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Abstract: Low- and middle-income country cities face unprecedented urbanization and growth in
slums. Gridded population data (e.g., ~100 × 100 m) derived from demographic and spatial data
are a promising source of population estimates, but face limitations in slums due to the dynamic
nature of this population as well as modelling assumptions. In this study, we compared field-
referenced boundaries and population counts from Slum Dwellers International in Lagos (Nigeria),
Port Harcourt (Nigeria), and Nairobi (Kenya) with nine gridded population datasets to assess their
statistical accuracy in slums. We found that all gridded population estimates vastly underestimated
population in slums (RMSE: 4958 to 14,422, Bias: −2853 to −7638), with the most accurate dataset
(HRSL) estimating just 39 per cent of slum residents. Using a modelled map of all slums in Lagos to
compare gridded population datasets in terms of SDG 11.1.1 (percent of population living in deprived
areas), all gridded population datasets estimated this indicator at just 1–3 per cent compared to
56 per cent using UN-Habitat’s approach. We outline steps that might improve that accuracy of each
gridded population dataset in deprived urban areas. While gridded population estimates are not yet
sufficiently accurate to estimate SDG 11.1.1, we are optimistic that some could be used in the future
following updates to their modelling approaches.

Keywords: SDG11; urban; deprivation; informal settlement; poverty; mapping

1. Introduction

Over the next 30 years, 90 per cent of global population growth is expected to take
place in African and Asian cities alone, with a majority of those people added in slums,
informal settlements, and other deprived urban areas [1]. While the rates of population
growth in many low- and middle-income countries (LMICs) are similar to the rates of high-
income countries (HIC) a century ago [2], the absolute numbers of people being added to
LMIC cities today are unprecedented in human history [3]. Over the next decade, Kinshasa
(D.R. Congo) is expected to add 757,000 people per year, Lagos (Nigeria) 623,000 per year,
Cairo (Egypt) 462,000 per year, and Dar es Salaam (Tanzania) 409,000 people per year [1].
Massive population inflows have left city institutions grappling to respond to housing,
transportation, services, and basic environmental needs, with citizens living in increasingly
unequal, dynamic, and precarious circumstances [3]. Major housing crises across LMIC
cities have left millions of low-income people with no choice but to live in slums, informal
tenancies, hostels, at their place of work (e.g., shop), or other short-term or non-traditional
arrangement [4]. With limited updated information about how many people live where,
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local and national leaders are handicapped in their ability to monitor indicators such as
local Sustainable Development Goals (SDGs), and respond effectively to compounding
challenges [3].

Rapid urbanization in LMIC cities means that traditional modes of population data
collection such as government administrative records, censuses (conducted roughly every
10 years), and routine household surveys (conducted roughly every five years) are increas-
ingly inaccurate, especially with respect to the urban poorest [5]. LMIC government data
systems such as civil registrations and vital statistics have been consistently deprioritized
over the last half century by governments and international donors which means that
only a handful of LMICs today have a reasonably complete and updated count of births,
deaths, and marriages, with the rural and urban poorest most likely to be unregistered [6].
In slums and informal settlements, censuses tend to either omit populations or count
them in rural family homes [7], and one in ten LMICs has not held a census in the last
15 years [8]. These sources of population data can also be inherently political. In Nigeria,
all modern censuses—1962/3, 1973, 1991, and 2006—have been contentious with accusa-
tions of undercounts of rural populations and women, and over-counts in the north of the
country [9–11]. In Nairobi, Kibera slum is widely cited as among the most populous in the
world [12], yet there is no agreement on how many people live there. Although Kibera’s
population was estimated to be 200,000 in 2009 by official and scientific sources [13,14],
local and international advocacy groups estimated the population to be between 500,000
and 1 million people or more [12,15].

In the absence of reliable administrative and census data, governments and donors
have invested heavily in routine household surveys to generate official statistics. Surveys,
however, are almost always sampled from the last census which means that informal and
newly settled areas are likely to be under-represented, and survey field methods designed
40 years ago for majority rural settings tend to miss urban households living in short-term
or atypical accommodation [5]. The dearth of data about the location and number of
urban poorest in LMICs is of growing concern to governments, civil society, development
organizations, and others working to address housing crises, mitigate the effect of natural
disasters, meet basic education and health needs, and ensure humane conditions for people
to pursue a dignified existence [16].

In the context of these data challenges, another potential source of population in-
formation is modelled gridded population datasets [17]. New technologies, data, and
methods have enabled innovate approaches to estimate populations in LMICs. In the
last 20 years, very high resolution satellite imagery and other Earth Observation data
have become widely and freely available [18], massive increases in computing power now
enable low-cost and free big data processing [19], and large-scale investments have been
made into volunteered geographic data initiatives such as OpenStreetMap [20]. These
technologies and datasets along with traditional population data sources, such as censuses,
provide the building blocks to model population counts at fine geographic scale. Modelled
gridded population datasets with estimates of residents in areas smaller than a city block
have proven to be a flexible type of data because it can easily be aggregated into any larger
geographic unit to provide policy relevant knowledge, for example, as denominators to
estimate and improve vaccination campaign coverage [21], to identify and fill local gaps in
maternal health services [22], to respond to and recover from disasters [23], or as a survey
sample frame in the absence of up-to-date census data [24]. As data and technologies
improve, so does the accuracy and detail of modelled gridded population datasets [25].
However, given that many gridded population datasets are derived from censuses, it is
unclear if these gains apply equally to all sub-areas and sub-populations, particularly
vulnerable and mobile populations living in slums and informal settlements.

In this paper, we address the question: “How accurate are gridded population datasets
in slums and informal settlements in three LMIC cities?”, and assess the strengths and
weaknesses of each dataset for measuring SDG 11.1.1, the percent of population living
in slums, informal settlements, and other deprived areas [26]. We answer the research
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question by comparing gridded population estimates in a selection of field-referenced
slums for which population counts were reported by slum dwellers in Lagos (Nigeria),
Port Harcourt (Nigeria), and Nairobi (Kenya), and assess the fitness of gridded population
datasets for SDG 11 monitoring in Lagos where we had access to a modelled surface of
all slum areas. The paper is structured as follows. Section 2 introduces the three study
cities; dataset of slum areas and population counts, modelled slums across Lagos, and nine
gridded population datasets; and methodological details of our two analyses. Section 3
summarizes results of both analyses to, first, answer the research question and, second, to
assesses fitness of gridded population data for SDG 11 monitoring. In Section 4, we discuss
the specific strengths and weaknesses of each gridded population dataset evaluated, and
offer suggestions to improve the accuracy of these datasets in urban deprived areas. Finally,
in Section 5, we offer concluding remarks on the accuracy of gridded population estimates
in LMIC slums and informal settlements.

2. Materials and Methods
2.1. Setting

For this study, we selected three diverse cities with which we were already familiar
and which have unique slum area characteristics: Lagos (Nigeria), Port Harcourt (Nigeria),
and Nairobi (Kenya) (Figure 1). Lagos is the most populous city in Africa with 14.3 million
residents projected in 2020 and an annual population growth rate of 3.3 per cent [27].
Constrained by its location on the coast, the city footprint has expanded north, west, and
east, subsuming formerly rural and peri-urban villages [28]. Millions of in-migrants from
rural areas as well as newly incorporated residents have been forced into slums and slum-
like conditions due to a decades-long housing crisis which has left a deficit of at least five
million housing units in the city [28] and forced-up housing costs [29]. Slum clearance
and relocation campaigns by authorities over the last two decades have attempted to
move the poorest out of sight [28]. However, routine slum clearance along with rapid
population growth has had the effect of fragmenting the urban poorest into many small
“pocket slums” throughout the city [30]. Millions more seek residency on water in “floating
slums” proximate to the city center in the Lagos Lagoon and surrounding marshlands [31].
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Figure 1. Map of three study cities.

