
Citation: Zhang, E.Y.; Cheok, A.D.;

Pan, Z.; Cai, J.; Yan, Y. From Turing to

Transformers: A Comprehensive

Review and Tutorial on the Evolution

and Applications of Generative

Transformer Models. Sci 2023, 5, 46.

https://doi.org/10.3390/sci5040046

Academic Editors: Carlo Cattani,

Dioneia Motta Monte-Serrat,

Francesco M. Donini and Paolo

Bellavista

Received: 1 November 2023

Revised: 3 December 2023

Accepted: 11 December 2023

Published: 15 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

From Turing to Transformers: A Comprehensive Review and
Tutorial on the Evolution and Applications of Generative
Transformer Models
Emma Yann Zhang 1,*, Adrian David Cheok 2,* , Zhigeng Pan 1, Jun Cai 2 and Ying Yan 2

1 School of Artificial Intelligence, Nanjing University of Information Science and Technology,
Nanjing 210044, China; zgpan@nuist.edu.cn

2 School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China;
j.cai@nuist.edu.cn (J.C.); ying.yan@nuist.edu.cn (Y.Y.)

* Correspondence: 202351620003@nuist.edu.cn (E.Y.Z.); adrian@imagineeringinstitute.org (A.D.C.)

Abstract: In recent years, generative transformers have become increasingly prevalent in the field
of artificial intelligence, especially within the scope of natural language processing. This paper
provides a comprehensive overview of these models, beginning with the foundational theories
introduced by Alan Turing and extending to contemporary generative transformer architectures.
The manuscript serves as a review, historical account, and tutorial, aiming to offer a thorough
understanding of the models’ importance, underlying principles, and wide-ranging applications.
The tutorial section includes a practical guide for constructing a basic generative transformer model.
Additionally, the paper addresses the challenges, ethical implications, and future directions in the
study of generative models.

Keywords: generative transformers; large language models; generative models; Alan Turing; artificial
intelligence; machine learning; neural network; natural language processing

1. Introduction
1.1. Background and Significance of Generative Models in AI

Generative models serve as an essential building block in the realm of artificial intelli-
gence (AI). At their core, these models are designed to generate new data samples that are
similar to the input data they have been trained on. This capability has profound implica-
tions, enabling machines to create, imagine, and replicate complex patterns observed in the
real world.

The inception of generative models can be traced back to the early days of AI, where
the foundational work of Alan Turing laid the groundwork for the evolution of generative
models and the broader field of AI. Following Turing’s pioneering contributions, the field
witnessed the emergence of simple algorithms designed to mimic and reproduce sequential
data. An exemplar of this era is the Hidden Markov Models (HMM) proposed by Leonard
Baum in a series of seminal papers published in the late 1960s [1–3]. These models were
groundbreaking for their time, providing a probabilistic framework to understand and
predict sequences. The most notable application of HMMs was in the realm of speech
recognition [4], where they became a foundational component, enabling systems to decode
and understand human speech with increasing accuracy.

The introduction of Recurrent Neural Networks (RNNs) in 1982 by John Hopfield [5]
and Long Short-Term Memory (LSTM) networks in 1997 by Hochreiter and Schmidhuber [6]
marked significant advancements in the field. RNNs brought the ability to remember
previous inputs in handling sequential data, while LSTMs addressed the challenges of long-
term dependencies, making them pivotal for tasks such as time series prediction, speech
recognition, and natural language processing. Together, they set foundational standards
for modern generative AI models handling sequences.

Sci 2023, 5, 46. https://doi.org/10.3390/sci5040046 https://www.mdpi.com/journal/sci

https://doi.org/10.3390/sci5040046
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sci
https://www.mdpi.com
https://orcid.org/0000-0001-6316-2339
https://orcid.org/0000-0002-4574-1692
https://orcid.org/0000-0002-3609-0496
https://doi.org/10.3390/sci5040046
https://www.mdpi.com/journal/sci
https://www.mdpi.com/article/10.3390/sci5040046?type=check_update&version=1

Sci 2023, 5, 46 2 of 26

However, with the advent of deep learning and the proliferation of neural networks,
the potential and capabilities of generative models have expanded exponentially. Neural-
based generative models, such as Variational Autoencoders (VAEs) [7,8] introduced in 2013
and Generative Adversarial Networks (GANs) [9,10] introduced in the following year, have
showcased the ability to generate high-fidelity new data samples based on training data,
ranging from images to text and even music.

The significance of generative models in AI is multifaceted. Firstly, they play a pivotal
role in unsupervised learning, where labeled data is scarce or unavailable. By learning
the underlying distribution of the data, generative models can produce new samples,
aiding in tasks such as data augmentation [11,12], anomaly detection [13], and image
denoising [14,15]. Secondly, the creative potential of these models has been harnessed in
various domains, from image [16–19], video, and music generation to drug discovery [20,21]
and virtual reality [22–24]. The ability of machines to generate novel and coherent content
has opened up avenues previously deemed exclusive to human creativity.

Furthermore, generative models serve as powerful tools for understanding and inter-
preting complex data distributions. They provide insights into the structure and relation-
ships within the data, enabling researchers and practitioners to uncover hidden patterns,
correlations, and features [25]. This interpretative power is especially valuable in domains
such as biology [26], finance [27], and climate science [28], where understanding data
intricacies can lead to groundbreaking discoveries.

Generative models stand as a testament to the advancements and possibilities within
AI. Their ability to create, interpret, and innovate has not only broadened the horizons of
machine learning but has also reshaped our understanding of intelligence and creativity.

1.2. The Rise of Transformer Architectures

While Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs)
have significantly advanced the field of generative AI, another monumental shift in the
deep learning landscape emerged with the introduction of the transformer architecture.
Presented in the seminal paper “Attention is All You Need” by a team of Google researchers
led by Vaswani in 2017 [29], transformers have redefined the benchmarks in a multitude of
tasks, particularly in natural language processing (NLP).

The transformer’s innovation lies in its self-attention mechanism, which allows it to
weigh the significance of different parts of an input sequence, be it words in a sentence or
pixels in an image. This mechanism enables the model to capture long-range dependencies
and intricate relationships in the data, overcoming the limitations of previous architec-
tures such as Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM)
networks. RNNs and LSTMs, while effective in handling sequential data, often struggled
with long sequences due to issues such as vanishing and exploding gradients [30]. Trans-
formers, with their parallel processing capabilities and attention mechanisms, alleviated
these challenges.

The success of the transformer architecture was not immediate but became evident
with the introduction of large language models such as BERT (Bidirectional Encoder Rep-
resentations from Transformers) and GPT (Generative Pre-trained Transformer). BERT,
developed by researchers at Google, demonstrated the power of transformers in under-
standing the context of words in a sentence by considering both left and right contexts in
all layers [31]. This bidirectional approach led to state-of-the-art results in several NLP
tasks, from question answering to sentiment analysis [32]. On the other hand, OpenAI’s
GPT showcased the generative capabilities of transformers [33], producing human-like text
and achieving remarkable performance in tasks such as machine translation [34] and text
summarization [35] without task-specific training data.

The transformer’s versatility extends beyond NLP. Vision Transformer (ViT) [36], an
adaptation of the architecture for image classification tasks, has shown that transformers
can rival, if not surpass, the performance of traditional convolutional neural networks

Sci 2023, 5, 46 3 of 26

(CNNs) in computer vision tasks [37,38]. This cross-domain applicability underscores the
transformer’s potential and its foundational role in modern AI.

Another driving factor behind the rise of transformers is the ever-growing compu-
tational power and the availability of large-scale datasets. Training transformer models,
especially large ones, require significant computational resources. The feasibility of training
such models has been made possible due to advancements in GPU and TPU technolo-
gies [39], coupled with the availability of vast amounts of data to train on. The combination
of innovative architecture and computational prowess has led to the development of mod-
els with billions or even trillions of parameters, pushing the boundaries of what machines
can generate to new heights.

Generative AI models have undergone significant transformations since their incep-
tion, with each milestone contributing to the capabilities we see today. From the founda-
tional Turing machines to the latest GPT-4 and LLaMA models, the journey of generative
AI has been marked by groundbreaking advancements. A detailed timeline capturing these
key milestones is presented to offer a comprehensive overview of the field’s evolution
(Figure 1).

1.3. Purpose and Structure of the Paper

The fast growth in artificial intelligence, especially with recent technologies such as
generative models and transformers, highlights the need for a comprehensive study that
spans both their historical development and current applications. The primary objective of
this paper is to provide readers with a holistic understanding of the evolution, significance,
architecture, and capabilities of generative transformers, contextualized within the broader
landscape of AI.

Our motivation for this paper is informed by the existing body of work on transformer-
based models and generative AI. While there are several comprehensive reviews, each
focuses on specific aspects of the topic. For example, Gozalo-Brizuela and Garrido-
Merchan [40] concentrate on the taxonomy and industrial implications of large generative
models, providing a compilation of popular generative models organized into various
categories such as text-to-text, text-to-image, and text-to-audio. Lin et al. [41] present an
exhaustive review of various transformer variants, their architectural modifications, and
applications. Additionally, there are survey papers that focus on the use of transformers
for specific tasks such as natural language processing [42,43], computer vision [44–47],
time series analysis and forecasting [48,49], among others. These existing reviews are
invaluable, but our paper aims to provide a more comprehensive overview that bridges
these specialized areas.

While these papers offer valuable insights, there is a gap in the literature for a resource
that combines a historical review, a hands-on tutorial, and a forward-looking perspective on
generative transformer models. Our paper aims to fill this void, serving as a comprehensive
guide for newcomers and seasoned researchers alike. The historical review section helps
readers understand how generative AI has developed and progressed in the wider context
of AI. Meanwhile, our practical tutorial guides readers through the foundational concepts
and practical implementations, equipping them to build their own generative transformer
models. We offer a unique blend of theoretical understanding and practical know-how,
setting our work apart from existing reviews. Additionally, we strive to provide a unique
balance between explaining the historical evolution, technical aspects, and applications
of transformers. This makes our paper a go-to source for researchers and professionals
seeking a wholesome understanding and knowledge of transformers.

Sci 2023, 5, 46 4 of 26

1936

Turing machines
A theoretical framework for
understanding computation
and algorithmic processes.

1950
Turing test
The first practical measure
for machine intelligence.

1964

ELIZA
The first chatbot that simu-
lates conversations with a
human.

1966

Hidden Markov Model
An early statistical model
that predicts sequential
data.

