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Abstract: The presence of quantum Rayleigh scattering, or spontaneous emission, inside a dielectric
medium such as a beam splitter or an interferometric filter prevents a single photon from propagating
in a straight line. Modelling a beam splitter by means of a unitary transformation is physically
meaningless because of the loss of photons. Additional missing elements from the conventional
theory are the quantum Rayleigh-stimulated emission, which can form groups of photons of the same
frequency, and the unavoidable parametric amplification of single photons in the original parame-tric
crystal. An interference filter disturbs, through multiple internal reflections, the original stream of
single photons, thereby confirming the existence of groups of photons being spread out to lengthen
the coherence time. The approach of modelling individual, single measurements with probability
amplitudes of a statistical ensemble leads to counterintuitive explanations of the experimental
outcomes and should be replaced with pure states describing instantaneous measurements whose
values are afterwards averaged.

Keywords: quantum Rayleigh emissions; photonic beam splitters and interference filters; photon
coincidence counting; HOM dip with independent photons

1. Introduction

Recent developments in the integration of photonic devices for quantum information
processing [1,2] are characterized by their capability to generate a single photon per radia-
tion mode in order to give rise to two-photon destructive interference for temporally over-
lapping indistinguishable photons, which is commonly known as the Hong-Ou-Mandel
(HOM) dip [3]. The reduction in the counting rate of coincident detections of photons at
two spatially separated photodetectors is explained by opposite sign amplitudes for the
probabilities of detecting each photon pair after having been reflected or transmitted in
opposite directions by a beam splitter (BS). Yet, with only one pair of photons present in
the experimental setup at any given time for an individual measurement, the two types of
detection cannot take place simultaneously.

However, a distinction needs to be made between the mathematical formalism of quan-
tum mechanics and the physical processes of quantum optics grounded in optical physics.

The conventional approach of modelling the beam splitter was outlined in ref. [4],
concluding that, with identical and synchronized single photons, “the probability of de-
tecting one photon at each output port is zero which is clearly non-classical”. However,
recent experimental results have clearly demonstrated the possibility of obtaining 100%
visibility with no coincidence between two outputs with independent photons [5], thereby
contradicting the conventional interpretation mentioned above.

As far as single photons are concerned, the quantum mechanics interpretation would
allege that “one photon does not interfere with another one; only the two probability am-
plitudes of the same photon interfere with each other” [3]. Yet, a probability amplitude can
be specified only at the end of a long sequence or an ensemble of measurements consisting
of individual measurements. Each of those measurements delivers an instantaneous value
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which precedes any overall probability. Therefore, the physical reality can only be identified
at the level of a single and individual measurement.

The conventional theory of Quantum Optics, e.g., [6], omits the existence of the well-
documented quantum Rayleigh scattering of single-photons in a dielectric medium [7].
Furthermore, analytic developments identifying practical methods of implementing unity
visibility with independent and multi-photon states have been presented recently [8].

A common practice in Quantum Optics maintains that [9] “all optical phenomena, like
interference, diffraction and propagation, can be calculated using the classical theory of light
even in the single-photon regime”. In other words, the statistical coefficients of the mixed
quantum state resulting from a long series or an ensemble of identical measurements can
replace the statistical distribution of optical amplitudes, provided the expectation value of
the field operator does not vanish. To this end [8], groups of multiple and identical photons
can reproduce the “quantum” effects [3] by adopting a suitable photonic state that gives rise
to field properties. A pure dynamic and coherent number state [8] is capable of describing a
time-varying photonic wave front, consistent with individual time-varying measurements.

In a 1999 review paper [3], Mandel stated: “If the different possible photon paths from
source to detector are indistinguishable, then we have to add the corresponding probability
amplitudes before squaring to obtain the probability. This results in interference terms . . .
On the other hand, if there is some way, even in principle, of distinguishing between the
possible photon paths, then the corresponding probabilities have to be added and there
is no interference”. This statement, however, fails to consider a range of physical interac-
tions [8] that prevent the implementation of its description, and the claim of experimental
confirmation is rather misleading. For example, in the case of an integrated waveguide,
symmetric 1 × 1 Mach-Zehnder interferometer (MZI), one single photon will have two
options of reaching the photodetector but with equal splitting amplitude probabilities
corresponding to reflection r and transmission t coefficients; a probability larger than unity
will be obtained as r = t = 1/

√
2, leading to (r + t)2 > 1.

Probability amplitudes involved in quantum interference are associated with the time-
independent distribution of an ensemble of measurements. An ensemble of measurements
is described by a mixed quantum state and is made up of individual measurements. There-
fore, the physical reality can only be observed at the level of each and every measurement,
which is modelled with pure quantum states [8].