Port Harcourt, a secondary city braided by rivers that comprise the Niger Delta, has
3 million residents and an annual population growth rate of 5.1 per cent [27]. Like Lagos, the
city has expanded rapidly in recent decades, subsumed surrounding settlements, and tens
of thousands of slum residents along the waterfront are displaced each year by government
demolitions [32]. The slums in Port Harcourt, however, are more consolidated than in



Urban Sci. 2021, 5, 48 4 of 32

Lagos, and these areas have active and powerful gangs that both challenge authorities—in
some cases halting evictions—but also harass and threaten residents [32].

Nairobi, located in Kenya’s central plateau, is a city of 4.7 million people with an
annual population growth rate of 3.9 per cent [27]. Many of the city’s more than 100 slums
are notoriously dense and sprawling [33]. Large deprived areas like Kibera are often
thought of as a single slum by outsiders, but are considered to be multiple distinct, and
contiguous, settlements by residents [34]. With so many well-established and large slums,
Nairobi has produced many strong and effective community-led initiatives that have
succeeded at planning and implementing their own community upgrading initiatives,
and worked effectively with local government on joint upgrading projects [35]. However,
the relationships between slum communities and the local government remains fickle; in
a push for citywide development and without a national land registry, the government
commonly forcibly evicts residents to make way for roads and industry [36]. In May
2020, city officials made international headlines when they forcibly evicted between 5000
and 8000 residents with no support during Nairobi’s initial COVID-19 curfews and travel
restrictions [37,38].

2.2. Data

Three types of data were used: boundaries and population counts of field-referenced
slums in three cities (Section 2.2.1), boundaries of all slum-like settlements in Lagos
(Section 2.2.2), and multiple gridded population datasets (Section 2.2.3).

2.2.1. Know Your City Deprived Area Boundaries and Population Counts

Boundaries and field-referenced population estimates in deprived areas were adapted
from the Know Your City (KYC) Campaign website [39]. The website was launched in
2016 by Slum Dwellers International (SDI), a federation of hundreds of slum community
advocacy groups across Africa and Asia, with support from the United Cities and Local
Governments of Africa, Cities Alliance, and other partners [40]. At the time of this writing,
more than 7700 settlements in over 220 cities had been profiled. Each profile is created
by community members themselves and includes a visual of the settlement boundary; a
brief history; estimated population and structure counts; legal status of the settlement; a
ranking of community-defined priorities; and summary statistics about sanitation, water,
infrastructure, community leadership, healthcare, and commercial assets.

Community profiling serves multiple purposes, foremost, as a vehicle for marginalized
people in deprived settlements to self-organize and crystallize a community identity, self-
worth, needs, priorities, and aspirations. The profiling activity, secondarily, results in
quantitative and spatial data that can be used by community members to plan and upgrade
their settlement, as well as to lobby civil society and local government for support toward
their goals. The compilation of settlement profiles on the KYC Campaign website builds
strength and awareness across communities within the SDI federation, while presenting a
unified case for respect and investment from city, national, and global power-holders [40].

Although the KYC Campaign website provides a trove of field-referenced data about
the world’s most deprived communities, the data pose some challenges for research:
(1) community profiles are presented separately, and cannot be accessed as a single database;
(2) many profiles are incomplete; (3) community-generated geographic boundaries and
population estimates have not been verified for accuracy; and (4) spatial boundaries are
only visualized over a roads base layer, and are not directly downloadable. Settlement
boundaries are mapped by collecting GPS coordinates around the settlement perimeter.
Population estimates are generally derived by physically marking and counting all front
doors in the settlement, sampling every nth household to estimate average household
size, and then multiplying number of front doors by the average household size in the
settlement; this estimated number is then discussed and agreed by consensus in an open
community forum (personal communication, Andrew Maki, 9 November 2020).
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To prepare data for this analysis, each settlement boundary was retraced in ArcGIS
10.5 by taking screenshots from the KYC Campaign website, aligning it was OpenStreetMap
roads, and manually adjusting boundaries over satellite imagery, sometimes introducing
assumptions based on landscape patterns about community data collectors’ intended
boundaries (Appendix A Figure A1). The settlement name, date of profile creation, and
reported population estimate, structure count, and area in acres were copied from KYC
Campaign profiles into an excel table, and joined to settlement boundaries in ArcGIS
based on a unique settlement ID created for this study. This resulted in 134 digitized
slum settlements (32 Lagos, 39 Port Harcourt, 63 Nairobi) with field population estimates
collected between 2013 and 2020 (Figure 2).
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settlements in KYC dataset.

2.2.2. Lagos Slum Map

A modelled layer of slum settlement locations across Lagos State was obtained from
Badmos and colleagues (2019) as a proxy for actual slum boundaries [41]. This modelled
output was derived using object-based image analysis (OBIA) with logistic regression, and
datasets derived from RapidEye and Sentinel-2 satellite imagery, a digital elevation and
slope model, and Lagos State Government spatial data of water bodies, roads, and land
use types [41,42]. The model was trained and validated on a dataset of 242 community
locations ranked by neighborhood income level as defined by local experts, with 83 percent
accuracy in slums and 79 per cent overall accuracy [41]. The output roughly represents
the year 2015 and classifies approximately 10 × 10 m cells as either slum or non-slum
(Figure 3). In ArcGIS 10.5, we aggregated this output to approximately 50 × 50 m cells,
and then reclassified non-slum cells surrounded on four sides by slum cells as “slum” so
as to create contiguous slum areas. Only 24 of the 32 (75 per cent) KYC Campaign slum
boundaries in Lagos intersected the contiguous slum areas defined from the Badmos data,
suggesting that this map is a conservative representation of Lagos’ slums.
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2.2.3. Gridded Population Estimates

Nine gridded population datasets in Nigeria and eight datasets in Kenya derived
with diverse methods were available for analysis, including seven “top-down” and two
“bottom-up” datasets (Table 1). Top-town gridded population models are based on pop-
ulation counts in census enumeration area (EA) or other geographic units that cover the
entire population. Generally, top-down datasets are dasymetric, meaning that population
disaggregation is informed by covariate datasets, and that estimates in grid cells sum to
the population counts of input geographic units [43]. Bottom-up models use micro-census
counts of the population in a selection of small areas, or assumptions about household size,
to estimate population in each grid cell directly [24]. Gridded population datasets can be
further classified by the complexity of their modelling approach (e.g., direct disaggregation
versus statistical weighting), by whether the outputs are constrained to settled areas, and
by the size of the grid cell in which population is estimated [25]. Figure 4 visually compares
all nine datasets in a small area of Lagos along the lagoon where many informal settlements
exist. Most of these datasets aim to represent the residential (night-time) population with
the exception of LandScan, and most are openly available.

The main un-modelled top-down gridded population dataset is Gridded Population
of the World (GPW) by Columbia University’s Center for International Earth Science Infor-
mation Network (CIESIN). The current version of this dataset, GPW4v.11, uses the most
spatially-detailed, recent census data available, and produces estimates of the population in
approximately 1× 1 km grid cells for 5-year increments including 2015 and 2020 by directly
disaggregating the population based on areal weights [44,45]. The age and scale of the
input census data varies substantially by country; Nigeria’s gridded estimates are derived
from 2006 2nd-level administrative units (Local Government Areas—LGAs) while Kenya’s
gridded estimates are derived from 2009 5th-level administrative units (sublocations) [44].
Only water bodies and protected areas (e.g., game parks) are excluded before population
disaggregation, and no validation exercise is undertaken. Two versions are available which
do, and do not, adjust for UN population projections; we use the UN-adjusted version
in this analysis. While GPWv4.11 is not expected to be highly accurate at the grid-cell
level because populations are not evenly distributed in space, this dataset is useful for
multi-country and global analyses, and the harmonized census boundaries and population
counts behind this dataset serve as the population input to all other top-down gridded
population datasets except LandScan and WPE (discussed below).