1982

Recurrent neural network
A popular model for han-
dling sequential data with
memory retaining capabili-
ties.

1997

LSTM
Solves vanishing gradient
problem of RNN, allow-
ing it to process longer se-
quences of data.

2014

Generative adversarial net-
work
A framework that can gen-
erate new data based on
training dataset.

2017

Transformers
Based on the attention
mechanism, a scalable and
efficient architecture for
large language models.

2018

GPT-1, BERT
OpenAI introduces GPT-1
with 117 million parameters.
Google introduces BERT.

2019
GPT-2
Improved text generation
with 1.5 billion parameters.

2020

GPT-3
An updated model with 175
billion parameters, capable
of translating languages,
writing essays, and generat-
ing code.

2021

DALL-E
Generates high-quality im-
ages from textual descrip-
tions.

2022

ChatGPT
Sets new standards for nat-
ural, coherent, and context-
aware interactions in gener-
ative models.

2023

GPT-4, LLaMA
OpenAI releases GPT-4
with 1.76 trillion parame-
ters. Meta introduces the
LLaMA and LLaMA 2 mod-
els.

Figure 1. A timeline illustrating key milestones in the development of generative AI, from Turing
Machines to GPT-4.

The structure of the paper, which is designed to guide the reader through a logical
progression, is as follows:

Sci 2023, 5, 46 5 of 26

• Historical Evolution: We embark on a journey tracing the roots of computational
theory, starting with the foundational concepts introduced by Alan Turing. This
section provides a backdrop, setting the stage for the emergence of neural networks,
the challenges they faced, and the eventual rise of transformer architectures.

• Tutorial on Generative Transformers: Transitioning from theory to practice, this section
offers a practical approach to understanding the intricacies of generative transformers.
Readers will gain insights into the architecture, training methodologies, and best
practices, supplemented with code snippets and practical examples.

• Applications and Challenges: Building upon the foundational knowledge, we delve
into the myriad applications of generative transformers, highlighting their impact
across various domains. Concurrently, we address the challenges and ethical consider-
ations associated with their use, fostering a balanced perspective.

• Conclusion and Future Directions: The paper concludes with a reflection on the
current state of generative transformers, their potential trajectory, and the exciting
possibilities they hold for the future of AI.

In essence, this paper endeavors to be more than just a review or a tutorial, it aspires
to be a comprehensive guide, weaving together history, theory, practice, and prospects,
providing readers with a panoramic view of the world of generative transformers.

2. Historical Evolution

The development of computational theory and artificial intelligence has been shaped
by pioneering figures, innovative ideas, and transformative discoveries. Central to this
narrative is Alan Turing, whose unparalleled contributions laid the foundations for modern
computation and the subsequent emergence of AI. This section delves deeper into Turing’s
groundbreaking work, and the lasting legacy that continues to shape the digital age.

2.1. Turing Machines and the Foundations of Computation

One of Turing’s major contributions was the idea of the Turing machine proposed
in his 1936 paper titled “On Computable Numbers, with an Application to the Entschei-
dungsproblem” [50]. This abstract machine was a simple but powerful theoretical construct
that was designed to perform computations by manipulating symbols on an infinite tape
based on a set of rules. The infinite tape is divided into discrete cells, each cell can contain a
symbol from a finite alphabet, and the machine itself has a “head” that can read and write
symbols on the tape and move left or right. The machine’s behavior is dictated by a set
of transition rules, which determine its actions based on the current state and the symbol
being read. In essence, the Turing machine is a rule-based system that manipulates symbols
on a tape, embodying the fundamental operations of reading, writing, and transitioning
between states.

While the concept might seem rudimentary, the implications of the Turing machine are
profound. Turing demonstrated that this simple device, with its set of rules and operations,
could compute any function that is computable, given enough time and tape. This assertion,
known as the Church–Turing thesis [51] (independently proposed by Alonzo Church in
his paper titled “An Unsolvable Problem of Elementary Number Theory” also published
in 1936 [52]), posits that any function computable by an algorithm can be computed by
a Turing machine. This thesis, although not proven, has stood the test of time, with no
evidence to the contrary. It serves as a foundational pillar in computer science, defining the
boundaries of what is computable.

World War II saw Turing’s theoretical concept manifest in tangible, real-world applica-
tions. Stationed at Bletchley Park, Britain’s cryptographic hub, Turing played a key role
in deciphering the Enigma code used by the German military. Turing helped develop a
machine called the Bombe, which expedited the decryption process of Enigma-encrypted
messages [53]. This secret work was crucial for the Allies’ success and showed how com-
puter science could have a major impact on real-world events.

Sci 2023, 5, 46 6 of 26

After World War II, Turing turned his attention to the development of electronic
computers. He was instrumental in the design of the Automatic Computing Engine
(ACE) [54], one of the earliest computer models capable of storing programs. This showed
Turing’s forward-thinking approach to the digital age. Beyond computing, he also delved
into the nature of intelligence and how it could be replicated in machines.

The Turing machine’s significance transcended its immediate mathematical implica-
tions. The true brilliance of Turing’s insight, however, lies in the concept of universal compu-
tation. Turing’s subsequent proposition of a Universal Turing Machine (UTM)—a machine
capable of simulating any other Turing machine given the right input and rules—was a rev-
olutionary idea [50]. Given a description of a Turing machine and its input encoded on the
tape, the UTM could replicate the behavior of that machine. This meta-level of computation
was groundbreaking. It suggested that a single, general-purpose machine could be de-
signed to perform any computational task, eliminating the need for task-specific machines.
The UTM was a harbinger of modern computers, devices that can be reprogrammed to
execute a wide array of tasks.

The implications of universal computation extend beyond mere hardware. It chal-
lenges our understanding of intelligence and consciousness. If the human brain, with its
intricate neural networks and synaptic connections, operates on computational principles,
then could it be simulated by a Turing machine? This question, which blurs the lines be-
tween philosophy, neuroscience, and computer science, remains one of the most intriguing
and debated topics in the field of artificial intelligence.

2.1.1. Turing’s Impact on Artificial Intelligence and Machine Learning

Alan Turing’s influence on the fields of artificial intelligence (AI) and machine learning
(ML) is both profound and pervasive. While Turing is often lauded for his foundational
contributions to computational theory, his vision and insights into the realm of machine
intelligence have played a pivotal role in shaping the trajectory of AI and ML.

His 1950 paper, “Computing Machinery and Intelligence”, Ref. [55] introduced the
famous Turing Test as a practical measure of machine intelligence. Alan Turing introduced
the Turing Test within the context of an “Imitation Game”, involving a man, a woman, and
a judge as players. They communicate electronically from separate rooms, and the goal of
the judge is to identify who is the woman. The man aims to deceive the judge into thinking
he is the woman, while the woman assists the judge. Turing then adapts this game into
his famous test by replacing the man with a machine, aiming to deceive the questioner in
the same way. Although the original game focused on gender identification, this aspect is
often overlooked in later discussions of the Turing Test.

In this work, Turing posed the provocative question: “Can machines think?” Rather
than delving into the philosophical intricacies of defining “thinking”, Turing proposed a
pragmatic criterion for machine intelligence: if a machine could engage in a conversation
with a human, indistinguishably from another human, it would be deemed intelligent.
This criterion, while straightforward, sparked widespread debate and research, laying the
foundation for the field of artificial intelligence.

The Turing Test, in many ways, encapsulated the essence of AI—the quest to create
machines that can mimic, replicate, or even surpass human cognitive abilities. It set a
benchmark, a gold standard for machine intelligence, challenging researchers and scientists
to build systems that could “think” and “reason” like humans. While the test itself has
been critiqued and refined over the years, its underlying philosophy remains central to AI:
the aspiration to understand and emulate human intelligence.

Beyond the Turing Test, Turing’s insights into neural networks and the potential of
machine learning were visionary. In a lesser-known report written in 1948, titled “Intelligent
Machinery” [56], Turing delved into the idea of machines learning from experience. He
envisioned a scenario where machines could be trained, much like a human child, through
a process of education. Turing postulated the use of what he termed “B-type unorganized
machines”, which bear a striking resemblance to modern neural networks. These machines,

Sci 2023, 5, 46 7 of 26

as Turing described, would be trained, rather than explicitly programmed, to perform tasks.
Although in its infancy at the time, this idea signaled the rise of machine learning, where
algorithms learn from data rather than being explicitly programmed.

Turing’s exploration of morphogenesis, the biological process that causes organisms
to develop their shape, further showcased his interdisciplinary genius [57]. In his work on
reaction-diffusion systems, Turing demonstrated how simple mathematical models could
give rise to complex patterns observed in nature. This work, while primarily biological in
its focus, has profound implications for AI and ML. It underscores the potential of simple
algorithms to generate complex, emergent behavior, a principle central to neural networks
and deep learning.

Alan Turing’s impact on artificial intelligence and machine learning is immeasurable.
His vision of machine intelligence, his pioneering insights into neural networks, and his
interdisciplinary approach to problem-solving have left an indelible mark on the field. As
we navigate the intricate landscape of modern AI, with its deep neural networks, generative
models, and transformers, it is imperative to recognize and honor Turing’s legacy. His
work serves as a beacon, illuminating the path forward, reminding us of the possibilities,
challenges, and the profound potential of machines that can “think”.

2.1.2. From Turing’s Foundations to Generative Transformers

The journey from Alan Turing’s foundational concepts to the sophisticated realm
of generative transformers is a testament to the evolution of computational theory and
its application in artificial intelligence. While at first glance Turing’s work and genera-
tive transformers might seem worlds apart, a closer examination reveals a direct lineage
and influence.

Alan Turing’s conceptualization of the Turing machine provided the bedrock for
understanding computation. His idea of a machine that could simulate any algorithm, given
the right set of instructions, laid the groundwork for the concept of universal computation.
This idea, that a single machine could be reprogrammed to perform a myriad of tasks, is
the precursor to the modern notion of general-purpose computing systems.

Fast forward to the advent of neural networks, which Turing had touched upon in
his lesser-known works. These networks, inspired by the human brain’s interconnected
neurons, were designed to learn from data. The foundational idea was that, rather than
being explicitly programmed to perform a task, these networks would “learn” by adjusting
their internal parameters based on the data they were exposed to. Turing’s vision of
machines learning from experience resonates deeply with the principles of neural networks.

Generative transformers, a cutting-edge development in the AI landscape, are an
extension of these neural networks. Transformers, with their self-attention mechanisms,
are designed to weigh the significance of different parts of an input sequence, capturing
intricate relationships within the data. The “generative” aspect of these models allows
them to produce new, previously unseen data samples based on their training.