The conventional interpretation of the HOM dip was outlined by Mandel [3] for in-
distinguishable photons: “With two photons impinging on the BS from opposite sides . . .
photons are either both reflected from the beam splitter or are both transmitted through
the beam splitter.” However, with only one pair of photons propagating through the beam
splitter at any given time, for an individual or single measurement, only one of these possi-
bilities can be activated and measured instantaneously. This leads to a discrepancy between
the ensemble statistical output, which is time-independent, and the single measurement
event, which is time-varying. As a result, quantum counterintuitive explanations have been
adopted, even though the possibility exists of distinct events occurring simultaneously
given the unavoidable parametric amplification of spontaneously-emitted photons [10–12]
as outlined in the Appendix A.

In Section 2, we begin the analysis by identifying physical mechanisms that create
multi-photon pulses from single-photons. As the reflection of photons takes place at a
dielectric interface, the shortcomings of the conventional interpretation are outlined in
Section 3. The physical processes involved in the operations of various types of beam
splitters are presented in Section 4. The physical aspects of the interferometric filter are
described in Section 5. The practical aspects of quantum photonic devices are outlined in
Section 6.

2. The Misinterpretations of Single Photon Sources

Although only one photon per radiation mode is alleged to propagate inside the exper-
imental configuration, a scrutiny of the optical sources will reveal a group of photons being
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created, e.g., through parametric amplification in the nonlinear crystal of the spontaneously
down-converted photons [10–12] as outlined in the Appendix A. This group of photons will
follow a straight-line of propagation by the recapture through stimulated Rayleigh emission
of a photon absorbed by an electric dipole. The common experimental combination of a
beam splitter and an interference filter, both made of a dielectric material, will also involve
the physical process of photon coupling between beams carrying photons of the same
frequency [8]. Synchronized groups of identical photons may collide inside a dielectric
medium such as a BS or an interference filter (IF), with the possibility of exchanging or
coupling of photons from one group to the other through quantum Rayleigh-stimulated
emission. The emerging weaker group may not reach the destination photodetector be-
cause of quantum Rayleigh scattering. Other physical mechanisms of generating groups of
identical photons can be identified as follows.

A quantum dot (QD) placed in a high finesse micro-cavity of a few wavelengths [13,14] and
excited with a picosecond pulse, can emit a photon spontaneously and be re-excited within
the duration of the same pulse. If the photon was reflected towards the QD, stimulated
emission may occur due to the small dimensions of the micro-cavity. This will result in
two or more photons leaving the emitter simultaneously, as well as a reduced lifetime of
the excited state of the QD, manifesting itself as a higher decay rate overshadowing the
Purcell effect.

“Resonators with small mode volume and high-quality factors (Q-factors) enhance the
light–matter coupling” [14,15]. However, a high Q-factor indicates a build-up of energy
inside the cavity, i.e., a large number of photons do not leave the cavity after being emitted
and reaching the output facet for the first time. The early photons emitted by a QD
embedded in a resonant cavity of a dielectric structure of distributed Bragg reflectors
(DBRs) [13] may be reflected towards the excited quantum dot and amplified, thereby
giving rise to a time-varying number distribution which emerges from the “single-photon
source” in the form of discrete pulses of identical photons.

The time-varying optical distribution of the monochromatic spectrum of such groups
of photons is represented by means of the mixed time-frequency analysis [16] and their
physical, spatial distribution was derived in [8].

Additionally, an interference filter will randomly, internally reflect one photon, thereby
destroying the needed synchronization. Similarly, the possibility of splitting an incoming
group of photons by means of multiple internal reflections will result in a longer pulse or
coherence time, which may interfere with the following pulse.

3. Shortcomings of the Particle-like Approach

The beam splitter is a critical component of any experimental setup for quantum
regime measurements. Its role would be to split the input operators of photon creation by
propagating them through a unitary transformation across the beam splitter to the output
ports. The output quantum state is then generated by applying the creation operators to the
zero-photon states, resulting in a mixed quantum state description of possible combinations
that preserve the initial number of photons [4].

The physical measuring process of detection involves photons, which are physical
entities, as opposed to probability amplitudes, which appear as a mathematical element
at the completion of an ensemble of measurements. The wavefunction and operators are
mathematical tools or modelling elements. The probability PPD of detecting one photon
using a photodetector was derived as the expectation value of the number operator â†

PD âPD
and for an arbitrary state |Ψout〉 , e.g., [6]:

PPD = (〈Ψout | â†
PD )( âPD |Ψout 〉) = A∗PD APD = |APD|2 (1)

where APD is the probability amplitude of photodetection through absorption. We recall that
the creation operator acting to the left in Equation (1) also indicates an absorption process.