Similarly, lightly modelled datasets disaggregate population counts equally among
cells; however, disaggregation is constrained to populated places first, as defined by
settlement extents or building footprints [46–49]. The Global Human Settlement Population
Layer (GHS-POP) by the European Commission Joint Research Centre (EC-JRC) defines
settlements coarsely from publicly available 30 × 30 m Landsat imagery, and produces
population estimates in approximately 250 × 250 m grid cells for 1975, 1990, 2000, and
2015 [46,47]. The High Resolution Settlement Layer (HRSL) by the Facebook Connectively
Lab and CIESIN constrains population estimates to approximately 30 × 30 m grid cells
that contained any building extracted from 0.5 × 0.5 m Digital Global imagery for the
year 2018 [48,49] (Table 1). Neither of these data producers validate the accuracy of
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disaggregated estimates, and both are currently working on updates based on more refined
settlement layers.
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area along the Lagos Lagoon (Nigeria). Dark orange = higher population density, white = zero
population estimate. (a) Gridded Population of the World by Columbia University’s Center for
International Earth Science Information Network (CIESIN). (b) Global Human Settlement Population
Layer by the European Commission Joint Research Centre. (c) High Resolution Settlement Layer by
the Facebook Connectively Lab and CIESIN. (d) WorldPop Global Unconstrained by the WorldPop
team at University of Southampton. (e) LandScan Global by the U.S. Oak Ridge National Labora-
tory. (f) World Population Estimates by ESRI. (g) WorldPop Global Constrained by the WorldPop
team at University of Southampton. (h) peanutButter algorithm by University of Southampton to
estimate population counts from building footprints. (i) Geo-Referenced Infrastructure and Demo-
graphic Data for Development estimates by WorldPop, CIESIN, Flowminder Foundation, and UN
Population Fund with funding from the Bill & Melinda Gates Foundation and UK Department for
International Development.
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Highly modelled datasets are based on a statistical or geographic algorithm which
varies population disaggregation based on the presence of human activity as measured
with multiple spatial covariates. Top-down highly modelled gridded population datasets
include LandScan Global estimates from the US Government Oak Ridge National Labo-
ratory, World Population Estimates from ESRI, the producer of the ArcGIS software, and
WorldPop estimates from the WorldPop team at University of Southampton (Table 1).

LandScan Global is an approximately 1 × 1 km gridded population dataset rep-
resenting ambient population, the 24-h average of day-time commuter and night-time
residential populations, and it is updated annually. The probability weights matrix created
for population disaggregation is generated with co-kriging, a multivariable geographic
model, using US Census global population estimates and four covariates: roads, slope,
land cover, and night-time lights [50]. To account for economic, physical, and cultural
differences that affect the relationship between covariates and population density locally,
LandScan Global analysts assign weights by location to manually adjust population disag-
gregation. Depending on the available of resources, more or less manual spot checks for
a particular country or region are made over high resolution satellite imagery to inform
manual adjustments [51]. Non-settled areas as defined by a land cover layer are set to zero,
resulting in constrained estimates. LandScan Global is a commercial dataset that is made
free to US Government agencies, humanitarian, and educational organizations [51].

World Population Estimates (WPE) is another commercial dataset available to regis-
tered ArcGIS users, with gridded population estimates in 162 × 162 m grid cells for 2016.
Before disaggregating population estimates to grid cells, settled areas are identified from a
land cover model called BaseVue 2013 which is based on 30 × 30 m Landsat data. Cells
classified as settled are then apportioned census population counts collated by ESRI using
a geographic algorithm based on BaseVue 2013 land cover type, road intersection locations,
and settlement point locations [52]. Population estimates are not assessed directly for
accuracy, but the dataset is provided with a confidence score layer based on the quality of
data inputs available for a given grid cell.

WorldPop is an approximately 100 × 100 m dataset of gridded population estimates
derived with country-specific models using a Random Forest machine-learning approach,
coupled with GPWv4.11 census-derived inputs, and more than a dozen country-specific
spatial covariates including land cover, roads, intersections, slope, night-time lights, temper-
ature, and precipitation [53]. All WorldPop datasets—including its predecessors AfriPop,
AsiaPop, and AmeriPop—were unconstrained [54], meaning that population estimates
were made in all land areas with tiny fractions of a person predicted to live in deserts,
forests, and other unsettled grid cells. In 2019, WorldPop created global datasets of uncon-
strained estimates for each year between 2000 and 2020 which provided a data product
with consistent covariates for all countries [55]. In 2020, WorldPop also released a single-
year version of the global dataset in which population counts were constrained to settled
areas. In most African countries, settlement boundaries were defined with the highly
detailed Ecopia building footprints dataset [56], while the Built-Settlement Growth Model
was used to constrain estimates in other countries [57]. Both of WorldPop’s constrained
and unconstrained datasets are released with and without UN population adjustments,
and assess for accuracy at the scale of the input population data [53]. Only WorldPop’s
UN-adjusted population estimates were considered for this analysis for both constrained
and unconstrained datasets.

Recently, the WorldPop team released an R algorithm and beta web-tool which can
be considered an un-modelled bottom-up estimate of population. The peanutButter tool
applies three parameters—average household size, average number of households per
building, and percent of buildings that are residential—to the Ecopia building footprint
layer to estimate total population counts in approximately 100 × 100 m grid cells [58].
Ecopia building footprints were extracted from 2015 through 2019 imagery, with most
footprints representing 2018 buildings [58]. The tool provides default average parameter
values based on household survey data, which the user can modify, and thus the model
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outputs are not verifiable. The WorldPop-Peanut Butter datasets downloaded for this
analysis used default values in Nigeria (4.9 people per urban household, 1.1 households
per building, and 71 per cent of buildings are residential) and Kenya (3.6 people per urban
household, 1.1 households per building, and 63 per cent of buildings are residential) [58].

The Geo-Referenced Infrastructure and Demographic Data for Development (GRID3)
project produces census-independent bottom-up population estimates in select countries
while addressing barriers to government acceptance and use of gridded population data.
The project is managed by CIESIN in close collaboration with WorldPop, Flowminder
Foundation, and UN Population Fund (UNFPA) with support from the Bill & Melinda
Gates Foundation (BMGF) and UK Department for International Development (DFID), and
has released approximately 100 × 100 m gridded population estimates in five countries
including Nigeria, but not Kenya [59]. GRID3 models are based on a sample of micro-
census population counts in small areas (e.g., 3 hectares), as well as two covariates related
to the settlement type and existing top-down population estimates. In Nigeria, most
microcensus counts were collected in 2016, and WorldPop-unconstrained 100 × 100 m
estimates were used as the top-down population covariate. A hierarchical Bayesian model
is then used to quantify a relationship between microcensus population densities and
covariates, which the model uses to predict population density in each cell outside of the
microcensus units [60]. Cells classified as unsettled in the settlement layer are set to zero,
resulting in a constrained estimate of the population. Like the WorldPop-Constrained and
Unconstrained models, the GRID3 model reserves a portion of the input population data
to estimate model errors at the scale of the input population [60].

The differing approaches to modelling results in varied outputs across the nine gridded
population datasets, especially at a local level (Figure 4). Other gridded population datasets
not evaluated here because they were unavailable to the study team or outdated, including
the forthcoming “bottom-up” LandScan-HD dataset by Oak Ridge National Laboratory [61],
History Database of the Global Environment (HYDE) population, and Global Rural Urban
Mapping Project (GRUMP) [62].