Drawing a direct link, Turing’s Universal Turing Machine can be seen as an early,
abstract representation of what generative transformers aim to achieve in a more specialized
domain. Just as the Universal Turing Machine could simulate any other Turing machine,
given the right input and set of rules, generative transformers aim to generate any plausible
data sample, given the right training and context. The universality of Turing’s machine
finds its parallel in the versatility of generative transformers.

Furthermore, Turing’s exploration into machine learning, the idea of machines learning
from data rather than explicit programming, is the very essence of generative transformers.
These models are trained on vast datasets, learning patterns, structures, and nuances, which
they then use to generate new content. The bridge between Turing’s early insights into
machine learning and the capabilities of generative transformers is a direct one, showcasing
the evolution of a concept from its theoretical inception to its practical application.

While Alan Turing might not have directly worked on generative transformers, his
foundational concepts, vision of machine learning, and the principles he laid down have

Sci 2023, 5, 46 8 of 26

directly influenced and shaped their development. The journey from Turing machines to
generative transformers is a testament to the enduring legacy of Turing’s genius and the
continual evolution of artificial intelligence.

2.2. Early Neural Networks and Language Models

The realm of artificial intelligence has witnessed a plethora of innovations and ad-
vancements, with neural networks standing at the forefront of this revolution. These
computational models, inspired by the intricate web of neurons in the human brain, have
paved the way for sophisticated language models that can understand, generate, and
manipulate human language with unprecedented accuracy.

2.2.1. Introduction to Neural Networks

Neural networks [58,59], at their core, are a set of algorithms designed to recognize
patterns. They interpret sensory data through a kind of machine perception, labeling, and
clustering of raw input. These algorithms loosely mirror the way a human brain operates,
thus the nomenclature “neural networks”.

A basic neural network consists of layers of interconnected nodes or “neurons”. Each
connection between neurons has an associated weight, which is adjusted during training.
The fundamental equation governing the output y of a neuron is given by:

y = f

(
∑

i
wixi + b

)
(1)

where xi are the input values, wi are the weights, b is a bias term, and f is an activation function.
The activation function introduces non-linearity into the model, allowing it to learn

from error and make adjustments, which is essential for learning complex patterns. One of
the commonly used activation functions is the sigmoid function, defined as:

f (z) =
1

1 + e−z (2)

Neural networks typically consist of an input layer, one or more hidden layers, and an
output layer. The depth and complexity of a network, often referred to as its “architecture”,
determine its capacity to learn from data.

2.2.2. Evolution of Recurrent Neural Networks (RNNs)

While traditional neural networks have proven effective for a wide range of tasks, they
possess inherent limitations when dealing with sequential data. This is where Recurrent
Neural Networks (RNNs) come into play. RNNs are designed to recognize patterns in
sequences of data, such as time series or natural language.

The fundamental difference between RNNs and traditional neural networks lies in the
former’s ability to retain memory of previous inputs in its internal state. This is achieved
by introducing loops in the network, allowing information to persist.

The output of an RNN at time t, denoted ht, is computed as:

ht = f (Whhht−1 + Wxhxt + b) (3)

where Whh and Wxh are weight matrices, xt is the input at time t, and ht−1 is the output
from the previous timestep.

While RNNs are powerful, they suffer from challenges such as the vanishing and
exploding gradient problems, especially when dealing with long sequences [30]. This
makes them less effective in capturing long-term dependencies in the data.

Sci 2023, 5, 46 9 of 26

2.2.3. Long Short-Term Memory (LSTM) Networks

To address the vanishing gradient problem of RNNs, Long Short-Term Memory
(LSTM) networks were introduced. LSTMs, a special kind of RNN, are designed to remem-
ber information for extended periods [60].

The core idea behind LSTMs is the cell state, a horizontal line running through the
entire chain of repeating modules in the LSTM. The cell state can carry information from
earlier time steps to later ones, mitigating the memory issues faced by traditional RNNs.

LSTMs introduce three gates:
1. Forget Gate: It decides what information from the cell state should be thrown away

or kept. Mathematically, the forget gate ft is given by:

ft = σ(W f · [ht−1, xt] + b f) (4)

2. Input Gate: It updates the cell state with new information. The input gate it and the
candidate values C̃t are computed as:

it = σ(Wi · [ht−1, xt] + bi) (5)

C̃t = tanh(WC · [ht−1, xt] + bC) (6)

3. Output Gate: It determines the output based on the cell state and the input. The
output ht is given by:

ht = ot × tanh(Ct) (7)

where ot is the output gate, defined as:

ot = σ(Wo · [ht−1, xt] + bo) (8)

LSTMs, with their ability to capture long-term dependencies and mitigate the chal-
lenges faced by traditional RNNs, have paved the way for advancements in sequence
modeling, particularly in the domain of natural language processing.

2.3. The Advent of Transformers

In the ever-evolving landscape of artificial intelligence and machine learning, the
transformer architecture stands out as a significant leap forward, especially in the domain
of natural language processing. Introduced in the seminal paper “Attention Is All You
Need” by Vaswani et al. [29], transformers have revolutionized the way we approach
sequence-to-sequence tasks. This section aims to demystify the transformer architecture,
breaking it down into its core components and principles.

2.3.1. Introduction to the Transformer Architecture

At a high level, the transformer is a type of neural network architecture designed
to handle sequential data, making it particularly well-suited for tasks such as language
translation, text generation, and more. Unlike its predecessors, such as RNNs and LSTMs,
which process data in order, transformers leverage a mechanism called “attention” to draw
global dependencies between input and output.

The heart of the transformer architecture is the attention mechanism. In essence,
attention allows the model to focus on different parts of the input sequence when pro-
ducing an output sequence, much like how humans pay attention to specific words when
understanding a sentence.

Mathematically, the attention score for a given query q and key k is computed as:

Attention(q, k) =
exp(score(q, k))

∑k′ exp(score(q, k′))
(9)

Sci 2023, 5, 46 10 of 26

where score is a function that calculates the relevance of the key k to the query q. The
output of the attention mechanism is a weighted sum of values, where the weights are the
attention scores.

The transformer model consists of an encoder and a decoder. Each of these is composed
of multiple layers of attention and feed-forward neural networks.

The encoder takes in a sequence of embeddings (representations of input tokens)
and processes them through its layers. The decoder then generates the output sequence,
leveraging both its internal layers and the encoder’s output.

One of the distinguishing features of transformers is the use of “multi-head attention”,
which allows the model to focus on different parts of the input simultaneously, capturing
various aspects of the information.

2.3.2. Advantages of Transformers

Transformers have brought significant advancements in the processing of sequential
data, characterized by several key advantages. One notable feature of transformers is
parallelization. Unlike RNNs, which process sequences step-by-step, transformers can
process all tokens in parallel, leading to faster training times.

Transformers are also known for their adeptness at handling long-range dependencies.
The attention mechanism enables transformers to capture relationships between tokens,
regardless of their distance in the sequence. This capability is particularly beneficial for
complex tasks where context and relationships between distant elements are crucial for
accurate interpretation and response.

Scalability is another advantage of transformer models. Transformers are highly
scalable, making them well-suited for dealing with large datasets and intricate tasks. This
scalability ensures that transformers remain effective and efficient even as the size and
complexity of the data or the task increase.

2.4. Attention Mechanism: The Heart of Transformers

The attention mechanism, a pivotal innovation in the realm of deep learning, has
transformed the way we approach sequence-to-sequence tasks in natural language process-
ing. Serving as the cornerstone of the transformer architecture, attention allows models to
dynamically focus on different parts of the input data, capturing intricate relationships and
dependencies. This section aims to elucidate the principles and mathematics behind the
attention mechanism, shedding light on its significance in the transformer architecture.

2.4.1. Conceptual Overview of Attention

In traditional sequence-to-sequence models, such as RNNs and LSTMs, information
from the entire input sequence is compressed into a fixed-size context vector, which is then
used to generate the output sequence. This approach, while effective for short sequences,
struggles with longer sequences as the context vector becomes a bottleneck, unable to
capture all the nuances of the input data.

The attention mechanism addresses this challenge by allowing the model to “attend”
to different parts of the input sequence dynamically, based on the current context. Instead
of relying on a single context vector, the model computes a weighted sum of all input
vectors, where the weights represent the “attention scores”.

2.4.2. Mathematics of Attention

The core of the attention mechanism is the computation of attention scores. Given
a query q and a set of key-value pairs (k, v), the attention score for a specific key k is
computed as:

score(q, k) = qTk (10)

The attention weights, which determine how much focus should be given to each
key-value pair, are computed using a softmax function:

Sci 2023, 5, 46 11 of 26

Attention(q, k) =
exp(score(q, k))

∑k′ exp(score(q, k′))
(11)

The output of the attention mechanism is a weighted sum of the values:

output = ∑
i

Attention(q, ki)vi (12)

As depicted in Figure 2, the attention mechanism computes scores based on the query
and keys, derives attention weights, and produces an output based on a weighted sum
of values.

Query

Key

Value

score Attention weights

Weighted sum

Output

Figure 2. Schematic representation of the attention mechanism.

2.4.3. Significance in Transformers

In the transformer architecture, attention is not just a supplementary feature; it is the
core component. Transformers employ a variant called “multi-head attention”, which runs
multiple attention mechanisms in parallel, capturing different types of relationships in
the data.

The attention mechanism’s ability to focus on different parts of the input sequence,
irrespective of their position, empowers transformers to handle long-range dependencies,
making them particularly effective for tasks like language translation, text summarization,
and more.

Furthermore, the self-attention mechanism, a special case where the query, key, and
value are all derived from the same input, enables transformers to weigh the significance of
different parts of the input relative to a specific position. This is crucial for understanding
context and semantics in natural language processing tasks.

2.5. Generative Transformers and Their Significance

Generative transformers have emerged as a groundbreaking advancement in the
domain of artificial intelligence, particularly in natural language processing and generation.
These models, characterized by their ability to generate coherent and contextually relevant
sequences of text, have set new benchmarks in various tasks, from text completion to story
generation. This section introduces the notable generative models available, including the
GPT series and other significant contributions in this domain.

2.5.1. GPT (Generative Pre-Trained Transformer) Series

The GPT series, developed by OpenAI, fully demonstrates the power and potential of
generative transformers. Built upon the transformer architecture, the GPT models leverage
the attention mechanism to understand and generate human-like text. The GPT series has
seen rapid evolution, with each iteration bringing enhanced capabilities and performance.

