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Abstract: Connectomics, which is the network study of connectomes or maps of the nervous system
of an organism, should be applied and expanded to human and animal societies, resulting in the
birth of the domain of socioconnectomics compared to neuroconnectomics. This new network study
framework would open up new perspectives in evolutionary biology and add new elements to
theories, such as the social and cultural brain hypotheses. Answering questions about network
topology, specialization, and their connections with functionality at one level (i.e., neural or societal)
may help in understanding the evolutionary trajectories of these patterns at the other level. Expanding
connectomics to societies should be done in comparison and combination with multilevel network
studies and the possibility of multiorganization selection processes. The study of neuroconnectomes
and socioconnectomes in animals, from simpler to more advanced ones, could lead to a better
understanding of social network evolution and the feedback between social complexity and brain
complexity.
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1. Introduction

Connectomics is the study of connectomes [1–4] or maps of the nervous system of
an organism, mainly the brain in vertebrates and its analogous structure in invertebrates.
Connectomics enables researchers to understand how information is treated and stored on
microscopic (neuron basis) and macroscopic (brain module basis) scales. For example, how
a disease affects brain structure and function or the variability in brain structure and how it
changes with age. Connectomics is a set of network tools that helps researchers understand
how the connectional architecture of the brain is related to functional specialization. Recent
computational advances have improved the measurement and storage of large datasets—
those with thousands of connections between thousands of entities—analyzed primarily
using graph theory or social network analyses (SNAs) [5,6]. These SNAs are used to assess
how neural networks are structured regarding communities (i.e., modules), centralities
(i.e., hubs and rich clubs), and efficiency (i.e., short communication paths), resulting in
comparative and evolutionary applications concerning the function and selection of these
neuronal architectures in different species [4]. Compared to neuroconnectomics, I propose
that connectomics be applied and expanded to human and animal societies and social
networks, leading to the birth of the domain of socioconnectomics. This involves transfer-
ring network analysis tools, applying natural selection concepts to social networks, and
considering evolutionary processes (genetic selection, cultural selection, and multilevel
selection [7,8]). This new study framework would open up new perspectives in evolution-
ary biology and add new components to theories such as the social brain [9] and cultural
brain hypotheses [10]. According to the social brain hypothesis, brain size, particularly the
neocortex, is related to group size. In contrast, the cultural brain hypothesis unifies more
specific explanations centered on the environmental and social brain hypotheses, implying
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that the brain was chosen for its ability to store and manage information acquired through
asocial or social learning [10,11]. Therefore, the cultural brain hypothesis is a bit more
complex and includes more parameters than the social brain hypothesis. Managing the
complexity of social relationships—not just group size but identifying them, memorizing
them, and identifying the social and cultural roles of group members according to envi-
ronmental conditions—is challenging for animals, including humans. It should result in a
link between social network complexity and brain complexity, indicating a link between
neuroconnectomics and socioconnectomics.

2. Universal Network Topological Properties

Based on the findings of Milo et al. [12], Oltvai and Barabási, in their study [13],
proposed that the universal topological properties (e.g., scale-free connectivity, modular-
ity, and hierarchy) observed from cellular to neural and ecosystem networks should be
governed by similar principles. Other studies later proposed that such common features
should reflect constraints imposed by selection forces and be shaped by evolutionary
pressures [14,15]. Irrespective of the selection mechanism, we may wonder why networks—
brain or society—“look the way they do and not any other way” [14]. Questions about
neural networks are raised for human and animal societies, regarding how genetic and envi-
ronmental interactions influence topology and its variability, how diseases affect structures,
and how information is identified and shared [15]. Connectome architecture may follow
general wiring principles that favor functionally important topological attributes that bene-
fit efficient communication and global integration while minimizing biological resource
expenditure. Many animals, including humans, live in societies because socialization
improves fitness [16], allowing them to learn more about food, reproduction, and predators.
However, proximity and social relationships increase the risk of disease. Individuals may
become specialized to increase group efficiency, such as elders sharing information and
leading, as societies face trade-offs of opposing forces increasing modularity [17,18]. Hence,
answering questions about topology, specialization, and their links to functionality at one
level (i.e., neural or societal) may help in understanding the evolutionary trajectories of
these patterns at the other level. Henrich revealed that human evolutionary processes at
the brain and social levels are always constant due to constant exchanges between these
two structures [19]. Specific behavioral traits or personalities may be favored by genetic
selection to a specific phenotypic composition of a group [20] and network topology [20,21].
For example, aggressive traits may be connected to modular networks. Similarly, cultural
selection influences the transmission of adaptive behavior, and group members may choose
to observe the best performers, modifying social network centralization [22,23]. Similar
network “morphospaces” should be observed at these different levels if general selection
principles apply to different levels of life organization [14]. Selection of network properties
such as efficiency or modularity has been observed at the brain [24,25] and the group
levels [26–28], implying that similar evolutionary processes may be responsible for these
network topologies. For example, the network modularity of primate groups is higher than
the modularity of theoretical networks with similar properties (e.g., size and density) [27],
indicating a selection process supported by the fact that this network property and effi-
ciency are linked to brain capacities in primates [26]. The same reasoning could be applied
to ecosystems and their tropic and mutualistic networks [29].