The single modes at the input ports a and b of the beam splitter are populated by
creation operators â† and b̂†, respectively. Then, the beam splitter is said to transform the
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operators â† and b̂† into the creation operators ĉ† and d̂† at the output ports of the beam
splitter [4] through a unitary operation:

â† → rac ĉ† + tad d̂† (2a)

b̂† → tbc ĉ† + rbd d̂† (2b)

where the reflection and transmission coefficients, respectively, are rij and tij, with |rac|2 +
|tad|2 = 1 or |rbc|2 + |tbd|2 = 1 as a condition of photon conservation. Yet, these coefficients
are evaluated for optical classical waves and may not be relevant for the scattering of
single photons.

With the input photonic state written as [4]:

|na〉 |mb〉 = ( â†)
n |0a〉 ( b̂†)

n |0b〉/
√

n!m! (3)

the output state becomes [4]:

|Ψout〉 = ( rac ĉ† + tad d̂†)
n
(tbc ĉ† + rbd d̂†)

m |0c〉 |0d〉/
√

n!m! (4)

An often-used case would have one input photon randomly exiting from one of two
outputs, which leads to n = 1 and m = 0 in Equation (4), that is:

|Ψin〉 = |1a〉 |0b〉 = â†|0a〉 |0b〉 → |Ψout〉 = ( rac ĉ† + tad d̂†)|0c〉 |0d〉 =
= rac |1c〉 |0d〉+ tad |0c〉 |1d〉

(5)

Separate detections through absorption would be described by:

ĉ |Ψout〉 = rac |0c〉 |0d〉
d̂ |Ψout〉 = tad |0c〉 |0d〉

(6)

For the case of the two BS outputs being directed to the same photodetector PD (or
joint detection), and as the photon and its operator go together, the annihilation operator of
the photodetector acts on both incoming states of Equation (5), leading to the probability of
detection for indistinguishable pathways:

PPD = (〈Ψout | â†
PD)( âPD |Ψout 〉) = |rac + tad|2 (7)

For |r| = |t| = 1/
√

2, e.g., a symmetric 1 × 1 Mach-Zehnder interferometer (MZI),
and for one input of a cubic BS, rac = −tad, the probability vanishes PPD = 0 and photons
seem to disappear even though the Hanbury Brown and Twiss (HBT) measurement would
indicate the presence of a photon in either arm at any time. Similarly, for the other input with
tbc = rbd, the probability PPD = (r + t)2 > 1, contradicting, on physical grounds, the rule
of probability amplitudes that was devised to explain experimental results mathematically.
Therefore, the following statement needs to be revaluated: “If the different possible photon
paths from source to detector are indistinguishable, then we have to add the corresponding
probability amplitudes before squaring to obtain the probability” [3].

As the HBT measurement indicates that the two states |1c〉 |0d〉 and |0c〉 |1d〉 are mutu-
ally exclusive, the physically measured output should be derived from a time-dependent
state describing each individual measurement:

|Ψout〉 = c (tM) |1c〉 |0d〉+ d(tM) |0c〉 |1d〉 (8)

where the time coordinate of one type of measurements is tM. The conservation of the pho-
ton number leads to the condition that c(tM) = 1 and d(tM) = 0, or c(tM) = 0 and d(tM) =
1 for each individual measurement. In this case, two statistical sets are obtained with their
ensemble or time averages being c(tM) = rac and d(tM) = rad.
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The case of two input photons exiting randomly from the two outputs of a BS is
described from Equation (4) with n = 1 and m = 1, by:

|Ψin〉= |1a〉 |1b〉 → |Ψout〉 = ( rac ĉ† + tad d̂†)(tbc ĉ† + rbd d̂†) |0c〉|0d〉 =
= rac rbd|1c〉|1d〉+ tbc tad |1c〉|1d〉+

√
2 rac tbc |2c〉|0d〉+

√
2 rbd tad |0c〉|2d〉

(9a)

|Ψout〉 = r2 |1c〉 |1d〉+ t2 |1c〉 |1d〉+
√

2 r t |2c〉 |0d〉+
√

2 r t |0c〉 |2d〉 (9b)

|Ψout(t)〉 = prr(tM) |1c〉 |1d〉+ ptt(tM) |1c〉 |1d〉+ prt(tM) |2c〉 |0d〉+
+prt(tM) |0c〉 |2d〉

(9c)

after setting rac = rbd = r, tbc = tad = t, and r = it . In Equation (9c), the time dependence
of one single measurement is denoted by pij(tM).

With only one pair of photons, allegedly, present in the experimental setup at any in-
stant of a single measurement, only one component can be measured. The time-dependence
of the four terms leads to only one coefficient in Equation (9c) being non-zero. The time-
or ensemble-averaged values of the first two terms are prr(tM) = r2 and ptt(tM) = t2. The
physical process that implements the mathematical expression of Equation (9) may consist
of a collision inside the BS of two groups of identical photons. Coupling between the two
groups will be induced by the quantum Rayleigh-stimulated emission [8], depending on
the relative phase of the beams.