GPT-1. The first in the series, GPT-1 [61], was released in 2018. It laid the foundation for
subsequent models. With 117 million parameters, it showcased the potential of transformers
in generating coherent paragraphs of text.

Sci 2023, 5, 46 12 of 26

GPT-2. Released in 2019, GPT-2 [62] increased its parameters to 1.5 billion. Its ability
to generate entire articles, answer questions, and even write poetry garnered significant
attention from the research community and the public alike.

GPT-3. GPT-3 [63] has 175 billion parameters. Its capabilities extend beyond mere text
generation; it can translate languages, write essays, create poetry, and even generate code.

GPT-4. The most recent model from OpenAI, GPT-4 [64], consists a staggering
1.76 trillion parameters, positioning it among the most advanced language models currently
available. Leveraging advanced deep learning methodologies, it surpasses the capabilities
of its forerunner, GPT-3. Remarkably, GPT-4 can handle up to 25,000 words simultaneously,
a capacity 8-fold greater than GPT-3. Furthermore, GPT-4 is versatile in accepting both text
and image prompts, allowing users to define tasks across vision and language domains. A
notable improvement in GPT-4 is its reduced propensity for hallucinations compared to
earlier versions.

2.5.2. Other Notable Generative Transformer Models

Beyond the GPT series, the landscape of generative transformers is rich and diverse,
with several models making significant contributions to the field.

BERT (Bidirectional Encoder Representations from Transformers). Developed by Google,
BERT [31] revolutionized the way we approach natural language understanding tasks.
Unlike GPT, which is generative, BERT is discriminative, designed to predict missing
words in a sentence. Its bidirectional nature allows it to capture context from both the left
and the right of a word, leading to superior performance in tasks like question-answering
and sentiment analysis.

LLaMA. LLaMA [65] is an auto-regressive language model built on the transformer
architecture, introduced by Meta. In February 2023, Meta unveiled the initial version
of LLaMA, boasting 65 billion parameters and adept at numerous generative AI func-
tions. By July 2023, LLaMA 2 was launched with 3 distinct model sizes: 7, 13, and
70 billion parameters.

LaMDA. LaMDA [66] is a specialized family of transformer-based neural language
models for dialog applications developed by Google in 2022. With up to 137 billion pa-
rameters and pre-training on 1.56 trillion words of public dialog and web text, LaMDA
aims to address two key challenges: safety and factual grounding. The model incorporates
fine-tuning and external knowledge consultation to improve its safety metrics, ensuring
responses align with human values and avoid harmful or biased suggestions. For factual
grounding, LaMDA employs external knowledge sources like information retrieval sys-
tems and calculators to generate responses that are not just plausible but also factually
accurate. The model shows promise in various domains, including education and content
recommendations, offering a balanced blend of quality, safety, and factual integrity.

3. Tutorial on Generative Transformers

In this section, we delve into a hands-on tutorial on generative transformers, guiding
readers through the foundational concepts and practical implementations. By the end of
this tutorial, readers should have a clear understanding of the transformer architecture and
be equipped to build their own generative transformer models.

3.1. Basics of the Transformer Architecture

The transformer architecture, introduced by Vaswani et al. in their seminal paper
“Attention Is All You Need” [29], has become the backbone of many state-of-the-art models
in natural language processing. We will now break down its core components.

3.1.1. Overview

As depicted in Figure 3, the transformer consists of an encoder and a decoder. The
encoder processes the input sequence, and the decoder generates the output sequence.

Sci 2023, 5, 46 13 of 26

Both the encoder and decoder are composed of multiple layers of attention mechanisms
and feed-forward neural networks.

Encoder DecoderFeatures
Input Output

Figure 3. Expanded schematic representation of the transformer architecture with a smaller
Features block.

3.1.2. Attention Mechanism

As previously discussed, the attention mechanism allows the model to focus on
different parts of the input sequence when producing an output. The mechanism computes
attention scores based on queries, keys, and values.

Mathematical Representation:
Given a query q, key k, and value v, the attention output is computed as:

Attention(q, k, v) = softmax
(

q · kT
√

dk

)
v (13)

where dk is the dimension of the key.
Code Snippet: The following Python code snippet demonstrates how to implement this

attention mechanism using PyTorch:

import torch
import torch.nn.functional as F

def scaled_dot_product_attention(q, k, v):
matmul_qk = torch.matmul(q, k.transpose(-2, -1))
d_k = q.size(-1) ** 0.5
scaled_attention_logits = matmul_qk / d_k
attention_weights = F.softmax(scaled_attention_logits, dim=-1)
output = torch.matmul(attention_weights, v)
return output, attention_weights

In this code snippet, q, k, and v are the query, key, and value tensors, respectively. The
function scaled_dot_product_attention computes the attention output according to
Equation (13).

3.1.3. Multi-Head Attention

Instead of using a single set of attention weights, the transformer uses multiple sets,
allowing it to focus on different parts of the input simultaneously. This is known as
multi-head attention.

Code Snippet:

class MultiHeadAttention(nn.Module):
def __init__(self, d_model, num_heads):

super(MultiHeadAttention, self).__init__()
self.num_heads = num_heads
Dimension of the model
self.d_model = d_model
Depth of each attention head
self.depth = d_model
Linear layer for creating query, key and value matrix
self.wq = nn.Linear(d_model, d_model)

Sci 2023, 5, 46 14 of 26

self.wk = nn.Linear(d_model, d_model)
self.wv = nn.Linear(d_model, d_model)
Final linear layer to produce the output
self.dense = nn.Linear(d_model, d_model)

3.1.4. Feed-Forward Neural Networks

Each transformer layer contains a feed-forward neural network, applied independently
to each position.

Code Snippet:

class PointWiseFeedForwardNetwork(nn.Module):
def __init__(self, d_model, dff):

super(PointWiseFeedForwardNetwork, self).__init__()
self.fc1 = nn.Linear(d_model, dff)
self.fc2 = nn.Linear(dff, d_model)
...

Each method and its body are indented with a tab or four spaces, which is the standard
Python indentation. This makes the code easier to read and understand.

3.1.5. Self-Attention Mechanism

The self-attention mechanism is a variant of the attention mechanism where the input
sequence itself serves as the queries, keys, and values. This allows the transformer to weigh
the significance of different parts of the input relative to a specific position, crucial for
understanding context and semantics.

Mathematical Representation:
Given an input sequence X, the queries Q, keys K, and values V are derived as:

Q = XWQ, K = XWK, V = XWV (14)

where WQ, WK, and WV are weight matrices. The self-attention output is then computed
using the attention formula:

SelfAttention(Q, K, V) = softmax
(

QKT
√

dk

)
V (15)

3.1.6. Positional Encoding

Transformers, by design, do not have a built-in notion of sequence order. To provide
the model with positional information, we inject positional encodings to the input embed-
dings. These encodings are added to the embeddings to ensure the model can make use of
the sequence’s order.

Mathematical Representation:
The positional encodings are computed using sine and cosine functions:

PE(pos,2i) = sin
(

pos
100002i/dmodel

)
(16)

PE(pos,2i+1) = cos
(

pos
100002i/dmodel

)
(17)

where pos is the position and i is the dimension.

3.1.7. Multi-Head Attention

Multi-head attention is an extension of the attention mechanism, allowing the model
to focus on different parts of the input simultaneously. By running multiple attention
mechanisms in parallel, the model can capture various types of relationships in the data.

Mathematical Representation:

Sci 2023, 5, 46 15 of 26

Given queries Q, keys K, and values V, the multi-head attention output is computed as:

MultiHead(Q, K, V) = Concat(head1, . . . , headh)WO (18)

where each head is computed as:

headi = Attention(QWQi, KWKi, VWVi) (19)

and WQi, WKi, WVi, and WO are weight matrices.
Figure 4 showcases the multi-head attention mechanism, where multiple attention

heads operate in parallel, and their outputs are concatenated and passed through a dense
layer to produce the final output.

Head 1

Head 2

Head h

Concat Dense Layer
Output

Figure 4. Schematic representation of multi-head attention.

Understanding the intricacies of the transformer architecture, from the self-attention
mechanism to multi-head attention, is crucial for harnessing its full potential. By delving
into the mathematical foundations and practical implementations, one can build powerful
models capable of handling a wide range of tasks in natural language processing.

3.1.8. Encoder and Decoder Modules

The Transformer architecture consists of an encoder and a decoder, each made up of
multiple layers. Here, we’ll walk through the implementation of these modules.

Encoder Module. The encoder module consists of multiple encoder layers, each contain-
ing multi-head attention and feed-forward neural networks.

Code Snippet:

import torch.nn as nn

class EncoderLayer(nn.Module):
def __init__(self, d_model, num_heads):

super(EncoderLayer, self).__init__()
self.mha = MultiHeadAttention(d_model, num_heads)
self.ffn = PointWiseFeedForwardNetwork(d_model, dff)
Layer normalization and dropout layers can be added here

def forward(self, x):

Sci 2023, 5, 46 16 of 26

attn_output = self.mha(x, x, x)
out1 = x + attn_output # Add & Norm
ffn_output = self.ffn(out1)
out2 = out1 + ffn_output # Add & Norm
return out2

Decoder Module. The decoder module is similar to the encoder but has an additional
multi-head attention layer to attend to the encoder’s output.

Code Snippet:

class DecoderLayer(nn.Module):
def __init__(self, d_model, num_heads):

super(DecoderLayer, self).__init__()
self.mha1 = MultiHeadAttention(d_model, num_heads)
self.mha2 = MultiHeadAttention(d_model, num_heads)
self.ffn = PointWiseFeedForwardNetwork(d_model, dff)
Layer normalization and dropout layers can be added here

def forward(self, x, enc_output):
attn1 = self.mha1(x, x, x)
out1 = x + attn1 # Add & Norm
attn2 = self.mha2(out1, enc_output, enc_output)
out2 = out1 + attn2 # Add & Norm
ffn_output = self.ffn(out2)
out3 = out2 + ffn_output # Add & Norm
return out3

In these code snippets, ‘MultiHeadAttention’ and ‘PointWiseFeedForwardNetwork’
are custom classes that you would define based on your specific needs for multi-head
attention and point-wise feed-forward networks, respectively.

3.2. Building a Simple Generative Transformer

Building a generative transformer from scratch involves several steps, from data
preprocessing to model training and text generation. In this section, we’ll walk through
each of these steps, providing a comprehensive guide to constructing your own
generative transformer.