Table 1. Summary of gridded population datasets evaluated including their producer, year of estimate, native resolution,
type of population covered by the estimate, and modelling method.

Dataset Producer Year Resolution Coverage Method Citation

Top-down: Un-modelled: Unconstrained

GPWv4.11 CIESIN, Columbia
University 2015, 2020 30 arc sec (~1 km2) Residential

Equal allocation of population to cells
within census unit (areal weighting on

edge cells)
[44,45]

Top-down: Lightly modelled: Constrained

GHS-POP

European
Commission, Joint

Research Centre
(JRC)

2015 9 arc sec (~250 m2) Residential
Binary dasymetric, proportional

allocation to built-up areas extracted
from 30 m Landsat imagery

[46,47]

HRSL
Facebook

Connectivity Lab
and CIESIN

2018 1 arc sec (~30 m2) Residential
Binary dasymetric, proportional to

houses/settlements extracted from 0.5 m
Digital Globe imagery

[49]

Top-down: Highly modelled: Unconstrained

WorldPop-
Unconstrained

WorldPop, Univ. of
Southampton 2015, 2018 3 arc sec (~100 m2) Residential Random Forrest model with 24

covariates and dasymetric redistribution [53,63]

Top-down: Highly modelled: Constrained

LandScan Oak Ridge National
Laboratory 2015, 2018 30 arc sec (~1 km2) Ambient

(24-h average)
Multivariable dasymetric model with 4

covariate types and bespoke weight layer [50,51]

WPE ESRI 2016 162 m Residential Dasymetric algorithm with 16 inputs [52]

World-Pop-
Constrained

WorldPop, Univ. of
Southampton 2020 3 arc sec (~100 m2) Residential

Random Forrest model with 24
covariates and dasymetric redistribution

constrained to cells with buildings in
Africa and urban extents elsewhere

[64,65]
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Table 1. Cont.

Dataset Producer Year Resolution Coverage Method Citation

Bottom-up: Un-modelled: Constrained

WorldPop-
PeanutButter

WorldPop, Univ. of
Southampton ~2018 3 arc sec (~100 m2) Residential

Based on Ecopia building footprints,
average household size,

and 2 building parameters
[58]

Bottom-up: Highly modelled: Constrained

GRID3
(Nigeria v1.2)

CIESIN, WorldPop,
Flowminder,

UNFPA, BMGF,
DFID

2016 3 arc sec (~100 m2) Residential
Hierarchical Bayesian model with

6 covariates and trained on a sample of
3-hectare microcensus population counts

[60,66]

2.3. Data Checks and Processing

Given the incongruent years of population estimates in the KYC Campaign dataset, as
well as among gridded population estimates, we aligned data in two time periods: 2013
through 2016, and 2017 through 2020. Each of the gridded population datasets were down-
loaded and projected to UTM 31 in Lagos, UTM 32 in Port Harcourt, and UTM 37 in Kenya.
This meant that we downloaded two estimates from GWPv4.11, WorldPop-Unconstrained,
and LandScan Global which included estimates for multiple years. Gridded population
estimates were then summed within each settlement boundary such that population values
from partially covered grid cells were weighted by the fraction of area covered by the
settlement. As a result, smaller settlements (e.g., settlement 20 in Figure 4) were only
attributed a portion of a cell’s population from gridded population estimates that had a
coarse spatial resolution (e.g., 1 × 1 km). A comparison of the three gridded population
datasets with multiple estimates showed substantial differences in population estimates
over just a few years in study settlements, underscoring the importance of aligning years
(Appendix A Figure A2).

Data checks were then performed to gauge the quality of KYC Campaign data and
our retraced settlement boundaries. Settlements with the largest reported populations
by KYC were visualized over current and historical satellite imagery in Google Earth to
evaluate whether the reported population estimate seemed plausible. We also checked
settlements in which the median gridded population estimate was larger than KYC. Settle-
ments judged to have questionable field-referenced population estimates were excluded
from the analysis (documented in Appendix A Figure A3). In settlements for which KYC
reported the settlement area, the KYC area and area of digitized boundaries were com-
pared (Appendix A Table A1), and we spot checked our digitized boundaries that differed
substantially from KYC reports. After all data checks, 118 KYC settlements were retained
for analysis (26 in Lagos, 39 in Port Harcourt, and 53 in Nairobi).

2.4. Analysis One: Comparison of Gridded Population Estimates and KYC Field Reports

Differences in KYC reported population and each gridded population estimate were
then calculated. Only comparisons that fell within the same time period were evaluated.
Visual comparisons were made using line graphs, and the following accuracy statistics:
mean absolute error (MAE), root mean square error (RMSE), bias, and median fraction
(MF) of the KYC population estimated by each gridded population dataset. MAE is a
measure of overall precision, RMSE is a measure of overall error magnitude which penalizes
large errors, and bias and MF indicate the degree of over/under estimation by gridded
population datasets. These statistics are calculated as follows, where yi is the reported KYC
population in settlement i, ŷi is the gridded population estimate in settlement i, and n is
the count of settlements:

MAE =
∑n

i=1|ŷi − yi|
n

, (1)

RMSE =

√
∑n

i=1(ŷi − yi)
2

n
, (2)
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Bias = ∑n
i=1 ŷi − yi

n
, (3)

MF = Median
(

ŷi
yi

)
. (4)

Finally, a descriptive comparison was made of the mean and maximum population
densities per 200 × 200 m area (roughly the average area of KYC slum settlements assessed
across the three cities). We found KYC population densities by calculating the mean
population density per sq. m in each settlement, then multiplied by 40,000. To calculate
population densities for each gridded population dataset, we created a 200 × 200 m grid
over each city, selected only those grid cells located entirely within the city boundary, and
then summed the gridded population estimate within each 200 × 200 m unit, applying
areal weighting.

2.5. Analysis Two: Comparison of Gridded Population Estimates for SDG 11 Monitoring in Lagos

In the second analysis, we used the modelled slum/non-slum boundaries in Lagos
State derived from Badmos and team [41] to calculate the percent of population living in
slums according to each gridded population dataset. As in Section 2.3, modelled slum
boundaries that only partially covered a gridded population cell were weighted on the
fraction of area covered. For GPWv4.11, WorldPop-Unconstrained, and LandScan, only the
2015 estimates were evaluated.

Although we had no “true” slum population measurement for comparison in this
analysis, we used the 2018 Nigeria Demographic and Health Survey (DHS) [67] as a
reference by calculating the percent of households considered to be “slum households”
according to UN-Habitat [68]. According to UN-Habitat, a “slum household” lacks any of
the following: adequate water, adequate sanitation, durable floors (and walls and roof),
or less than four people per sleeping room; and this definition is used widely to estimate
SDG 11.1.1 and other slum indicators [3]. Note that durable wall and roof materials are
not collected in all DHS surveys, so durable floor material alone tends to be used as a
proxy (e.g., [69]). Furthermore, the UN-Habitat definition defines households without
secure tenure to be “slum households”, but tenure status is rarely measured in censuses or
surveys, and thus this part of the definition is omitted in practice (e.g., [70]). To identify
Nigeria DHS households in Lagos State, we subset all Lagos households as defined in
the survey, calculated whether each household was considered a “slum household”, and
summarized household slum status across Lagos by applying household sampling weights.
All analyses were performed in R 3.6.0.

2.6. Ethics

As a secondary analysis of open, aggregated datasets, ethics approval was unnec-
essary and not sought. The original data sources, including nine gridded population
datasets [44–47,49–53,58,60,63–66], KYC slum boundaries with population counts [39], and
Lagos’ modelled slum layer [41,42], are cited. For transparency and to gather feedback, we
presented and discussed our methods and results with members of the Profiling team at
SDI in Lagos.