The first two terms of Equation (9) cannot, mathematically, cancel each other out, if only
because the counting consists only of positive numbers. Consequently, only an interference
of instantaneous fields could lead to a vanishing value [8]. Additionally, other physical
processes are ignored. For example, a photon can be reflected from the upper interface
of a glass plate BS (see Figure 1), while the other photon will be reflected from the lower
interface. In this case both reflection coefficients as well as the transmission coefficients will
be equal with the same sign, making the cancelling of the two amplitudes impossible.
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Figure 1. A typical glass plate beam splitter. Photons arrive simultaneously at the upper dielectric
boundary, with n1 > n0.

The physical contradictions arise because of the error in the original assumptions: “We
characterize interference by the dependence of the resulting light intensities on the optical
path length or phase shift, but we need to make a distinction between the measurement of a
single realization of the optical field and the average over an ensemble of realizations or over
a long time. A single realization may exhibit interference, whereas an ensemble average may
not. We shall refer to the former as transient interference, because a single realization usually
exists only for a short time” [3]. In other words, interference of probability amplitudes was
adopted as a rather superficial explanation.

The physical deficiency of Equation (4) is the omission of the photon-dipole in-
teractions as a photon propagates through a BS. A source of photons is required to
activate the mathematical expression â†

∣∣0a〉 = 1 . The relevant Hamiltonian of inter-
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action between two modes â2 and â†
1 mediated by an optical susceptibility χ(1) is [8]:

ˆ
Hint = }ωχ(1)(â†

2 â1 + â2 â†
1), for the same optical frequency ω.

4. The Physical Operation of Beam Splitters

With, allegedly, only a single photon per radiation mode, a beam splitter is meant to
divide the field operators by invoking the Fresnel reflection and transmission coefficients
of classical optics, while an interference filter is supposed to shape the spectral distribution
of the optical operators [6].

Yet, from a physical perspective, the identical configuration, devices, and methods of
operation of two separate systems are the reasons that bring about measurement correla-
tions between the systems [8], rather than entanglement between single photons, which
are, in fact, likely to be scattered [10].

An indication of the existence of the quantum Rayleigh scattering can be seen from
the extensive loss of photons that has been a constant feature of photon coincidence
counting. For example, ref. [17] reports on page 3 of the Supplementary Information: “The
success probability of the entanglement generation process, i.e., detection of a photon
after an excitation pulse, equals 5.98 × 10−3 and 1.44 × 10−3 for Alice’s device and Bob’s
device, respectively. “A typical percentage of lost photons is at least 99.9%, as mentioned
independently. The experimental results reported in [13] indicate a very low level of
detection probability, with an excitation rate of about 0.5 MHz as shown in its Figure
2c, whereas the maximal coincidence rate was about 175/s as shown in its Figure 3 [13].
Similarly, ref. [15] reports that “single photons were generated at a rate of 740 kHz, chosen
to match the path length difference between the EOM fiber and the delay fiber. With this
configuration, two independent, subsequently-generated photons can arrive at the beam
splitter simultaneously”. Yet, the maximum detected number of coincidences per second
was only about 75, as displayed in its figures.

Even recent experiments using optically nonlinear crystals for the parametric down-
conversion of photons report detection probabilities lower than 1%. Post-selection of
data for a particular purpose is a typical procedure as “The raw data are sifted” [17]. All
these bring to the fore the unavoidable amplification of spontaneously emitted photons
as outlined in the Appendix A, which leads to the formation of pulses composed of a
number of identical frequency photons. Such a pulse is described, physically, by means of
dynamic and coherent number states [8] and, mathematically, by the mixed time-frequency
representation [16].

Physical processes taking place inside a glass plate (Figure 1) or cubic (Figure 2) beam
splitter (BS) are identified as follows:

1. A stream or sequence of single photons is launched into each input of a BS. In the case
of a glass plate, some photons may be reflected at the external interfaces as explained
in Section 3.

2. Inside the BS, the single photons are scattered by quantum Rayleigh spontaneous
emission involving photon-dipole interactions.

3. As the number of photons scattered inside a cubic BS increase, more and more
dipoles are excited, so that after an initial build-up, a threshold is reached when
a single photon can propagate in a straight line without being absorbed, and may
even be amplified though quantum Rayleigh-stimulated emission, creating a group
of photons.

4. At the internal dielectric interface of the cubic BS, a group of photons is split arbitrarily
between reflection and transmission. For example, out of 10 photons, three are
reflected and seven are transmitted, or vice versa.

5. The larger groups will survive the propagation to the output facet by recapturing any
absorbed photons through quantum Rayleigh-stimulated emission, while the smaller
groups will be scattered.
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6. In this way, only one of the two output photodetectors will be triggered, resulting in
no coincidence count.