3.2.1. Data Preprocessing and Tokenization

Before feeding data into the model, it is essential to preprocess and tokenize it. To-
kenization involves converting raw text into a sequence of tokens, which can be words,
subwords, or characters.

Using popular libraries like the HuggingFace’s ‘transformers‘, tokenization can be
achieved as:

from transformers import GPT2Tokenizer

tokenizer = GPT2Tokenizer.from_pretrained(’gpt2-medium’)
tokens = tokenizer.encode("Hello, world!")

3.2.2. Defining the Transformer Model

Assuming one has already defined the EncoderLayer and DecoderLayer classes, one
can define the complete Transformer model as follows:

Sci 2023, 5, 46 17 of 26

class Transformer(nn.Module):
def __init__(self, d_model, num_heads, num_layers):

super(Transformer, self).__init__()
self.encoder = nn.ModuleList([EncoderLayer(d_model, num_heads) for _ in range(num_layers)])
self.decoder = nn.ModuleList([DecoderLayer(d_model, num_heads) for _ in range(num_layers)])

def forward(self, src, tgt):
enc_output = src
for layer in self.encoder:

enc_output = layer(enc_output)

dec_output = tgt
for layer in self.decoder:

dec_output = layer(dec_output, enc_output)

return dec_output

Building a generative transformer, while complex, is made accessible with modern
libraries and tools. By understanding the steps involved, from data preprocessing to model
training and generation, one can harness the power of transformers for a wide range
of applications.

3.3. Advanced Techniques and Best Practices

While the foundational concepts and basic implementations provide a solid starting
point, mastering generative transformers requires a deeper understanding of advanced
techniques and best practices. This section offers insights into improving generation
quality, handling long sequences, memory issues, and leveraging fine-tuning and transfer
learning [67].

3.3.1. Techniques for Improving Generation Quality

Achieving high-quality text generation necessitates a combination of model architec-
ture tweaks, training strategies, and post-processing methods.

Temperature Sampling. By adjusting the temperature during sampling, one can control
the randomness of the generated text [68]. A lower temperature makes the output more
deterministic, while a higher value introduces randomness.

pi =
e

zi
T

∑j e
zj
T

(20)

where pi is the adjusted probability, zi is the original probability, and T is the temperature.
Top-k and Top-p Sampling. Instead of sampling from the entire distribution, one can

restrict the sampling pool to the top-k tokens or those tokens that have a cumulative
probability greater than a threshold p [69].

Gradient Clipping. To prevent exploding gradients during training, gradient clipping
can be employed, ensuring that the gradients remain within a defined range [70]. Gradient
clipping can be implemented in PyTorch as follows:

torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)

3.3.2. Handling Long Sequences and Memory Issues

Transformers, by design, have quadratic complexity with respect to sequence length.
This can lead to memory issues for long sequences.

Gradient Accumulation. Instead of updating the model weights after every batch,
gradients can be accumulated over multiple batches, effectively simulating a larger batch
size without the memory overhead [71].

Model Parallelism. For models with billions of parameters, distributing the model
across multiple GPUs can alleviate memory constraints [72].

Sci 2023, 5, 46 18 of 26

Gradient Checkpointing. This technique involves storing intermediate activations during
the forward pass and recomputing them during the backward pass, reducing memory
usage at the cost of increased computation.

3.3.3. Fine-Tuning and Transfer Learning

Transfer learning, the practice of leveraging pre-trained models on new tasks, has
proven highly effective in the NLP domain.

Fine-tuning. Once a model is pre-trained on a large corpus, it can be fine-tuned on
a smaller, task-specific dataset. This approach often yields superior results compared to
training from scratch [73,74].

Adapters. Instead of fine-tuning the entire model, adapters allow for training only
a small portion of the model, introducing task-specific parameters without altering the
pre-trained weights [75].

Mastering generative transformers goes beyond understanding the basics. By incorpo-
rating advanced techniques and best practices, one can achieve state-of-the-art performance,
handle large models and sequences efficiently, and adapt pre-trained models to new tasks
with ease. As the field of NLP continues to evolve, staying abreast of these practices ensures
robust and high-quality model deployments.

4. Applications and Use Cases

Generative transformers, with their unparalleled capability to understand and gener-
ate human-like text, have found applications across a myriad of domains [40]. This section
provides an in-depth exploration of some of the most prominent applications, shedding
light on the transformative impact of these models on various industries.

4.1. Text Generation for Creative Writing

The realm of creative writing, traditionally seen as the bastion of human creativity, has
witnessed significant advancements with the advent of generative transformers [76]. These
models, trained on vast corpora of literature, can produce text that mirrors the style, tone,
and complexity of human authors.

Novel and Short Story Generation. AI-powered applications based on GPT-3 and other
large language models have been employed to generate entire novels or assist authors by
suggesting plot twists, character developments, and dialogues [77]. The generated content,
while sometimes requiring human oversight, exhibits creativity and coherence.

Poetry and Song Lyrics. The nuanced and abstract nature of poetry and song lyrics
poses a significant challenge for traditional models. However, the advent of generative
transformers has enabled these models to produce verses that resonate with human emo-
tions and experiences. A recent study demonstrated that AI-generated poems were often
indistinguishable from those written by humans [78], showcasing the success of these
algorithms in replicating human-like poetic expressions.

4.2. Chatbots and Conversational Agents

The rise of digital communication has spurred the demand for intelligent chatbots and
conversational agents. Generative transformers, with their ability to generate contextually
relevant and coherent responses, stand at the forefront of this revolution. One of the most
prominent examples of a conversational agent built on generative transformer architecture
is ChatGPT, developed by OpenAI. ChatGPT reached 100 million monthly active users just
2 months after launching, making it the fastest-growing application in history.

Customer Support. Businesses employ transformer-based chatbots to handle customer
queries, complaints, and feedback [79,80]. These chatbots can understand the context,
provide accurate information, and even escalate issues when necessary.

Personal Assistants. Digital personal assistants, such as Siri and Alexa, are integrating
transformer models to enhance their conversational capabilities, making interactions more
natural and context-aware.

Sci 2023, 5, 46 19 of 26

4.3. Code Generation and Programming Assistance

Software development is undergoing a significant transformation with the introduc-
tion of transformer models capable of understanding and generating code. One such model
that transforms natural language instructions to code is the Codex model developed by
OpenAI [81]. These models assist developers by suggesting code snippets, detecting bugs,
and even generating entire functions or modules.

Code Completion. Integrated Development Environments (IDEs) are incorporating trans-
formers to provide real-time code completion suggestions, enhancing developer productivity.

Bug Detection and Fixing. Transformers can be trained to detect anomalies in code and
suggest potential fixes, reducing debugging time and ensuring more robust software.

4.4. Other Notable Applications

Beyond the aforementioned domains, generative transformers have found applications
in diverse areas:

Translation. While traditional machine translation models have limitations, transform-
ers can produce translations that consider the broader context, resulting in more accurate
and idiomatic outputs [34].

Summarization. Generative transformers can read lengthy articles or documents and
produce concise summaries, retaining the core information and intent [35].

Gaming. In the gaming industry, transformers are used to generate dialogues, plotlines,
and even assist in game design by suggesting scenarios or character backstories [82].

The applications of generative transformers are vast and continually expanding. As
research progresses and models become more sophisticated, it is anticipated that their
integration into various domains will become even more profound.

5. Challenges and Limitations

While generative transformers have showcased remarkable capabilities, they are not
devoid of challenges and limitations. This section delves into some of the most pressing
concerns surrounding these models, from interpretability issues to ethical dilemmas and
computational constraints.

5.1. Model Interpretability

Deep learning models, especially those with millions or billions of parameters such as
generative transformers, are often criticized for being “black boxes”. Understanding why a
model made a particular decision can be elusive [83].

Attention Maps. One approach to interpretability is visualizing attention maps [29,84].
These maps show which parts of the input the model focused on when producing an
output. Attention maps are generated by the attention mechanism that computes a set of
attention scores, which can be visualized as a heatmap.

Attention maps serve as a tool for interpreting transformer models in NLP by pro-
viding insights into various aspects of text processing. They help in analyzing the roles
of words in sentences, identifying key topics, evaluating text quality, and detecting errors
or biases. However, while attention maps provide insights, they do not offer a complete
understanding of the model’s decision-making process.

Mathematical Analysis. Efforts are being made to develop mathematical tools and
frameworks to dissect the inner workings of transformers [85,86]. Yet, a comprehensive
understanding remains a research frontier.

5.2. Hallucination in Text Generation

Generative transformers are sometimes susceptible to generating text that, while
coherent and grammatically correct, is factually incorrect or nonsensical. This phenomenon
is commonly referred to as a hallucination. Ji et al. conducted a comprehensive survey of
the issue of hallucination in natural language generation (NLG) [87].

Sci 2023, 5, 46 20 of 26

The causes of hallucination are multifaceted and can vary. They may include in-
adequate training data, which limits the model’s understanding of the subject matter.
Overfitting to the training set is another common issue, where the model learns the noise
in the data rather than the actual pattern. Additionally, high model complexity leading to
over-parameterization can also contribute to hallucination.

Addressing the issue of hallucination involves multiple strategies. One approach is
to fine-tune the model on a more specific dataset that is closely aligned with the task at
hand. Another strategy involves incorporating external knowledge bases that can fact-
check the generated text in real-time. Ensemble methods, which combine the outputs of
multiple models, can also be used to validate the generated text and reduce the likelihood
of hallucination.

Efforts are underway to quantify the degree of hallucination in generated text. Al-
though a standard measure has yet to be established, one simplistic way to quantify it is
through the Hallucination Score, defined as the ratio of the number of hallucinated tokens
to the total number of generated tokens, as shown in Equation (21).

Hallucination Score =
Number of hallucinated tokens

Total number of generated tokens
(21)

5.3. Ethical Considerations in Text Generation

Generative transformers, with their ability to produce human-like text, raise several
ethical concerns [88].

Misinformation and Fake News. There is potential for these models to generate mislead-
ing or false information, which can be weaponized to spread misinformation.

Bias and Fairness. Transformers, being trained on vast internet datasets, can inherit and
perpetuate biases present in the data [89]. Addressing this requires careful dataset curation
and post-hoc bias mitigation techniques.

Bias =
∑n

i=1(Pmodel(xi)− Ptrue(xi))

n
(22)

where Pmodel is the model’s prediction, Ptrue is the true distribution, and n is the number
of samples.