3. Results
3.1. Analysis One: Comparison of Gridded Population Estimates and KYC Field Reports

Across all three cities and both time periods, gridded population datasets tended to
vastly underestimate the total population in populous settlements relative to KYC reported
population counts (Figure 5). No particular gridded population dataset stands out as con-
sistently producing more accurate estimates than the rest. HRSL estimates in Port Harcourt
were consistently closer to the reported KYC population than other datasets, LandScan had
the largest estimate for the largest reported slum settlement in Lagos; and GHS-POP and
WorldPop-Unconstrained had the largest estimates for Nairobi’s most populous reported
slum settlement, though all were still substantially underestimated (Figure 5). In a handful
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of settlements, gridded population estimates were substantially larger than the reported
KYC population (e.g., GPWv4.11 in one Lagos and one Nairobi settlement, and HRSL in
one Port Harcourt settlement), though no clear pattern in overestimates emerged (Figure 5).
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tion might be attributed to a modelled slum map that did not include all slum areas in 
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Figure 5. Know Your City reported population versus gridded population estimates in 118 slum settlements across Lagos
(Nigeria), Port Harcourt (Nigeria), and Nairobi (Kenya). Only gridded population estimates and KYC reported populations
aligned in the same time period are reported. Population comparisons in (a) Lagos 2013–2016, (b) Lagos 2017–2020, (c) Port
Harcourt 2013–2016, (d) Port Harcourt 2017–2020, (e) Nairobi 2013–2016, and (f) Nairobi 2017–2020.

Table 2 presents the overall MAE, RMSE, Bias, and MF for each dataset in the 118 slum
settlements, and datasets are ordered from most-to-least accurate. More accurate datasets
included HRSL (MAE: 3265; RMSE: 4958), WorldPop-Constrained (MAE: 3491; RMSE:
5001), GRID3 (MAE: 3366; RMSE: 5296), and WorldPop-Peanut Butter (MAE: 3586; RMSE:
5073) (Table 2). The remaining datasets were nearly twice as inaccurate in slum settlements
across the three study cities, including WorldPop-Unconstrained (MAE: 6048; RMSE:
10,889), GPWv4.11 (MAE: 6189; RMSE: 10,889), LandScan (MAE: 6087; RMSE: 12,121),
GHS-POP (MAE: 7079; RMSE: 12,854), and WPE (MAE: 7653; RMSE: 14,422) (Table 2).
All datasets were severely biased, underestimating thousands (range: −2853 to −7638)
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of people per settlement on average (Table 2). The best performing dataset, HRSL, only
estimated 39 per cent of the KYC field-referenced population, on average (Table 2).

Table 2. Summary of error in nine gridded population datasets across 118 Lagos (Nigeria), Port Harcourt (Nigeria), and
Nairobi (Kenya) slum settlements compared to field-referenced population counts reported by Know Your City (KYC).
Gridded population datasets ordered by most-to-least accurate.

Dataset MAE RMSE Bias MF Dataset Characteristics

HRSL 3265 4958 −2853 0.39 2018 Top-down Lightly modelled Constr. ~30 × 30 m
WorldPop Constrained 3491 5001 −2942 0.27 2020 Top-down Highly modelled Constr. ~100 × 100 m
GRID3 (Nigeria only) 3366 5296 −3366 0.21 2016 Bottom-up Highly modelled Constr. ~100 × 100 m

WorldPop PeanutButter 3586 5073 −3571 0.21 2020 Bottom-up Un-modelled Constr. ~100 × 100 m
WorldPop Unconstrained 6048 10,889 −5899 0.11 2015, 2018 Top-down Highly modelled Unconstr. ~100 × 100 m

GPW4v.11 6189 11,482 −5892 0.12 2015, 2020 Top-down Un-modelled Unconstr. ~1 × 1 km
LandScan 6087 12,121 −6032 0.12 2015, 2018 Top-down Highly modelled Constr. ~1 × 1 km
GHS-POP 7079 12,854 −7000 0.15 2015 Top-down Lightly modelled Constr. ~250 × 250 m

WPE 7653 14,422 −7638 0.09 2016 Top-down Highly modelled Constr. 162 × 162 m

Several gridded population datasets were likely to underperform in high-density
slum settlements due to the use of average population densities in input units which
limits the highest density value that can be assigned to a cell (e.g., GPWv4.11, GHS-POP,
WorldPop, WPE). To explore this further, Appendix A Table A2 summarizes citywide
gridded population estimates in 200 × 200 m grid cells, as well as average reported
KYC population density per 200 × 200 m area. The maximum reported KYC population
200 × 200 m density in Lagos (12,123), Port Harcourt (13,885), and Nairobi (34,760) were
well above the maximum citywide estimate of any gridded population dataset (5007,
4175, and 14,771, respectively) (Table A2). In the discussion, we deduce potential reasons
for these underestimates and offer suggestions that might improve gridded population
estimates in slum areas.

3.2. Analysis Two: Comparison of Gridded Population Estimates for SDG 11 Monitoring in Lagos

In the second analysis in which we calculated the total slum population in Lagos from
a modelled slum layer, underestimates in each of the gridded population datasets for slum
settlements compounded to produce extremely low overall estimates of the population
living in slums (1.02–2.96 per cent of the overall population) (Table 3). For reference, the
survey-based UN-Habitat method for estimating slum populations puts 56.0 per cent of
the Lagos population living in slum-like conditions (Table 3). Some of this underestimation
might be attributed to a modelled slum map that did not include all slum areas in Lagos
(e.g., omission of small “pocket” slums). The two gridded population estimates that
produced the largest percentage of slum population (GRID3: 2.96 per cent and WorldPop-
Peanut Butter: 2.91 per cent) were both “bottom-up” estimates that vastly underestimated
the overall population of Lagos State compared to census-based “top-down” gridded
population estimates, which might explain the larger percentages (Table 3). On a whole,
it is clear that all gridded population datasets vastly underestimate population counts in
slum areas in Lagos.

Table 3. Count and percent of the Lagos population living in slum settlements (SDG 11.1.1) as estimated by gridded population
datasets, with estimates ordered from highest to lowest. UN-Habitat estimate of SDG 11.1.1 presented for comparison.

Dataset Slum Pop n Slum Pop % Total Pop N Dataset Characteristics

GRID3 293,858 2.96 9,929,140 2016 Bottom-up Highly modelled Constrained ~100 × 100 m
WorldPop PeanutButter 211,236 2.91 7,257,126 2020 Bottom-up Un-modelled Constrained ~100 × 100 m

LandScan 336,288 1.76 19,108,756 2018 Top-down Highly modelled Constrained ~1 × 1 km
WorldPop Constrained 229,446 1.73 13,254,820 2020 Top-down Highly modelled Constrained ~100 × 100 m

HRSL 233,618 1.66 14,040,751 2018 Top-down Lightly modelled Constrained ~30 × 30 m
WPE 181,326 1.65 11,021,596 2016 Top-down Highly modelled Constrained 162 × 162 m

GHS-POP 150,059 1.34 11,168,526 2015 Top-down Lightly modelled Constrained ~250 × 250 m
WorldPop Unconstrained 161,865 1.34 12,104,264 2018 Top-down Highly modelled Unconstrained ~100 × 100 m

GPW4v.11 154,742 1.02 15,184,176 2020 Top-down Un-modelled Unconstrained ~1 × 1 km

UN-Habitat – 56.0 – 2018 Calculated from 2018 Nigeria DHS [71] using the UN-Habitat “slum
household” approach [68]
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4. Discussion