7. Photon reflections at various dielectric interfaces of a beam splitter will destroy the
time synchronization needed for the two-photon HOM dip to appear.
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The propagation phase acquired by a photon (or photons) arises from dipole-photon
interactions [8] through stimulated emission, and despite the small probability of absorption
and spontaneous emission of a single photon, given the large concentration of molecules
forming the dielectric device (see Avogadro’s number), the scattering of single photons
is certain.

4.1. The Glass Plate Beam Splitters and the HOM Dip

For a plate beam splitter sketched in Figure 1, the primary reflected and transmitted
optical fields will lead to the transformation:

â†
c = −r01 â†

a + t01 t10 â†
b

â†
d = t01 t10 â†

a + t01 r10 t10 â†
b

(10)

where the subscripts of the reflection rij and transmission coefficients tij indicate the
boundary interface, with the first subscript corresponding to the incoming direction of
the photons.

For a symmetric glass plate BS [3], the two incoming photons may be reflected with
the same reflection coefficient, one at each of the external interfaces, without entering the
BS. In this case, the two photons cannot cancel each other out, which would modify the
statistical outcome. If one photon enters the BS and is reflected from the inside at the
other interface, then the photon may be subject to quantum Rayleigh scattering and the
time-synchronization is lost and, again, the statistical distribution would be modified.

These two options contradict the conventional interpretation of the HOM effect [3],
claiming that the terms r2 |1c〉 |1d〉 + t2 |1c〉 |1d〉 disappear together for identical and
synchronized photons launched into the input ports. These two terms have no time-
dependence in the mixed quantum state even though they occur at different times.

Consequently, the following description [18] is questionable and contradictory: “The
phenomenon [HOM dip] is a beautiful manifestation of the interference of a quantum field
. . . ”. “If the photons were delayed from each other so that they did not arrive together at
the beam splitter, then they would not exit together, and thus would not result in the two
detectors at the output ports both registering a signal simultaneously. The change in the
rate at which the detectors register in coincidence as the delay is varied gives the signature
HOM dip, which provides a test of the nonclassical nature of the input light”.
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If two identical incoming photons meet inside the BS and cancel each other out or
coalesce into a group of two photons, there is no role for the reflection and transmission
coefficients in creating the HOM effect [3], which is also interpreted by means of the
overall output distribution of measurements or the mixed quantum state in terms of the
probability amplitudes.

4.2. The Cubic Prism Beam Splitter

For a cubic beam splitter made up of two butting prisms of different refractive indices
as sketched in Figure 2, the field transformation becomes:

â†
c = −t01r12 t10 â†

a + t01 t21 t10 â†
b

â†
d = t01t12 t20 â†

a + t02 r21 t20 â†
b

(11)

The subscript 0 indicates free space, and subscripts 1 and 2 refer to the refractive index
of each of the two prisms. In the case of the cubic prism beam splitter, any two external
surfaces can form a resonant cavity through reflection or transmission at the diagonal
interface. The output states will be affected by photons temporarily trapped inside the
beam splitter, leading to the possibility of additional quantum states, as well as quantum
Rayleigh coupling of photons [8].

The resonant cavity formed by two adjacent facets and the diagonal interface traps
photons through quantum Rayleigh spontaneous emission or scattering. As a result, as
more single photons enter the cavity sequentially and bounce back and forth in a Brownian
motion, the number of excited electric dipoles increases, enabling a later photon to become
amplified through quantum Rayleigh-stimulated emission, so that a small group of photons
could propagate in a straight line.

It is claimed in [15] that with an initial state |Ψi〉 = |1A〉 |1B〉 , ”Due to the indis-
tinguishability of the photons, the detection of one photon in output port C or D at
time to projects the initial product state |Ψi〉 into the “which path” superposition state∣∣∣Ψ±(to)〉 = (|1A〉 |0B〉 ± |0A〉 |1B〉)/

√
2 of the remaining photon”. In physical terms, the

absorption of the first photon leads to the presence of another two photons in the pathway-
entangled state. This is physically impossible at the level of one single measurement. Phys-
ically, describing time-dependent single quantum events by means of a time-independent
quantum mixed state leads to counter-intuitive interpretations, which are rebutted under
close scrutiny [8]. It was suggested that “ . . . introducing an arbitrary differential phase ∆ϕ
between the two components of |Ψ±(to)〉 . . . results in a phase-dependent wave function
of the remaining single photon |

∣∣∣Ψ±(to + τ)〉 = (|1A〉 |0B〉 ± ei∆ϕ (τ)|0A〉 |1B )/
√

2” [15]
so “that the probability to detect the two photons in opposite output ports depends on
the magnitude of the applied phase shift between the detection times”, i.e., Pcoinc =
sin2(∆ϕ/2)” [15]. However, this is physically impossible for one photon per radiation
mode because of the quantum Rayleigh scattering [7], but it is possible with dynamic
and coherent number states [8] that enable a smooth transition from the quantum to the
classical regimes.