5.4. Computational Requirements and Environmental Impact

Training a large language model demands significant computational resources. For ex-
ample, the GPT-3 model, which has 175 billion parameters, would require 3.14 × 1023 FLOPS
for training, translating to 355 GPU-years and a cost of USD 4.6 million on a V100 GPU [90].
Memory is another bottleneck; the model’s 175 billion parameters would need 700 GB of
memory, far exceeding the capacity of a single GPU. To manage these challenges, OpenAI
used model parallelism techniques and trained the models on a high-bandwidth cluster.
As language models grow in size, model parallelism is becoming increasingly essential
for research.

Energy Consumption. The energy required to train state-of-the-art models can be equiv-
alent to the carbon footprint of multiple car lifetimes. This raises environmental concerns.

Exclusivity. The computational demands mean that only well-funded organizations
can train the most advanced models, leading to concerns about the democratization of AI.

While generative transformers offer immense potential, it is crucial to address their
challenges and limitations. Balancing the pursuit of state-of-the-art performance with
ethical, environmental, and computational considerations is paramount for the sustainable
and responsible advancement of the field.

6. The Future of Generative Transformers

Generative transformers, evolving from early models such as the Recurrent Neural
Networks (RNNs) to the sophisticated Generative Adversarial Networks (GANs) and now
the powerful transformers, have revolutionized numerous domains. With advancements

Sci 2023, 5, 46 21 of 26

in model architectures, training techniques, and hardware capabilities, we can anticipate
models that not only understand and generate human-like text but also exhibit enhanced
creativity, reasoning, and a form of artificial consciousness.

The way forward is full of opportunities for exploration and innovation. As the field
of generative transformers continues to evolve, there are numerous avenues for research
and development that remain unexplored or underexplored. The evolution from rules-
based systems to advanced LLMs has dramatically improved performance and training
efficiency. These improvements are not confined to text and language processing but extend
to computer vision and other modalities, creating avenues for interdisciplinary research.

6.1. Multimodal Models

The future sees generative models that seamlessly integrate multiple modalities—text,
image, sound, video, and more—offering a holistic understanding of the world and gener-
ating content that overcomes the limitations of current models. Recent advancements have
already led to transformers capable of generating not just text, but also image, audio, and
video [91]. These multimodal models are expected to evolve into sophisticated systems
capable of processing and understanding inputs from various modalities simultaneously.

In the future, we anticipate the emergence of single applications and more advanced
multimodal models. These systems would not only understand inputs from different sen-
sory channels—such as visual, auditory, and textual—but also generate outputs in various
forms, moving well beyond mere text generation. The integration of these modalities in a
single model offers a more comprehensive approach to understanding complex real-world
scenarios and creating more nuanced and contextually relevant outputs.

6.2. Domain-Specific Models

The development of domain-specific GPT models is becoming increasingly crucial
across various applications [92]. While current large language models are adept at un-
derstanding natural language and generating content, their effectiveness and accuracy
can vary significantly when applied to specialized domains such as medicine, law, and
finance [93]. A big challenge in tailoring these models to a specific domain lies in the acqui-
sition of high-quality, domain-specific data. Another significant challenge is the fine-tuning
process, which involves adapting the model to the unique characteristics and vocabulary
of the domain.

Despite these obstacles, there has been progress in the development and implemen-
tation of domain-specific GPT models. The emergence of these models marks a future
towards more tailored AI solutions. Companies with unique large datasets stand to gain
competitive advantages by training their own bespoke models. This trend is exemplified by
Bloomberg’s development of a specialized LLM for financial tasks [94]. Other companies
such as Hugging Face and Databricks are also playing pivotal roles in providing the neces-
sary resources and platforms for developing and fine-tuning these customized models.

In the future, we can expect these domain-specific GPT models to offer enhanced
efficiency, improved interpretability, and better domain generability compared to existing
large language models. However, the development of these models must also focus on
optimizing energy consumption and addressing the challenges of knowledge retention
during the fine-tuning process.

6.3. Model Efficiency

The growing size of models necessitates research in computational efficiency and
energy consumption. This includes efforts to develop more sustainable AI infrastruc-
ture and predictive infrastructure, essential for the data-intensive nature of enterprise
AI applications.

Sci 2023, 5, 46 22 of 26

6.4. Ethical AI

With the widespread implementation of generative AI across various sectors, ensuring
ethical use becomes paramount. This involves research into bias mitigation, fairness,
transparency, and the development of guidelines for responsible AI usage [95], especially
as AI begins to automate complex tasks like legal work and medical fields like drug design
and medical diagnosis.

6.5. Interdisciplinary Integration

The future of generative AI involves its fusion with other fields such as neuroscience
and cognitive science. This integration could lead to breakthroughs in understanding
both artificial and natural intelligence, with generative AI applications expanding beyond
technical fields to impact popular culture and everyday life, such as in the creation of
high-resolution images and user-friendly AI applications for enhancing productivity.

7. Conclusions

As we reflect upon the evolution of generative transformers, from their foundational
roots with Alan Turing to their current state-of-the-art capabilities, it becomes clear that
we are at a turning point in the development of artificial intelligence. In the words of Alan
Turing, “We can only see a short distance ahead, but we can see plenty there that needs to
be done”.

As we reflect upon the evolution of generative transformers, from their foundational
roots with Alan Turing to their current state-of-the-art capabilities, it becomes clear that
we are at a turning point in the development of artificial intelligence. In the words of Alan
Turing, “We can only see a short distance ahead, but we can see plenty there that needs
to be done”. This foresight aptly describes the current state of AI. The advancements in
generative transformers have not only redefined what machines are capable of doing but
also opened up a myriad of possibilities for future exploration and innovation. As we
advance and develop new technologies, it is crucial to navigate the ethical implications,
environmental and societal impacts of these technologies. The goal is not just to push
the boundaries of what AI can achieve but to do so responsibly, ensuring that these
advancements benefit society at large.

Author Contributions: Conceptualization, investigation, methodology, formal analysis, writing—original
draft: E.Y.Z. and A.D.C.; Supervision: Z.P. and J.C.; Writing—review & editing: E.Y.Z., A.D.C., Z.P.,
J.C. and Y.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Research on quality Assurance and Evaluation of higher
Education in Jiangsu Province under Grant No. 2023JSETKT032.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Baum, L.E.; Petrie, T. Statistical inference for probabilistic functions of finite state Markov chains. Ann. Math. Stat. 1966,

37, 1554–1563. [CrossRef]
2. Baum, L.E.; Eagon, J.A. An Inequality with Applications to Statistical Estimation for Probabilistic Functions of Markov Processes

and to a Model for Ecology. 1967. Available online: https://community.ams.org/journals/bull/1967-73-03/S0002-9904-1967-11
751-8/S0002-9904-1967-11751-8.pdf (accessed on 10 November 2023).

3. Baum, L.E.; Petrie, T.; Soules, G.; Weiss, N. A maximization technique occurring in the statistical analysis of probabilistic functions
of Markov chains. Ann. Math. Stat. 1970, 41, 164–171. [CrossRef]

http://doi.org/10.1214/aoms/1177699147
https://community.ams.org/journals/bull/1967-73-03/S0002-9904-1967-11751-8/S0002-9904-1967-11751-8.pdf
https://community.ams.org/journals/bull/1967-73-03/S0002-9904-1967-11751-8/S0002-9904-1967-11751-8.pdf
http://dx.doi.org/10.1214/aoms/1177697196

Sci 2023, 5, 46 23 of 26

4. Rabiner, L.R. A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 1989, 77, 257–286.
[CrossRef]

5. Hopfield, J.J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA
1982, 79, 2554–2558. [CrossRef] [PubMed]

6. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
7. Kingma, D.P.; Welling, M. An introduction to variational autoencoders. Found. Trends Mach. Learn. 2019, 12, 307–392. [CrossRef]
8. Kingma, D.P.; Welling, M. Auto-encoding variational bayes. arXiv 2013, arXiv:1312.6114.
9. Creswell, A.; White, T.; Dumoulin, V.; Arulkumaran, K.; Sengupta, B.; Bharath, A.A. Generative adversarial networks: An

overview. IEEE Signal Process. Mag. 2018, 35, 53–65. [CrossRef]
10. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial

nets. Adv. Neural Inf. Process. Syst. 2014, 27.
11. Antoniou, A.; Storkey, A.; Edwards, H. Data augmentation generative adversarial networks. arXiv 2017, arXiv:1711.04340.
12. Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 1–48. [CrossRef]
13. Deecke, L.; Vandermeulen, R.; Ruff, L.; Mandt, S.; Kloft, M. Image anomaly detection with generative adversarial networks. In

Proceedings of the Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2018, Dublin,
Ireland, 10–14 September 2018; Proceedings, Part I 18; Springer: Berlin/Heidelberg, Germany, 2019; pp. 3–17.

14. Yang, Q.; Yan, P.; Zhang, Y.; Yu, H.; Shi, Y.; Mou, X.; Kalra, M.K.; Zhang, Y.; Sun, L.; Wang, G. Low-dose CT image denoising using
a generative adversarial network with Wasserstein distance and perceptual loss. IEEE Trans. Med. Imaging 2018, 37, 1348–1357.
[CrossRef] [PubMed]

15. Zhang, H.; Sindagi, V.; Patel, V.M. Image de-raining using a conditional generative adversarial network. IEEE Trans. Circuits Syst.
Video Technol. 2019, 30, 3943–3956. [CrossRef]

16. Oord, A.V.D.; Dieleman, S.; Zen, H.; Simonyan, K.; Vinyals, O.; Graves, A.; Kalchbrenner, N.; Senior, A.; Kavukcuoglu, K.
Wavenet: A generative model for raw audio. arXiv 2016, arXiv:1609.03499.

17. Ramesh, A.; Pavlov, M.; Goh, G.; Gray, S.; Voss, C.; Radford, A.; Chen, M.; Sutskever, I. Zero-shot text-to-image generation. In
Proceedings of the International Conference on Machine Learning, PMLR, Virtual, 18–24 July 2021; pp. 8821–8831.

18. Dhariwal, P.; Jun, H.; Payne, C.; Kim, J.W.; Radford, A.; Sutskever, I. Jukebox: A generative model for music. arXiv 2020,
arXiv:2005.00341.