Gridded population data are increasingly used to make consistent comparisons of
population and demographic data across settings, especially in LMICs where lack of timely,
accurate census data is a challenge. In this study, we compare nine multi-country gridded
population datasets to KYC Campaign population estimates reported by slum commu-
nity profiling teams and to a survey-based estimate of the percent of population living in
slums in Lagos. We found that all of the gridded population datasets evaluated in this
analysis severely underestimated population counts in slums and informal settlements
across three diverse African cities (Section 3.1). Underestimates were particularly severe
in the most populous—and often densest—slums which might indicate wider accuracy
problems for gridded population datasets in other high-density areas (e.g., areas with
multi-story apartment buildings). The analysis in Section 3.2 highlighted sharp discrep-
ancies between gridded population estimates in slum-like areas compared with the 2018
Nigerian Demographic and Health Survey “slum household” measure; gridded population
estimates of people living in slums were impossibly low in Lagos. A study of WorldPop-
Unconstrained accuracy against field-referenced population counts in São Paulo, Brazil,
similarly found underestimates in slums but to a lesser degree, underestimating the total
slum population in that city by six per cent [72]. More studies are needed to assess the
accuracy of gridded population at fine geographic scale, particularly in deprived urban
areas. In the meantime, gridded population data should be used with caution to calculate
urban poverty indicators such as SDG 11.1.1. In this section, we discuss potential sources
of underestimation in each of the gridded population datasets, and offer suggestions that
might improve their accuracy.

A challenge that all gridded population datasets face, regardless of method, inputs, or
output resolution, is that there are currently no global datasets that classify heterogeneous
urban areas by settlement type (e.g., slum/non-slum) [16]. If (or when) such a dataset
becomes available, producers of gridded population datasets would have the option of
tailoring their methods and inputs in sub-sections of cities to reflect what are often very
different patterns in building and population density. Until then, however, there are several
other potential steps that gridded population producers might take to improve the accuracy
of their datasets in LMIC city slums.

4.1. Recommendations for Un-Modelled and Lightly Modelled Gridded Population Datasets

The key strength of un-modelled and lightly modelled gridded population datasets is
that their methods are relatively easy to implement, and gridded population outputs are
transparent to communicate and understand.

4.1.1. GPWv4.11

Given that GPWv4.11 is an un-modelled dataset with equal distribution of population
across input units, we cannot suggest any methods to improve its accuracy aside from
continuing to pursue access to more detailed and updated census data from national census
agencies. This dataset is not designed to be accurate at fine geographic scales, and thus is
not recommended for estimating populations in slums and informal settlements.

4.1.2. WorldPop-Peanut Butter

Likewise, the WorldPop-Peanut Butter datasets is not derived from a model, and it
only has a few parameters. One challenge is that slum and non-slum households vary in
terms of average household size, average number of households per building, and percent
of buildings that are residential [73,74]. If city-, district-, or urban-wide average values
are used to create this dataset, it is no surprise that within household crowding and high-
density buildings would be masked and underestimated in slums. Another challenge is the
building footprints themselves. Contiguous rooftops are sometimes identified as a single
building in feature extraction algorithms [75]. Many of the slum settlements in this study
were characterized by high-density and contiguous buildings, especially Nairobi where
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buildings containing multiple one-room dwellings are common [76]. A likely challenge
was that too few buildings were detected in slums which limited the population allocated
to slums. Building feature extraction algorithms might require further development to
improve accuracy of building density maps in slums. If, or when, routine maps of deprived
urban area boundaries become available, then the WP-Peanut Butter tool could enable
urban slum- and non-slum-specific parameters to improve gridded population estimates
in slum areas.

4.1.3. GHS-POP

GHS-POP uniformly distributes population within built-up areas of input units de-
fined by their GHS-BUILT dataset. While the current GHS-BUILT layer is based on older
freely available 30 × 30 m Landsat imagery, new free building footprint layers such as
Ecopia are becoming available. In the near future, the producers of GHS-BUILT might
refine the definition of built area boundaries with new building footprint data, though like
GPWv4.11, this dataset is not designed for fine-scale accuracy at the grid cell-level, and is
not recommended for estimating slum populations.

4.1.4. HRSL

The HRSL dataset was more accurate in many settlements compared to the other
gridded population datasets likely because it allocates population to smaller grid cells,
preventing population from being spread across unsettled parks, yards, roads, and other
areas without buildings. The underestimation of population in slums by HRSL, however,
was still substantial because population was spread evenly across 30× 30 m cells containing
buildings. In the future, producers of this dataset might consider a highly modelled
approach, using covariates and a statistical or geographic model, to more accurately
allocate population with varying density to cells.

4.2. Recommendations for Highly Modelled Gridded Population Datasets

Highly modelled gridded population datasets use statistical or geographic models
with multiple covariates to vary the disaggregation (“top-down”) or aggregation (“bottom-
up”) of population counts. The complex methods and multiple input datasets in these
datasets provide several opportunities to tweak and improve local accuracy of estimates.

4.2.1. Cross-Cutting: Fine-Scale Urban Covariates

A challenge faced by all producers of highly modelled gridded population estimates
(i.e., WorldPop, LandScan, WPE, and GRID3) is the lack of availability of spatially detailed
datasets that correlate with the variation of population density across small areas within
cities. While covariates such as roads, elevation, slope, and night-time lights broadly
correlate with the presence or absence of people [77], none of these datasets are especially
informative about the location of, for example, high-density slum neighborhoods versus
less-dense middle-class neighborhoods. Arguably night-time lights could differentiate
areas by population density and/or wealth status, but the resolution of this dataset is
approximately 1× 1 km [78,79], which might perform well in LandScan models (~1 × 1 km
resolution), but leads to a “halo” effect with population allocated near, and not within,
high density areas in finer-scale WPE (162 × 162 m), WorldPop (~100 × 100 m), and GRID3
(~100 × 100 m) estimates. One might imagine use of OpenStreetMap, an ever improving
reservoir of open data on building footprints, points of interest, multiple types of roads,
and many other characteristics, to be a good source of high-resolution covariate data;
however, OpenStreetMap still remains incomplete in many LMIC cities and towns around
the world [80], reducing the statistical power and even increasing noise in models. For this
reason, LandScan and WPE rely on government or propriety data for these covariates, and
WorldPop uses a limited number of covariates from OpenStreetMap with better coverage
(e.g., roads, and not building footprints).



Urban Sci. 2021, 5, 48 16 of 32

The new Ecopia building footprint layer for Africa [56] or Bing building footprints for
Tanzania and Uganda [81] are among the first multi-country fine-scale, complete datasets
available that are likely to correlate with population density at fine scale. While Ecopia
building footprint layers are normally a paid commercial product for three years before
becoming freely available, the Africa building footprints were made available to all BMGF
funded projects, and then released publicly during the COVID-19 pandemic to support
response [56]. As additional Ecopia building footprint datasets become available, the
WorldPop team (partially funded by BMGF) will publish derived building metrics in
approximately 100 × 100 m cells including number of buildings, total area covered by
buildings, average size of buildings, and more [82]. All of the highly modelled population
producers would likely improve the accuracy of their output in cities, especially in slums
and informal settlements, if covariates derived from a complete and accurate building
footprints layer were incorporated (Table 4). These covariates might include information
about the buildings within a given cell (e.g., average size of buildings), as well as building
characteristics in surrounding cells reflecting the area environment (e.g., average size of
buildings in a 300 m buffer around the cell). For those gridded population dataset producers
with access to raw building footprints, they might consider either disaggregating directly
to building footprints, and/or further processing the building footprints to classify non-
residential buildings such as airport, government, university, or industrial buildings to
prevent population being allocated to non-residential buildings [5].

Table 4. Recommendations to potentially improve gridded population estimates in slums and informal settlements.