3. Network Analyses at Different Life Organizations

Neural and social networks share a theoretical foundation, and they also share net-
work analysis tools. This is not new, as social network analyses have been used in both
domains for approximately 20 years. However, this statement contributes to a more solid
understanding of socioconnectomics as neuroconnectomics. Measuring the connection or
activity of an entity—whether a neuron or an individual—differs from neuroconnectomics,
which is based on magnetic resonance imaging, electron microscopy, and histological
techniques [1]. In contrast, socioconnectomics is based on ethological observations or
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loggers [30]. However, the same network analyses are used to work on connectomes when
these connections are measured (Figure 1). The generalized mathematical language of
graph theory is now used in many scientific disciplines, allowing possible comparisons
of connectomes at different levels. SNAs are a set of measures used at different levels of
the network [6]: the entity level (a neuron or an individual), the intermediate level with
the presence of clusters and their relationships, and the network level to assess global
properties such as efficiency, diameter, density, or modularity [6,31]. When it comes to
understanding the role of certain neurons or brain areas in linking others and explaining
brain asymmetry, efficiency, or robustness (i.e., the ability to withstand failures and per-
turbations, mainly alternative pathways between two entities), betweenness centrality is
also a popular and useful measure in animal social networks to understand the roles of
individuals. For example, individuals with a high betweenness link different communities,
allowing the transfer of information and leadership in dolphins [32] and dominance and
policing characteristics in macaques (Figure 1A,B) [33]. Correlograms, which are used to
show the existence of modules in the brain, are also used to determine communities in
primates and how these communities are nested based on dominance (Figure 1C,D) [34,35].
Dendrograms and hierarchical clustering analyses can also be used to assess communi-
ties (Figure 1E,F). This has been demonstrated in elephants, where units fuse and split
depending on the dryness of the season [36].
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Figure 1. Instances of analyses used in neural and social networks study. (A,B) Common social
network analyses used to assess individual (e.g., neuron or group member) and global properties,
respectively, in the Drosophila brain and a group of mandrills. (C,D) Correlogram analyses measuring
the existence of modules and nestedness [35] in the macaque brain and a group of vervet monkeys.
(E,F) Analyses measuring clusterization in the human brain [37] and an African elephant popula-
tion [36]. (G) Framework to study and compare socioconnectomes with neuroconnectomes over time.
Figures are used with permission.

4. Same Challenges to Understanding Evolution

The fact that the same toolkit can be used for neuroconnectomics and socioconnec-
tomics is significant because this implies that the results can be compared between these two
levels, allowing for comparative connectomics not only between brains [4] or societies [38]
of different species but also between brains and societies. However, trials comparing
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different levels of life organization in network topologies are extremely rare [12,13,35,39,40]
because of a lack of exchange between scientific communities and different ways of consid-
ering evolutionary processes driving network topology. The same challenges arise when
combining connectomics with comparative ethology and comparative neuroscience to
discover common organizational plans while accounting for species diversity. However,
scientists in both domains are concerned with the same methodological issues in obtaining,
storing, and analyzing large datasets [2], necessitating the development of new tools. Both
neuroscientists and behavioral ecologists would benefit from sharing technologies in this
context. Beyond this technological comparison, the field of “comparative network analy-
sis” [4] is used to examine similarities and differences across a range of network classes.
It provides a powerful approach to answering the question of which topological network
attributes are specific to nervous structures and which represent more universal network
organization properties as human and animal societies. Therefore, it offers a unique tool
for determining which network properties are unique to brain networks and which are
shared with social networks.

5. Future Research and Challenges

Expanding connectomics to societies should be done in comparison and combination
with multilevel studies and the possibility of multiorganization selection processes [7].
Evolutionary processes may favor the phenotypic composition of a group [41], implying
that individuals with different personalities and, thus, social traits in a group may favor
different network topologies. This is known as “collective social niche construction” [7].
This type of multilevel connectomics could be envisioned in two ways: first, as a multi-
species comparison, and second, as a lifespan comparison, allowing researchers to assess
the selection processes (genetic versus cultural) leading to specific network topologies.

Multilevel selection: There is no argument that the brain network is subject to selection
pressures and evolves to reach a certain level of optimality [24,25,42,43]. However, it is
more difficult to propose the same evolutionary theory for social network topology [44–49].
Hence, it is challenging to apply connectomics to societies in the same way it is applied
to the brain. However, the social network topology is governed by the group behaviors
of group members [8,50], whereas individual behavior is governed by genetic [51–53] and
cultural selection [54,55] ([7] for a review of mechanisms). Pressures such as predation,
access to information, pathogens, access to food, and mating may favor certain behaviors of
individuals to increase their fitness by making them more central in their networks, closer
to relatives, and so on. Therefore, it is possible to observe the selection of some network
properties that may eventually favor the fitness of both some and all group members, even
if the benefit is not distributed equally. Hence, rather than considering selection on a group
level, I consider it on multiple levels [8,45]. Multilevel selection typically favors phenotypic
benefits that can be shared by all group members [56]. The coding of a group phenotypic
composition [41] for network topology may be favored by evolutionary processes and
could be referred to as “collective social niche construction” [7]. This consideration makes
it possible to apply connectomics to societies.