4.3. The Fiber-Optic Beam Splitter

The normalized longitudinal fph and lateral flat optical field profiles of a group of
monochromatic photons were derived in [8] and have the form of a Wigner spectral
component S (ω, t), which is a locally varying spectral amplitude [16], as opposed to a
time-constant amplitude and phase of a Fourier spectrum, crossing a surface perpendicular
to the wavevector of propagation. They are [8]:

fph( z = c t) = exp (−(2 π | z− zo |) nr/λ )

flat =
ro

ε (ro + ∆r)
(12)
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with ε the permittivity of the medium, z being the longitudinal coordinate given by the
product of the speed of light c in the medium and the propagation time t. The radial
distance from the peak of the field is denoted by ∆r. When a large number of photons
propagate along the waveguide, the longitudinal field is multiplied by the number of
photons, while the transverse field will fill the waveguide mode.

For an optical directional coupler such as the fiber-optic beam splitter, the evolution
of the number of photons and their phases are presented in ref. [8], with the possibility
of one waveguide capturing most of the photons, resulting in an asymmetric output. The
coupling coefficient κ will have to take into consideration the temporarily discrete nature of
the groups of photons by including the longitudinal field profile fph next to the transverse
spatial field f = flat, of polarization e 1 or 2, that is [8]:

κ =
1
vp

k0

2 n

(
}
ε

)
Γ12 (zo)

x
dx dy χ(1) f1 f2 e1· e2

Γ 12 (zo1; zo2) =
∫ z

0
fph(z− zo1) fph(z− zo2) dz

(13)

with } indicating the reduced Planck constant, and z/t = vp is the phase velocity. Ad-
ditionally, ko and n specify the free-space wavevector and the effective refractive index,
respectively. The susceptibility of the medium is χ(1).

This spatio-temporal overlap is necessary for the quantum regime of discrete groups
of photons. The phase-dependent coupling of photons [8] is critical in the operation of the
optical waveguide beam splitters by creating an asymmetric output with the adjustable
phase difference [19–21].

The same considerations will apply to integrated waveguide directional couplers used
as beam splitters.

5. The Interference Filters

Experimental configurations for, apparently, two-photon quantum beats, e.g., [19–21],
employ interference filters in order to control the coherence length of the photons.

The conventional interpretation of quantum optic experimental outcomes is based
on global and mixed quantum states of one photon per radiation mode [1,2]. The corre-
sponding wavefunctions are associated with the statistical distribution of an ensemble of
measurements conducted under identical conditions: “A single-photon source coupling
only to a single loss channel would emit a state given by |Ψ〉 =

√
P0|0〉+

√
P1|Ψ(1)〉 with

P0 +P1 = 1, and P1 is the probability that a single-photon emission has happened . . . ” [14].
The wave packet |Ψ(1)〉 =

∫
dωψ(ω)â†(ω)|0〉 would be a superposition of Fourier spectral

components ψ(ω) measured at the output, but each single measurement of the ensemble
identifies only one spectral component at any given time [13]. The field profiles would
be evaluated from a Fourier transform F [ψ(ω)] even though the spectral components are
time-dependent and not simultaneously present.

The expectation value of the photonic optical field operator â would be proportional
to 〈Ψ

∣∣â∣∣Ψ〉 = √P0P1
∫

ψ(ω)dω , implying that for an ensemble of single measurements
delivering P0 = 0 and P1 = 1, the photonic field would vanish for a detection process of
photon–dipole interaction. This contradicts the experimental results. Similarly, each photon
is monochromatic, and space- and time-limited, and cannot be described by a spectral
Fourier component, which is constant in time and space. As derived in ref. [8], an intrinsic
photonic field distribution is carried by each interacting photon without any dependence
on the measured statistical distribution of the ensemble of the mixed state. A pure state
delivers one single measurement [22,23], whereas a mixed state describes the statistical
distribution of an ensemble of measurements [23]. A monochromatic pulse composed of a
number of identical photons will be represented by a time-varying spectrum S (ω, t) [16]
and the spatial, physical distributions are given by Equation (12).

In addition, it is claimed that the coherence length of single photons reaching a
photodetector at different times, one photon at a time, can be shaped by changing the
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time-independent superposition of Fourier components. The Fourier transform provid-
ing the photonic pulse shape and related coherence length would be controllable with a
spectral filter.