Recommendations
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Classify building footprints or built-up areas as residential
versus non-residential X X X X X X X

Improve GHS-BUILT layer with building footprint data to
refine population disaggregation X

Consider highly modelled methods with use of multiple spatial
covariates to inform the allocation of population densities
to cells

X

Use covariate(s) derived from a building footprint layer, and
if possible:

• Classify non-residential buildings, and incorporate this
covariate as well

• Create and use covariate(s) the reflect buildings
surrounding each cell

X X X X

If (or when) a global layer of deprived areas is
developed, either:

• Use deprived area layer as a covariate
• Use deprived area layer to stratify the model in

slum/non-slum areas

X X X X X

Retrain BaseVue on a global dataset, or use an alternative land X

Use covariates common to other highly modelled datasets,
such as roads, nigh time lights, slope, and elevation X

Use a deprived area layer to update LandScan’s bespoke
weighting layer X

Incorporate KYC population estimates and boundaries (or
other slum dataset) in model training data X X

Improve building feature extraction algorithms in slums X
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4.2.2. WorldPop-Unconstrained

While WorldPop-Unconstrained data producers have demonstrated that their mod-
elling approach is more accurate than some other gridded population methods, their model
training and accuracy assessments are performed at a much more aggregated scale (e.g.,
census EA) than the output cells (~100 × 100 m) [53]. In the WorldPop workflow, accuracy
assessments are performed within the Random Forest model by retaining some of the
input population data for validation, while the rest of the population data are used to
train the model. The input data are typically census population counts in EAs, wards, or
sub-districts, adjusted by UN population growth rates, and thus cannot estimate accuracy
within the model at finer geographic scales [53]. Furthermore, because the input population
data are aggregated, the average population density for each input unit can mask enormous
spatial variability in population density at the scale of output grid cells. The Random
Forest model is only able to allocate population density values to cells which appear in the
training dataset, and will thus always underperform in the densest cells when training data
are highly aggregated. This problem is highlighted in Table 3 from Analysis One, and in
Appendix A Figures A5 and A6, showing maximum WorldPop-Unconstrained population
estimates well below KYC reported populations.

One way to address both of these challenges is to incorporate smaller, high-density
slum settlements into the model training and validation datasets (Table 4). Slum population
counts might come from the KYC Campaign website [39], or other sources such as govern-
ment slum censuses [73]. The additional slum training data might overlap with the census
data, or be located in cities outside the country which share characteristics with cities in
the country of interest [53]. However, in the case of incomplete slum datasets, such as
KYC Campaign, consideration should be given to how to choose (sample) a representative
set of slums, as spatial correlation within the training dataset can increase variance in
model residuals [83]. With finer-scale, high-density training data, the model will be able
to allocate larger population values to 100 × 100 m grid cells, and the finer-scale input
data will result in finer-scale accuracy statistics during the modelling process. However, to
explicitly assess cell-level accuracy, additional datasets with population counts in small
areas should be used after modelling, for example, population enumerations taken as part
of routine household surveys [24] (Table 4). Simulated household-level datasets geo-located
in a real-world setting provide another approach to evaluate the general accuracy of a
modelling approach [84].

It may seem logical that a source of error in WorldPop-Unconstrained datasets is that
population which should be allocated to settled cells is misallocated to unsettled cells, thus
reducing population estimates in settlements. While this does occur, the magnitude of
the problem is minimal. In an analysis of the WorldPop-Unconstrained model in Khomas
Namibia, a region characterized by vast unsettled areas and the capital city of Windhoek,
more than 99 per cent of the population was allocated to cells within 300 m of populated
places [84]. The reason for misallocation to cells just beyond populated places was likely
a consequence of the “halo” effect due to coarse covariate data (e.g., 1 × 1 km resolution
night-time lights), rather than misallocation to unsettled cells.

4.2.3. WorldPop-Constrained

Despite the limited effect of misallocation of population to unsettled cells in the
WorldPop-Unconstrained dataset, the WorldPop-Constrained dataset overcomes this po-
tential challenge. In this analysis, WorldPop-Constrained estimates were more accurate of
slum populations across the three cities than WorldPop-Unconstrained estimates because
the input population densities were calculated from smaller constrained areas.

4.2.4. LandScan Global

We offer similar recommendations to the producers of LandScan Global as producers
of WorldPop: incorporate building footprint covariate(s) into the model (Section 4.2.1),
and if (or when) a global datasets of deprived areas is developed [16], update the bespoke
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weights layer to allocate larger portions of the population to slums and informal settlements
(Table 4).

4.2.5. WPE

WPE produced the least accurate estimates of slum populations within this study;
only nine per cent of the KYC reported population was predicted by this dataset (Table 2).
A key challenge might derive from the BaseVue 2013 dataset used to distinguish types
of settled and unsettled areas [52]. BaseVue land cover classifications were developed in
the United States, and the land cover classification method was not updated when the
process was applied globally, possibly leading to misclassification of land cover types that
are not well represented in the United States such as dense informal settlements. WPE
addresses some challenges of the BaseVue dataset by incorporating information from other
sources such as the global GeoNames.org dataset, improving coverage of small cities and
towns; however, the BaseVue model remained prone to classifying peri-urban settlements
as unsettled [52].

A second challenge in the WPE model is that it does not include datasets that help to
distinguish high and low population density; the BaseVue land cover model includes only
“high-dense urban” and “medium-dense urban”, and the only other potential covariate that
might distinguish within-city densities is road intersections, which are likely absent and/or
under mapped in slums and informal settlements. To improve cell-level accuracy, we
suggest that WPE producers include a number of other covariates in their model including
building footprints (Section 4.1.2), as well as slope, elevation, temperature heat islands,
and more [53,77] (Table 4).

4.3. Limitations

There were a number of limitations to this study. First, analysis one was limited both
in terms of the number of cities and countries evaluated, and the number and distribution
of slums evaluated for accuracy in each city. The settlements reported on KYC website
reflect where local Slum Dwellers International Federations are active, and thus may not
have represented all types and sizes of slums across the cities. Compounding this, we
chose to exclude many of the settlements with largest reported populations due to apparent
inaccuracies. Many of the largest slum settlements in the study cities, for example, those
settlements that comprise Kibera in Nairobi, were not included in the KYC Campaign
website. As a result of all of these issues, we are cautious about generalizing about gridded
population accuracy in different types of slums, or by city. The KYC Campaign data was
also limited in its precision of population counts because most population estimates were
derived from an undocumented household sampling process, and a simple estimation
process of multiplying average household size by number of front doors, rather than a
complete census.

Analysis two faced fewer limitations, though the dataset of slum areas was modelled
and not field-referenced, thus subjecting our analysis to possible misclassification of slum
versus non-slum areas and under-representation of small “pocket slums”. Despite these
limitations, the evidence suggest that gridded population estimates tend to severely under-
estimate population estimates in LMIC slums and informal settlements. The suggestions
that we offer for model improvement are based on hypotheses; we did not evaluate any of
the gridded population methods, models, or input datasets directly.

4.4. Broadening Accuracy Assessments of Gridded Population Estimates in Slums

Although imperfect, the KYC website proved to be a valuable dataset to assess the
accuracy of gridded population datasets, and could be used for such purposes in dozens of
other cities where SDI affiliates profile slums. Furthermore, these data might be used to
create training data that improve the accuracy of gridded population estimates in slums
and informal settlements. The SDI Federation is adamant that data remain the property of
communities (which is why a single database and shapefiles are not downloadable from
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the website), though these type of data can often be purchased from SDI Federations to
support their work, and collaborations that expand community capacity to collect and use
data will be appreciated. Research teams might support SDI Federation slum profiling
teams directly with training and resources for fieldwork which might improve the quality
and coverage of slum boundaries and population data on the KYC Campaign website.

