 25.03% in Tallinn
and its 15 km buffer zone. The increase of urban areas despite the decrease in population
characterizes changes in the way of life. Urban expansion during 1990–2006 had risen by
18.15%, which was faster than the expansion of urban areas between 2006 and 2018 with an
8.40% increase. We performed the model run two times, in 2018 and 2030. The first 12-years
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runs represented 1736 cells converting from undeveloped status to developed. Then, we
evaluated the performance of the model by operating the Kappa Index of Agreement. It
shows a degree of 0.86, a relatively high degree of correct simulation result for the first
simulated map. Similar trends have been observed in actual data in the research by Oja [79]
in Estonia.

Further, we performed the second simulation for the year 2030. After the 12 runs of
the model, 2881 cells were developed, with 12.22 square kilometers adding to built-up
areas. Therefore, the total built-up areas from 1990 to 2030 will reach 175.24 sq. km with an
increase of 30.25% in total. The result is in good accordance with the actual changes.

4.7. Research Limitations

Besides many advantages of the CA–Agent model in simulating the cellular agents’
interactions over time, this research has some limitations. Because of the lack of time-series
spatial data in the cadastral level in the study area, we decided to investigate the model
at the cell level. While implementing the CA–Agent model with precise spatiotemporal
cadastral data will generate simulation closer to reality, another limitation involves the
inherent of the model itself, as each model has its limitation. The CA–Agent model, like the
other simulation models, suffers from the extrapolation of past trends. It is a constraints-
driven model rather than a preference-led model and lacks the dimension of human
decision. Furthermore, despite significant advancement in computing and modeling, there
is still the issue of complexity in urban systems, which requires mediating knowledge with
the reality of environmental changes.

5. Conclusions

Trade-offs between agriculture, forest, and built-up lands need simulation modeling
approaches to link expansion orientation and quantify spatial planning activities. In this
paper, we employed the CA–Agent model to monitor the process of urban expansion
and simulate urban expansion in Tallinn and its 15 km buffer zone. Application of the
CA–Agent model for spatial planning activities let us consider how implementing different
driving factors, probability of changes, and modifying thresholds will affect the outputs
of the model and the distribution of the built-up over time. Correspondingly, spatially
explicit consequences of urban expansion support the effective decision making across the
cellular agent’s characteristics and rules of behavior in spatial planning.

It is essential to highlight that even though the built-up area in the study area increased
by 25.03%, the population of Tallinn decreased by 10.19% between 1990 and 2018. The
dominating migration has been from Tallinn into surrounding municipalities (feeding the
new settlement areas) and from other regions of Estonia to Tallinn.

In this regard, modeling the factors affecting urban expansion in Tallinn area is critical
to detect future expansion trends. The integrated CA–agent model in our research allowed
us to synthesize the probabilities and enhance the rules into one model. This capability
allowed the cellular agents to decide the probability of spatial transition and the rules
of behavior on interacting with the other cellular agents and their environment. The
main conclusion that can be notified is that taking advantage of cellular-based modeling,
adjacent neighborhood information, and Markovian transition probability provides the
simulated map of urban expansion in 2018 with a Kappa degree of 0.86, which confirms
a relatively high accuracy of the implemented model components. Consequently, the
model was considered “approved” for simulating the urban expansion in 2030. Thus,
implementing the CA–Agent model in the study area illustrated the temporal changes of
land conversion and represented the present spatial planning results requiring regulation
of urban expansion encroachment on agricultural and forest lands.

This conclusion follows that urban expansion is a dynamic spatial process affected by
different physical drivers. We considered the suitability factors of “distance to Tallinn”,
“distance to main roads”, “distance to local roads” and “neighborhood status” and six
constraints, namely, “main lakes”, “railways”, “watercourses”, “main roads”, “airport”,
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and “wetlands”. It best suits the simulation results to consider the social and economic
factors that could be conducted in future studies. Altogether, the modeling proves urban
expansion as a result of unplanned sprawl.
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