19. Cetinic, E.; She, J. Understanding and creating art with AI: Review and outlook. ACM Trans. Multimed. Comput. Commun. Appl.
(TOMM) 2022, 18, 1–22. [CrossRef]

20. Bian, Y.; Xie, X.Q. Generative chemistry: Drug discovery with deep learning generative models. J. Mol. Model. 2021, 27, 71.
[CrossRef]

21. Stephenson, N.; Shane, E.; Chase, J.; Rowland, J.; Ries, D.; Justice, N.; Zhang, J.; Chan, L.; Cao, R. Survey of machine learning
techniques in drug discovery. Curr. Drug Metab. 2019, 20, 185–193. [CrossRef]

22. Martin, D.; Serrano, A.; Bergman, A.W.; Wetzstein, G.; Masia, B. Scangan360: A generative model of realistic scanpaths for
360 images. IEEE Trans. Vis. Comput. Graph. 2022, 28, 2003–2013. [CrossRef]

23. Achlioptas, P.; Diamanti, O.; Mitliagkas, I.; Guibas, L. Learning representations and generative models for 3D point clouds. In
Proceedings of the International Conference on Machine Learning, PMLR, Stockholm, Sweden, 10–15 July 2018; pp. 40–49.

24. Khoo, E.T.; Lee, S.P.; Cheok, A.D.; Kodagoda, S.; Zhou, Y.; Toh, G.S. Age invaders: Social and physical inter-generational family
entertainment. In Proceedings of the CHI’06 Extended Abstracts on Human Factors in Computing Systems, Montreal, QU,
Canada, 22–27 April 2006; pp. 243–246.

25. Radford, A.; Metz, L.; Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks.
arXiv 2015, arXiv:1511.06434.

26. Way, G.P.; Greene, C.S. Extracting a biologically relevant latent space from cancer transcriptomes with variational autoencoders.
In Proceedings of the Pacific Symposium on Biocomputing 2018, Hawaii, HI, USA, 3–7 January 2018; World Scientific: Singapore,
2018; pp. 80–91.

27. Sirignano, J.; Cont, R. Universal features of price formation in financial markets: Perspectives from deep learning. Quant. Financ.
2019, 19, 1449–1459. [CrossRef]

28. Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N.; Prabhat, F. Deep learning and process
understanding for data-driven Earth system science. Nature 2019, 566, 195–204. [CrossRef]

29. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.
Adv. Neural Inf. Process. Syst. 2017, 30. Available online: https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243
547dee91fbd053c1c4a845aa-Paper.pdf (accessed on 10 November 2023).

30. Pascanu, R.; Mikolov, T.; Bengio, Y. On the difficulty of training recurrent neural networks. In Proceedings of the International
Conference on Machine Learning, PMLR, Atlanta, GA, USA, 17–19 June 2013; pp. 1310–1318.

31. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv 2018, arXiv:1810.04805.

32. Rogers, A.; Kovaleva, O.; Rumshisky, A. A primer in BERTology: What we know about how BERT works. Trans. Assoc. Comput.
Linguist. 2021, 8, 842–866. [CrossRef]

http://dx.doi.org/10.1109/5.18626
http://dx.doi.org/10.1073/pnas.79.8.2554
http://www.ncbi.nlm.nih.gov/pubmed/6953413
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1561/2200000056
http://dx.doi.org/10.1109/MSP.2017.2765202
http://dx.doi.org/10.1186/s40537-019-0197-0
http://dx.doi.org/10.1109/TMI.2018.2827462
http://www.ncbi.nlm.nih.gov/pubmed/29870364
http://dx.doi.org/10.1109/TCSVT.2019.2920407
http://dx.doi.org/10.1145/3475799
http://dx.doi.org/10.1007/s00894-021-04674-8
http://dx.doi.org/10.2174/1389200219666180820112457
http://dx.doi.org/10.1109/TVCG.2022.3150502
http://dx.doi.org/10.1080/14697688.2019.1622295
http://dx.doi.org/10.1038/s41586-019-0912-1
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://dx.doi.org/10.1162/tacl_a_00349

Sci 2023, 5, 46 24 of 26

33. Bubeck, S.; Chandrasekaran, V.; Eldan, R.; Gehrke, J.; Horvitz, E.; Kamar, E.; Lee, P.; Lee, Y.T.; Li, Y.; Lundberg, S.; et al. Sparks of
artificial general intelligence: Early experiments with gpt-4. arXiv 2023, arXiv:2303.12712.

34. Jiao, W.; Wang, W.; Huang, J.T.; Wang, X.; Tu, Z. Is ChatGPT a good translator? A preliminary study. arXiv 2023, arXiv:2301.08745.
35. Gao, M.; Ruan, J.; Sun, R.; Yin, X.; Yang, S.; Wan, X. Human-like summarization evaluation with chatgpt. arXiv 2023,

arXiv:2304.02554.
36. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;

Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.
37. Raghu, M.; Unterthiner, T.; Kornblith, S.; Zhang, C.; Dosovitskiy, A. Do Vision Transformers See Like Convolutional Neural

Networks? arXiv 2021, arXiv:2108.08810.
38. Paul, S.; Chen, P.Y. Vision transformers are robust learners. In Proceedings of the AAAI Conference on Artificial Intelligence,

Washington, DC, USA, 7–14 February 2022; Volume 36, pp. 2071–2081.
39. Nikolić, G.S.; Dimitrijević, B.R.; Nikolić, T.R.; Stojcev, M.K. A survey of three types of processing units: CPU, GPU and TPU.

In Proceedings of the 2022 57th International Scientific Conference on Information, Communication and Energy Systems and
Technologies (ICEST), Ohrid, Macedonia, 16–18 June 2022; pp. 1–6.

40. Gozalo-Brizuela, R.; Garrido-Merchan, E.C. ChatGPT is not all you need. A State of the Art Review of large Generative AI models.
arXiv 2023, arXiv:2301.04655.

41. Lin, T.; Wang, Y.; Liu, X.; Qiu, X. A survey of transformers. arXiv 2022, arXiv:2106.04554.
42. Kalyan, K.S.; Rajasekharan, A.; Sangeetha, S. Ammus: A survey of transformer-based pretrained models in natural language

processing. arXiv 2021, arXiv:2108.05542.
43. Acheampong, F.A.; Nunoo-Mensah, H.; Chen, W. Transformer models for text-based emotion detection: A review of BERT-based

approaches. Artif. Intell. Rev. 2021, 54, 5789–5829. [CrossRef]
44. Han, K.; Wang, Y.; Chen, H.; Chen, X.; Guo, J.; Liu, Z.; Tang, Y.; Xiao, A.; Xu, C.; Xu, Y.; et al. A survey on vision transformer.

IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 87–110. [CrossRef]
45. Khan, S.; Naseer, M.; Hayat, M.; Zamir, S.W.; Khan, F.S.; Shah, M. Transformers in vision: A survey. ACM Comput. Surv. (CSUR)

2022, 54, 1–41. [CrossRef]
46. Shamshad, F.; Khan, S.; Zamir, S.W.; Khan, M.H.; Hayat, M.; Khan, F.S.; Fu, H. Transformers in medical imaging: A survey. Med.

Image Anal. 2023, 88, 102802. [CrossRef]
47. Aleissaee, A.A.; Kumar, A.; Anwer, R.M.; Khan, S.; Cholakkal, H.; Xia, G.S.; Khan, F.S. Transformers in remote sensing: A survey.

Remote Sens. 2023, 15, 1860. [CrossRef]
48. Wen, Q.; Zhou, T.; Zhang, C.; Chen, W.; Ma, Z.; Yan, J.; Sun, L. Transformers in time series: A survey. arXiv 2022, arXiv:2202.07125.
49. Ahmed, S.; Nielsen, I.E.; Tripathi, A.; Siddiqui, S.; Ramachandran, R.P.; Rasool, G. Transformers in time-series analysis: A tutorial.

Circuits Syst. Signal Process. 2023, 42, 7433–7466. [CrossRef]
50. Turing, A.M. On computable numbers, with an application to the Entscheidungsproblem. J. Math 1936, 58, 5.
51. Copeland, B.J. The Church-Turing Thesis. 1997. Available online: https://plato.stanford.edu/ENTRIES/church-turing/ (accessed

on 10 November 2023).
52. Bernays, P. Alonzo Church. An unsolvable problem of elementary number theory. Am. J. Math. 1936, 58, 345–363.
53. Hodges, A. Alan Turing: The Enigma: The Book That Inspired the Film “The Imitation Game”; Princeton University Press: Princeton,

NJ, USA, 2014.
54. Turing, A.M. Proposed Electronic Calculator; National Physical Laboratory: London, UK, 1946.
55. Machinery, C. Computing machinery and intelligence-AM Turing. Mind 1950, 59, 433.
56. Turing, A. Intelligent machinery (1948). In The Essential Turing; Copeland, B.J., Ed.; Oxford Academic: Oxford, UK, 2004;

pp. 395–432.
57. Turing, A.M. The chemical basis of morphogenesis. Philos. Trans. R. Soc. London Ser. Biol. Sci. 1952, 237, 37–72.
58. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
59. Bishop, C.M.; Nasrabadi, N.M. Pattern Recognition and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2006; Volume 4.
60. Yu, Y.; Si, X.; Hu, C.; Zhang, J. A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput.

2019, 31, 1235–1270. [CrossRef]
61. Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I. Improving Language Understanding by Generative Pre-Training. 2018.

Available online: https://www.mikecaptain.com/resources/pdf/GPT-1.pdf (accessed on 10 November 2023).
62. Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I. Language models are unsupervised multitask learners. OpenAI

Blog 2019, 1, 9.
63. Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.

Language models are few-shot learners. Adv. Neural Inf. Process. Syst. 2020, 33, 1877–1901.
64. OpenAI. GPT-4 Technical Report. 2023. Available online: http://xxx.lanl.gov/abs/2303.08774 (accessed on 10 November 2023).
65. Touvron, H.; Lavril, T.; Izacard, G.; Martinet, X.; Lachaux, M.A.; Lacroix, T.; Rozière, B.; Goyal, N.; Hambro, E.; Azhar, F.; et al.