5. Conclusions

This study is among the first to assess the accuracy of gridded population datasets
in deprived urban areas in LMICs. We found that all gridded population datasets need
to be improved before they can serve as reliable inputs for local SDG 11 and other slum
monitoring efforts. The recent release of several building footprint layers provide an
opportunity to improve the accuracy of gridded population data by providing an extremely
fine-scale dataset that likely corresponds with population density distributions within cities.
Any improvements to the accuracy of building feature extraction algorithms in high-density
informal settlements will only add accuracy for gridded population modelling. Further
integration of new model training datasets, such as community-generated slum maps
like KYC, can improve fine-scale accuracy assessments of population estimates in highly
modelled datasets. Ultimately, gridded population data that is accurate at fine-scale is
needed, particularly in deprived areas of cities, for these very promising datasets to be
useful in policy and practice.
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(a) copy and situate the KYC screenshot in ArcGIS over the OpenStreetMap base layer, (b) digitize 
the KYC boundary, (c) switch the ArcGIS base layer to satellite imagery, and (d) adjust KYC bound-
aries to match physical features and the boundaries of contiguous KYC settlements. 

Figure A1. Process to digitize Know Your City Campaign slum settlement boundaries. Steps were
(a) copy and situate the KYC screenshot in ArcGIS over the OpenStreetMap base layer, (b) digitize the
KYC boundary, (c) switch the ArcGIS base layer to satellite imagery, and (d) adjust KYC boundaries
to match physical features and the boundaries of contiguous KYC settlements.
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Figure A3. Visuals of the largest KYC reported populations in (a) Lagos, (b) Port Harcourt, and (c) 
Nairobi, and settlements with larger median gridded population estimates than KYC populations 
in (d) Lagos, and (e,f) Nairobi. 

Figure A3. Visuals of the largest KYC reported populations in (a) Lagos, (b) Port Harcourt, and
(c) Nairobi, and settlements with larger median gridded population estimates than KYC populations
in (d) Lagos, and (e,f) Nairobi.
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Table A1. Reported versus digitized boundary area for settlements in which area was reported.

Community ID City KYC Reported
Area (m2)

Digitized Area
(m2)

Percent
Differences

25 Lagos 33,872 330,010 −89.7
17 Lagos 121,403 198,646 −38.9
5 Lagos 28,327 44,746 −36.7

23 Lagos 327,789 498,470 −34.2
26 Lagos 27,672 38,420 −28.0
4 Lagos 19,898 26,625 −25.3

12 Lagos 28,327 37,590 −24.6
24 Lagos 92,509 118,020 −21.6
35 Lagos 32,374 39,431 −17.9
28 Lagos 137,591 165,710 −17.0
29 Lagos 28,327 32,712 −13.4
6 Lagos 52,608 60,694 −13.3
8 Lagos 153,778 163,400 −5.9

30 Lagos 291,368 298,186 −2.3
32 Lagos 190,199 189,849 0.2
33 Lagos 28,327 26,042 8.8
31 Lagos 153,778 141,365 8.8
9 Lagos 586,783 503,458 16.6

21 Lagos 352,070 250,463 40.6
27 Lagos 145,684 96,509 51.0
71 Port Harcourt 13,795 20,051 −31.2
69 Port Harcourt 7049 10,194 −30.8
62 Port Harcourt 4621 5941 −22.2
43 Port Harcourt 7491 9356 −19.9
45 Port Harcourt 27,320 32,139 −15.0
44 Port Harcourt 29,117 33,625 −13.4
75 Port Harcourt 62,616 70,861 −11.6
36 Port Harcourt 44,515 49,549 −10.2
67 Port Harcourt 6548 7144 −8.3
72 Port Harcourt 37,570 40,358 −6.9
64 Port Harcourt 30,925 33,172 −6.8
56 Port Harcourt 7110 7171 −0.8
51 Port Harcourt 72,842 68,571 6.2
117 Nairobi 4741 149,083 −96.8
121 Nairobi 53,529 586,783 −90.9
91 Nairobi 7439 48,157 −84.6
110 Nairobi 49,193 182,105 −73.0
106 Nairobi 32,812 60,702 −45.9
128 Nairobi 89,081 153,778 −42.1
145 Nairobi 65,136 105,216 −38.1
126 Nairobi 57,587 89,758 −35.8
147 Nairobi 8765 12,140 −27.8
108 Nairobi 8915 12,140 −26.6
119 Nairobi 423,363 526,608 −19.6
88 Nairobi 35,124 40,468 −13.2
77 Nairobi 15,602 17,280 −9.7
132 Nairobi 76,640 83,849 −8.6
105 Nairobi 64,001 69,605 −8.0
90 Nairobi 30,999 32,374 −4.2
81 Nairobi 96,137 99,199 −3.1
83 Nairobi 159,054 161,871 −1.7
135 Nairobi 55,933 56,655 −1.3
78 Nairobi 52,032 52,608 −1.1
137 Nairobi 30,443 30,756 −1.0
146 Nairobi 43,381 43,705 −0.7
93 Nairobi 72,434 72,842 −0.6
111 Nairobi 173,058 174,012 −0.5
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Table A1. Cont.

Community ID City KYC Reported
Area (m2)

Digitized Area
(m2)

Percent
Differences

136 Nairobi 305,970 307,555 −0.5
129 Nairobi 93,447 93,885 −0.5
100 Nairobi 80,568 80,936 −0.5
120 Nairobi 173,564 174,012 −0.3
124 Nairobi 20,274 20,234 0.2
112 Nairobi 16,246 16,187 0.4
144 Nairobi 42,350 40,468 4.7
95 Nairobi 116,941 109,668 6.6

103 Nairobi 129,265 116,588 10.9
104 Nairobi 6010 5220 15.1
143 Nairobi 8224 7001 17.5
79 Nairobi 44,319 36,421 21.7
87 Nairobi 29,726 24,281 22.4

142 Nairobi 39,994 31,646 26.4
107 Nairobi 16,169 12,140 33.2
138 Nairobi 37,017 27,113 36.5
99 Nairobi 124,886 89,029 40.3

134 Nairobi 5689 4047 40.6
113 Nairobi 18,638 12,140 53.5
96 Nairobi 76,184 48,561 56.9

127 Nairobi 53,743 32,900 63.4
130 Nairobi 13,301 7932 67.7
80 Nairobi 47,759 28,327 68.6
76 Nairobi 148,885 84,982 75.2
98 Nairobi 222,377 121,403 83.2
85 Nairobi 16,849 8094 108.2
86 Nairobi 32,818 12,140 170.3

109 Nairobi 66,206 16,187 309.0
114 Nairobi 59,619 11,048 439.6
94 Nairobi 92,362 12,140 660.8

123 Nairobi 77,888 8094 862.3
133 Nairobi 47,056 4047 1062.8

Table A2. Population densities in 200 × 200 m areas across 118 KYC slum settlements as well as
200 × 200 m cells citywide in Lagos (Nigeria), Port Harcourt (Nigeria), and Nairobi (Kenya).

200 × 200 m Units Lagos Maximum Port Harcourt Maximum Nairobi Maximum

KYC Slum Settlements 12,123 13,885 34,760
Citywide

HRSL (2018) 4874 4175 14,771
WP-Constrained (2020) 4983 1220 8905

WP-Unconstrained (2018) 4435 656 9519
WP-Unconstrained (2015) 3974 582 9088

GHS-POP (2015) 3035 1530 9403
GPWv4.11 (2020) 4010 226 6632
GPWv4.11 (2015) 3537 199 5718
LandScan (2015) 5007 1165 2782
LandScan (2018) 4709 1230 1846

GRID3 (2016) 3685 1128 n/a
WPE (2016) 2619 815 1311

WP-PeanutButter (2020) 1424 992 866
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