From a physical perspective, a Fourier transform—or a superposition of spectral
components—necessitates the simultaneous presence of the entire range of spectral compo-
nents. However, this is not the case when only one photon at any given time crosses an
interference filter. A single monochromatic photon propagating through a Fabry–Perot type
filter, or a Bragg refractive index grating in a fiber, will be delayed randomly by repeated
internal reflections and will acquire an integer multiple of a bias phase or time-delay. The
higher the internal reflectivity of the cavity, the longer some photons may bounce back and
forth inside the cavity, resulting in a spread-out group of photons or a “longer photon”
output, which is interpreted as a longer coherence length. Such optical signals are best
described by means of the mixed time-frequency (or Wigner-type) spectrum, e.g., [16],
with the frequency amplitude itself being a function of time S (ω, t), specifying, in other
words, a time-varying number of monochromatic photons being carried by time-varying
photonic beam fronts. The time-stretching of the photonic group will be equivalent to pulse
expansion for a narrower Fourier spectrum.

Thus, a group of photons simultaneously entering a resonant cavity of an interference
filter will exit at different times as the higher the internal reflectivity, the longer the time
that some photons will bounce back and forth inside the cavity. This process will cause the
initially bunched group of photons to spread out in time and give rise to a longer coherence
length for photon coincidence counting as in [20]. The wavefunction describing this output
would take the following form at the spatial point of interaction r:

|Φout(r, t)〉 = Σm cn(r, t) fn(r) δ (t− tm) |Ψn(ω, t)〉 (14)

where the times tm specify the existence of a group of n photons at location r. Recalling
the non-Hermicity of the field operator [8], we find that â

∣∣n〉 = √n e−i ϕ
∣∣n− 1〉 , and

the pure dynamic and coherent number state |Ψn(ω, t)〉 = ( |n (t)〉+|n(t)− 1〉 )/
√

2 of a
photonic beam front is monochromatic and time-dependent [8]. By contrast, the overall
mixed state of the ensemble is multi-chromatic and time-independent (e.g., the bi-photon
wavefunction).

The temporal profile of the optical field carried by a photon or any instantaneous
photonic wave front should be determined from a pure quantum state wavefunction
because it should be unaffected by the spectral distribution of an ensemble of measurements.
However, for interference to take place, at least two coefficients cn(r, t) have to be non-zero
in Equation (14).

6. Physical Aspects of Quantum Photonic Devices

The concepts of quantum interference of probability amplitudes and the collapse of an
entangled wavefunction upon measurement are commonly invoked to explain experiments
that are, allegedly, based on single and entangled photons. Yet, “Some of the experiments
have been performed at light levels in the quantum regime, however, and this suggests
strongly that the devices will work in the same way given single-photon sources and
detectors” [24] (p. 264).

The approach based on a single and entangled photon per radiation mode was pred-
icated on some form of quantum correlations that may exist between two photons that
shared a common interaction (e.g., spontaneous parametric down-conversion or beam
splitter interaction), along with the assumption that probability amplitudes of detecting
a photon can be manipulated through a lack of knowledge about its propagation path-
way [3]. However, recently, quantum-strong correlation of intensities [5] and polarization
states [25] were measured with independent photons and explained in [8] and [11]. Since
the quantum Rayleigh scattering prevents a single photon from propagating in a straight
line inside a dielectric medium such as a beam splitter or an interference spectral filter, only
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groups of identical photons will provide the necessary time-synchronization for correlated
measurements of coincident photons.

Equally, the intrinsic optical field profile of a group of photons is independent of the
type of source that emitted them. It is the transient photons that give rise to instantaneous
interference rather than the average number of photons.

Let us compare briefly the quantum and classical phase-sensitive resolutions obtained
by means of correlated detections. The enhanced resolution of the 2-photon N00N state
can be found in [26] (p. 86 and Figure 3.1). For a phase ϕ the modulation function is:
mq (ϕ) = 0.5 (1− cos2ϕ) = sin2 ϕ indicating a reduced period of oscillation.

In the classical case, the intensity of an interference term 2
√

N0 Nm cosϕ between a
number N0 of unmodulated photons and a number Nm of phase modulated photons is split
into two equal branches and each branch is detected separately. Then, the photocurrents
are multiplied to obtain for the classical modulation function

mc (ϕ) = (
√

N0 Nm cosϕ)
2
= (N0 Nm sin2(ϕ + π/2)

Again, one obtains the same halving of the period but with the advantage of con-
trolling the signal amplitude through the input number of photons. By increasing the
number of splitting branches and multiplying the photocurrents, a reduction in the overall
modulation function will become apparent, with the benefit of a higher rate of phase-
dependence. Therefore, a high phase-resolution is available without the complications of
the quantum formalism.