Llama: Open and efficient foundation language models. arXiv 2023, arXiv:2302.13971.
66. Thoppilan, R.; De Freitas, D.; Hall, J.; Shazeer, N.; Kulshreshtha, A.; Cheng, H.T.; Jin, A.; Bos, T.; Baker, L.; Du, Y.; et al. Lamda:

Language models for dialog applications. arXiv 2022, arXiv:2201.08239.
67. Zhuang, B.; Liu, J.; Pan, Z.; He, H.; Weng, Y.; Shen, C. A survey on efficient training of transformers. arXiv 2023, arXiv:2302.01107.

http://dx.doi.org/10.1007/s10462-021-09958-2
http://dx.doi.org/10.1109/TPAMI.2022.3152247
http://dx.doi.org/10.1145/3505244
http://dx.doi.org/10.1016/j.media.2023.102802
http://dx.doi.org/10.3390/rs15071860
http://dx.doi.org/10.1007/s00034-023-02454-8
https://plato.stanford.edu/ENTRIES/church-turing/
http://dx.doi.org/10.1162/neco_a_01199
https://www.mikecaptain.com/resources/pdf/GPT-1.pdf
http://xxx.lanl.gov/abs/2303.08774

Sci 2023, 5, 46 25 of 26

68. Xu, F.F.; Alon, U.; Neubig, G.; Hellendoorn, V.J. A systematic evaluation of large language models of code. In Proceedings of the
6th ACM SIGPLAN International Symposium on Machine Programming, New York, NY, USA, 13 June 2022; pp. 1–10.

69. Hewitt, J.; Manning, C.D.; Liang, P. Truncation sampling as language model desmoothing. arXiv 2022, arXiv:2210.15191.
70. Zhang, J.; He, T.; Sra, S.; Jadbabaie, A. Why gradient clipping accelerates training: A theoretical justification for adaptivity. arXiv

2019, arXiv:1905.11881.
71. Lin, Y.; Han, S.; Mao, H.; Wang, Y.; Dally, W.J. Deep gradient compression: Reducing the communication bandwidth for

distributed training. arXiv 2017, arXiv:1712.01887.
72. Shoeybi, M.; Patwary, M.; Puri, R.; LeGresley, P.; Casper, J.; Catanzaro, B. Megatron-lm: Training multi-billion parameter language

models using model parallelism. arXiv 2019, arXiv:1909.08053.
73. Ziegler, D.M.; Stiennon, N.; Wu, J.; Brown, T.B.; Radford, A.; Amodei, D.; Christiano, P.; Irving, G. Fine-tuning language models

from human preferences. arXiv 2019, arXiv:1909.08593.
74. Dodge, J.; Ilharco, G.; Schwartz, R.; Farhadi, A.; Hajishirzi, H.; Smith, N. Fine-tuning pretrained language models: Weight

initializations, data orders, and early stopping. arXiv 2020, arXiv:2002.06305.
75. He, R.; Liu, L.; Ye, H.; Tan, Q.; Ding, B.; Cheng, L.; Low, J.W.; Bing, L.; Si, L. On the effectiveness of adapter-based tuning for

pretrained language model adaptation. arXiv 2021, arXiv:2106.03164.
76. Shidiq, M. The use of artificial intelligence-based chat-gpt and its challenges for the world of education; from the viewpoint of

the development of creative writing skills. In Proceedings of the International Conference on Education, Society and Humanity,
Taipei, Taiwan, 28–30 June 2023; Volume 1, pp. 353–357.

77. Ippolito, D.; Yuan, A.; Coenen, A.; Burnam, S. Creative writing with an ai-powered writing assistant: Perspectives from
professional writers. arXiv 2022, arXiv:2211.05030.

78. Köbis, N.; Mossink, L.D. Artificial intelligence versus Maya Angelou: Experimental evidence that people cannot differentiate
AI-generated from human-written poetry. Comput. Hum. Behav. 2021, 114, 106553. [CrossRef]

79. Hardalov, M.; Koychev, I.; Nakov, P. Towards automated customer support. In Artificial Intelligence: Methodology, Systems, and
Applications, Proceedings of the 18th International Conference, AIMSA 2018, Varna, Bulgaria, 12–14 September 2018; Proceedings 18;
Springer: Berlin/Heidelberg, Germany, 2018; pp. 48–59.

80. Følstad, A.; Skjuve, M. Chatbots for customer service: User experience and motivation. In Proceedings of the 1st International
Conference on Conversational User Interfaces, Dublin, Ireland, 22–23 August 2019; pp. 1–9.

81. Finnie-Ansley, J.; Denny, P.; Becker, B.A.; Luxton-Reilly, A.; Prather, J. The robots are coming: Exploring the implications of openai
codex on introductory programming. In Proceedings of the 24th Australasian Computing Education Conference, Melbourne,
VIC, Australia, 14–18 February 2022; pp. 10–19.

82. Värtinen, S.; Hämäläinen, P.; Guckelsberger, C. Generating role-playing game quests with gpt language models. IEEE Trans.
Games 2022, 1–12. . [CrossRef]

83. Doshi-Velez, F.; Kim, B. Towards a rigorous science of interpretable machine learning. arXiv 2017, arXiv:1702.08608.
84. Xu, K.; Ba, J.; Kiros, R.; Cho, K.; Courville, A.; Salakhudinov, R.; Zemel, R.; Bengio, Y. Show, attend and tell: Neural image caption

generation with visual attention. In Proceedings of the International Conference on Machine Learning, PMLR, Lille, France, 6–11
July 2015; pp. 2048–2057.

85. Chefer, H.; Gur, S.; Wolf, L. Transformer interpretability beyond attention visualization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 782–791.

86. Elhage, N.; Nanda, N.; Olsson, C.; Henighan, T.; Joseph, N.; Mann, B.; Askell, A.; Bai, Y.; Chen, A.; Conerly, T.; et al. A
mathematical framework for transformer circuits. Transform. Circuits Thread 2021, 1. Available online: https://transformer-
circuits.pub/2021/framework/index.html (accessed on 10 November 2023).

87. Ji, Z.; Lee, N.; Frieske, R.; Yu, T.; Su, D.; Xu, Y.; Ishii, E.; Bang, Y.J.; Madotto, A.; Fung, P. Survey of hallucination in natural
language generation. ACM Comput. Surv. 2023, 55, 1–38. [CrossRef]

88. Ganguli, D.; Hernandez, D.; Lovitt, L.; Askell, A.; Bai, Y.; Chen, A.; Conerly, T.; Dassarma, N.; Drain, D.; Elhage, N.; et al.
Predictability and surprise in large generative models. In Proceedings of the 2022 ACM Conference on Fairness, Accountability,
and Transparency, Seoul, Republic of Korea, 21–24 June 2022; pp. 1747–1764.

89. Silva, A.; Tambwekar, P.; Gombolay, M. Towards a comprehensive understanding and accurate evaluation of societal biases
in pre-trained transformers. In Proceedings of the 2021 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Online, 6–11 June 2021; pp. 2383–2389.

90. Li, C. OpenAI’s GPT-3 Language Model: A Technical Overview. Lambda Labs Blog 2020. Available online: https://lambdalabs.
com/blog/demystifying-gpt-3 (accessed on 10 November 2023).

91. Xu, P.; Zhu, X.; Clifton, D.A. Multimodal learning with transformers: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45,
12113–12132. [CrossRef] [PubMed]

92. Pal, S.; Bhattacharya, M.; Lee, S.S.; Chakraborty, C. A Domain-Specific Next-Generation Large Language Model (LLM) or
ChatGPT is Required for Biomedical Engineering and Research. Ann. Biomed. Eng. 2023, 1–4. . [CrossRef]

93. Wang, C.; Liu, X.; Yue, Y.; Tang, X.; Zhang, T.; Jiayang, C.; Yao, Y.; Gao, W.; Hu, X.; Qi, Z.; et al. Survey on factuality in large
language models: Knowledge, retrieval and domain-specificity. arXiv 2023, arXiv:2310.07521.

http://dx.doi.org/10.1016/j.chb.2020.106553
.
http://dx.doi.org/10.1109/TG.2022.3228480
https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html
http://dx.doi.org/10.1145/3571730
https://lambdalabs.com/blog/demystifying-gpt-3
https://lambdalabs.com/blog/demystifying-gpt-3
http://dx.doi.org/10.1109/TPAMI.2023.3275156
http://www.ncbi.nlm.nih.gov/pubmed/37167049
.
http://dx.doi.org/10.1007/s10439-023-03306-x

Sci 2023, 5, 46 26 of 26

94. Wu, S.; Irsoy, O.; Lu, S.; Dabravolski, V.; Dredze, M.; Gehrmann, S.; Kambadur, P.; Rosenberg, D.; Mann, G. Bloomberggpt: A
large language model for finance. arXiv 2023, arXiv:2303.17564.

95. Floridi, L.; Cowls, J.; Beltrametti, M.; Chatila, R.; Chazerand, P.; Dignum, V.; Luetge, C.; Madelin, R.; Pagallo, U.; Rossi, F.; et al.
An ethical framework for a good AI society: Opportunities, risks, principles, and recommendations. Ethics Gov. Policies Artif.
Intell. 2021, 144, 19–39.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Background and Significance of Generative Models in AI
	The Rise of Transformer Architectures
	Purpose and Structure of the Paper

	Historical Evolution
	Turing Machines and the Foundations of Computation
	Turing's Impact on Artificial Intelligence and Machine Learning
	From Turing's Foundations to Generative Transformers

	Early Neural Networks and Language Models
	Introduction to Neural Networks
	Evolution of Recurrent Neural Networks (RNNs)
	Long Short-Term Memory (LSTM) Networks

	The Advent of Transformers
	Introduction to the Transformer Architecture
	Advantages of Transformers

	Attention Mechanism: The Heart of Transformers
	Conceptual Overview of Attention
	Mathematics of Attention
	Significance in Transformers

	Generative Transformers and Their Significance
	GPT (Generative Pre-Trained Transformer) Series
	Other Notable Generative Transformer Models

	Tutorial on Generative Transformers
	Basics of the Transformer Architecture
	Overview
	Attention Mechanism
	Multi-Head Attention
	Feed-Forward Neural Networks
	Self-Attention Mechanism
	Positional Encoding
	Multi-Head Attention
	Encoder and Decoder Modules

	Building a Simple Generative Transformer
	Data Preprocessing and Tokenization
	Defining the Transformer Model

	Advanced Techniques and Best Practices
	Techniques for Improving Generation Quality
	Handling Long Sequences and Memory Issues
	Fine-Tuning and Transfer Learning

	Applications and Use Cases
	Text Generation for Creative Writing
	Chatbots and Conversational Agents
	Code Generation and Programming Assistance
	Other Notable Applications

	Challenges and Limitations
	Model Interpretability
	Hallucination in Text Generation
	Ethical Considerations in Text Generation
	Computational Requirements and Environmental Impact

	The Future of Generative Transformers
	Multimodal Models
	Domain-Specific Models
	Model Efficiency
	Ethical AI
	Interdisciplinary Integration

	Conclusions
	References