Multilevel connectomics: The study of neuroconnectomes and socioconnectomes in
animals, from simpler to more advanced ones, could lead to a better understanding of
social evolution and the feedback between social and brain complexity. It would be specific
about how social structures influence individual fitness and, consequently, the selection of
heritable social traits. The cultural brain hypothesis states that brain complexity in humans
is not only due to our social complexity but also to the ability of our brain to store, manage,
and share information [10,11]. Directly comparing neuroconnectomes with socioconnec-
tomes of different individuals in different species, as with the cultural brain hypothesis, by
comparing different ethnic groups could add more elements to confirm or deny the social
brain hypothesis. A similarity index could be measured between indices (e.g., efficiency,
modularity) of the neuroconnectome and the socioconnectome of an individual, human, or
animal, and the similarity index could be compared across species, environmental condi-
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tions, and other variables. One important question is how the brain and social complexity
are linked. Several studies have found a positive correlation between the two connectomes
in mammals [9,57], giving rise to the social brain hypothesis and, later, the cultural brain
hypothesis. However, these hypotheses are still being debated [58–61]. The link is not
obvious in other animal taxa and may even be inversed, as in eusocial insects, whose
brain structures may be simpler than in vertebrates. Nevertheless, societies remain highly
complex [42,62]. Moreover, it would be critical to show how certain neural connectomes
underpin specific social behaviors. We already know that certain brain parts are linked
with some behaviors, such as language, emotions, and other capacities. Apart from the
connection between different parts of the brain allowing the emergence of consciousness,
which is linked to the theory of mind and social complexity, we do not know how neurocon-
nectomes may influence socioconnectomes. Beyond simple correlation studies, one could
consider selecting specific neuroconnectomes in species such as drosophila and assess how
they are linked to the social behavior of the species and the emergent social network.

Aging connectomics: Several studies have found a link between social complexity and
brain size based on the social brain hypothesis [9]. However, developing social interac-
tion capability in vertebrates and their corresponding neural networks involves a critical
temporal dimension (Figure 1G) [63]. Nonetheless, this longitudinal aspect is just gaining
momentum. Animal brain size, structures, and social relationships take time to develop,
and may take several years [64–66]. This implies that there is a temporal dimension to
investigate in developing these two structures. This hypothesis has recently been tested
intraspecifically with some individual brain structures linked to several social partners [67].
However, very few studies have been conducted to investigate how some brain structures
are linked to social centralities of group members and, more generally, network topolo-
gies, and how age affects neuroconnectomes and socioconnectomes. Measuring the two
parameters at different ages or life stages of individuals would reveal processes that link
sociality to longevity and brain aging. Multilevel connectomics, which means linking the
neuroconnectome to the socioconnectome, could also be envisaged across the lifespan [3]
of an individual, from birth to death, as both sociality and the brain change with age. The
social network of an individual specifically is flexible throughout their life and appears to
be partly independent of chronological age, with regulatory processes and bidirectional
effects on individual senescence and fitness [63]. The question of the directionality of the
effect between changes in the brain and social network remains unanswered, and a detailed
longitudinal study of connectomes spanning the lives of individuals could provide an
answer to the causality issue. It could also lead to direct applications in brain diseases
linked to sociality. It is difficult to study this developmental covariation between neuro-
connectomes and socioconnectomes because it requires measuring. For example, the brain
structure of all group members undergoes changes throughout their lives. Technologies
such as fMRIs exist only for animals of a certain size and are still expensive for large and
long-term studies.

6. Conclusions

To better understand how our brain and social world are structured, we can use net-
work analysis tools to connect two disparate domains while answering similar questions
about network properties and functionalities. In the same way we study brain structure
(neuroconnectomics), we should study the evolution of social structures (connectomics).
This way of thinking, which incorporates multilevel selection, could lead to a better un-
derstanding of the back and forth between different levels of organizations. Further, it
advances our understanding of brain complexity concerning sociality, adding elements to
the social and cultural brain hypotheses. Hence, as neuroconnectomics is the study of brain
structures and the evolutionary processes underlying them, socioconnectomics should
become the study of social networks and the evolutionary processes underlying them. This
framework could also be extended to other types of networks, potentially resolving one
of the most important scientific questions concerning the universality and evolution of
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some physical and biological rules. Further, supposed selection and evolution were found
to apply to many levels of living organizations [12,14]. In that case, there is no reason
why they should not also apply to all of them, particularly to animal and human social
networks [7,68,69].
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