7. Conclusions

Quantum-strong correlations of photonic detections between two spatially separated
photodetectors have been, previously, experimentally proven with independent photons
in published articles. The mathematical quantum interference of probability amplitudes
for possible pathways corresponds to the “classical” distribution of optical amplitudes
for multi-photon states, if only because a single photon is deflected by quantum Rayleigh
scattering. Three types of beam splitters have been presented in the context of multi-photon
states, and the quantum Rayleigh-stimulated coupling between two overlapping groups of
identical photons have led to physically meaningful explanations for the experimentally
demonstrated zero-count of coincident detections between two photodetectors, commonly
known as the HOM dip.

The existence of the quantum Rayleigh (QR) scattering was well documented back in
the 1970s in textbooks [27,28] and its absence from the theory of Quantum Optics developed
since the early 1980s is still a puzzling question. A possible answer would be that the
“miracles” of quantum optics would have needed explaining by other physical means,
requiring a multi-disciplinary approach.

The quest for single-photon sources and photodetectors is unnecessary because for
the required correlations of separated outputs, only identical devices operated in identical
ways are needed. Even for phase modulated interference, the sensitivities of the classical
case equal the performance of the theoretical quantum case, but without the complexities
of the latter.
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Appendix A. Quantum Optic Second-Order Parametric Equations of Motion

For a second-order nonlinearity or a χ(2)-based interaction, the frequencies are related
by the equality: ω1 + ω2 = ω3, the pump being identified with ω3. Quantum mechanically,
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the Hamiltonian of interaction Ĥint, which describes the exchange of photons by stimulated
emission, has the expression:

Ĥint, j = } ωj χ
(2)
q (â1 â2 â†

3 + â†
1 â†

2 â3) (A1)

where the reduced Planck constant and the relevant susceptibility are, respectively, denoted
by h̄ and χ

(2)
q , the latter including the constant of proportionality relating the Hamiltonian

expressed in terms of the electric field operators to the Hamiltonian Ĥint associated with
photon annihilation and creation operators, âj and â†

j , of the ωj field (j = 1, 2, 3), as defined
in [8].

The equations of motion for the expectation values are found from the Ehrenfest
theorem presented in [8]. The composite wave function of the three interacting waves or
photonic beams is:

|Φ(r, t)〉 = | Ψn, 1 (r, t) 〉 | Ψn, 2 (r, t)〉 | Ψn, 3 (r, t)〉 (A2)

Analogously to the linear wave interactions of [8], one obtains the following coupled
wave equation of motion:

∂

∂t
s1 = −iω1κ s3 s†

2 (A3)

After converting to the number of photons, sj =
√

Nj exp(ϕj), the equation of motion
(A3) provides the rates of change in the number of photons Nj and the phase ϕj as follows:

∂

∂ z
N1 = g1 N1 (A4a)

g1 = −κ1

(
N2 N3

N1

)1/2
sinθ (A4b)

∂

∂ z
θ = (β3 − β2 − β1 )+

+κ1

[(
N1N2

N3

)1/2
−
(

N1N3

N2

)1/2
−
(

N2N3

N1

)1/2
]

cosθ
(A4c)

∂

∂ z
ϕ1 = κ1

(
N2 N3

N1

)1/2
cosθ (A4d)

κ1 =
1

vp

k0;1

2 n

∫ ∫
dx dy χ

(2)
q f1 f2 f3 (A4e)

χ
(2)
q = (}/ε)3/2 χ

(2)
classic

ϕ1;2(L) = ϕ1;2(0) +
∫ L

0
r1;2 (z) cos θ(z) dz (A4f)

r1;2(z) =
(

N2;1 N3

N1;2

)1/2
(A4g)

θ = θ321 = ( β3 − β2 − β1)· z + ϕ3 − ϕ2 − ϕ1 (A4h)

where the gain coefficient g1 includes an overall coupling coefficient κ1 that depends on the
polarization states of the photons through the tensorial structure of the classical nonlinear
susceptibility χ(2). The phase difference (or the relative phase) between the three waves
is θ321, β is the propagation constant and z/t = vp is the phase velocity. In (A4e), k0;1 and
n specify the free-space wavevector and the effective refractive index, respectively, while
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f identifies the field distribution. The condition for optimal amplification is found from
Equations (A4a)–(A4c), for ∆ β = 0, to be θop = ϕ3 − ϕ2 − ϕ1 = −π/2 and is reached
through the phase-pulling effect [12].

The mixing of three photons of different frequencies can lead to quadrature-dependent
coupling of photons, with one pump photon splitting into a signal photon of the same
quadrature state (p), and the idler photon coupled into the second quadrature state (q).
As a consequence of the relative phase being −π/2 in the phase-dependent coefficient of
Equation (A4b), i.e., ϕp − ϕp,s − ϕq. i = −π/2, these quadrature waves will be amplified,
whereas those shifted by π/2 will be de-amplified.
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