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Abstract: In strongly disordered matter, such as liquids and glasses, atomic and magnetic excitations
are heavily damped and partially localized by disorder. Thus, the conventional descriptions in
terms of phonons and magnons are inadequate, and we have to consider spatially correlated atomic
and spin dynamics in real-space and time. Experimentally this means that the usual representation
of dynamics in terms of the dynamic structure factor, S(Q, E), where Q and E are the momentum
and energy exchanges in scattering, is insufficient. We propose a real-space description in terms
of the dynamic pair-density function (DyPDF) and the Van Hove function (VHF) as an alternative,
and discuss recent results on superfluid 4He by inelastic neutron scattering and water by inelastic
X-ray scattering. Today much of the objects of research in condensed-matter physics and materials
science are highly complex materials. To characterize the dynamics of such complex materials,
the real-space approach is likely to become the mainstream method of research.
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1. Introduction

Modern theories of condensed-matter physics are mostly formulated with the assumption of a
periodic structure as found in crystals. However, most of real materials are not crystalline and are often
not even a solid. About 70% of the surface of the earth is covered by water, and our body is mostly
made of liquid and amorphous soft matters. Consequently, much of the condensed-matter theories
and concepts are useless in describing the properties and dynamics of such dynamic aperiodic matter
(DAM). This presents a very serious challenge, because periodicity so wonderfully simplifies the
description of the structure and dynamics of matter through Bragg’s law, Bloch theorem, group theory
and other symmetry-related theoretical tools, and without them we have to face the many-body
problem squarely.

An important gift of periodicity is that the structure and dynamics can be described in the
momentum (Q) space. Thus, the atomic dynamics is usually described by the dynamic structure
factor [1],

S(Q, E) =
1
N ∑

i,j

∫ 〈
exp

[
Q ·
(
ri(0)− rj(t)

)]〉
eiωtdt, (1)

where Q and E are the momentum and energy exchanges in scattering, ri(t) is the position of the atom
i at time t, and E = h̄ω. Collective excitations, such as phonons, appear with well-defined dispersions
in S(Q, E), which can be determined by inelastic neutron scattering (INS) or inelastic X-ray scattering
(IXS). However, in liquids not only the structure is disordered but it is dynamic. As a consequence
for liquids the purely elastic scattering, S(Q, 0), is zero, and S(Q, E) is dominated by quasi-elastic
scattering intensity.
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At present atomic dynamics is described well only in two extreme cases, phonons in a periodic
solid, or random diffusion in solid or gas. However, the atomic dynamics in liquids is in-between
the two. Phonons are strongly damped, with the energy width exceeding the frequency, so that the
phonon dispersion is far from sufficient in describing the dynamics. Also, the Brownian picture of
dense gas where atoms are randomly colliding each other does not apply to liquids, because liquids
are condensed matter with the density close to those of crystals and atomic motions are locally highly
correlated, but not fully collective either. These correlated dynamics of dynamic aperiodic matter has
been rarely uncovered by direct experimental observation. So far most quasi-elastic neutron scattering
(QENS) experiments focused on incoherent scattering which tracks the self-part (i = j) of S(Q, E) and
describes self-diffusion of atoms. It has been most frequently applied to hydrogen, because it has a
very large incoherent neutron scattering cross-section. On the other hand the distinct-part (i 6= j) of
S(Q, E) measured by coherent scattering has only been beginning to attract attention recently [2,3].
Even though simulations are suggesting highly correlated dynamics in liquids [4–6], there has been
scant experimental proof of such correlated dynamics.

2. Dynamic Pair-Density Function and Van Hove Function

To break the logjam, we propose to adopt two novel approaches to describe the local dynamics,
i.e., the dynamic pair-density function (DyPDF) and the Van Hove function (VHF), both of which can
be experimentally determined using the modern scattering methods. First, we assume that the system
is isotropic. The extension to the anisotropic case is straightforward using the spherical harmonics
expansion [7]. Then the isotropic dynamic structure factor is

S(Q, E) =
1

4πQ2

∫
S(Q, E)dΩ, (2)

where Q = |Q| and Ω is the solid angle in Q space. The DyPDF is defined by,

g(r, E) =
1

2π2ρ0r

∫
S(Q, E) sin(Qr)QdQ, (3)

where ρ0 is the atomic number density of the system. This is a frequency (energy) resolved PDF. The
usual same-time (snapshot) PDF is obtained by

g(r) =
∫

g(r, E)dE. (4)

The VHF [8] is given by

G(r, t) =
∫

g(r, E)e−iωtdE. (5)

The VHF is a time-delayed PDF, given by

G(r, t) =
1

4πρ0Nr2 ∑
i,j

δ
(
r−

∣∣ri(0)− rj(t)
∣∣). (6)

Thus,
G(r, 0) = g(r). (7)

The VHF describes how g(r) decays with time. On the other hand the energy Fourier-transform of
S(Q, E),

F(Q, t) =
∫

S(Q, E)eiωtdE (8)

is known as the intermediate scattering function [1], and has been widely used in the analysis of soft
matter dynamics [9–11]. This function is directly determined by the neutron spin-echo experiment [12].
The VHF is a Fourier-transform (Q→ r) of F(Q, t).
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The VHF has been known for a long time, but was never really used, except for one feasibility
demonstration with approximation [13]. This is because in order to obtain the VHF, S(Q, E) has
to be known for wide Q-E space to reduce the termination error, whereas the inelastic scattering
measurement has been very time-consuming and the measurement of S(Q, E) over wide Q-E space
was impractical until recently. However, the advent of the pulsed neutron sources with large
two-dimensional detector arrays [14] and notable advances in synchrotron sources and instrumentation
for the inelastic X-ray scattering [15], have made it fully feasible. Now S(Q, E) can be determined
over sufficiently wide Q-E space typically in 12 h for IXS and 4 hrs. for INS. Often energy resolution
and energy range are coupled. Thus to obtain an optimal result, measurements have to be made with
a several initial (incident) energies, and the results have to be combined with the maximum use of
the high-resolution data. Even in such a case a set of measurements can be finished within a day.
The software to produce DyPDF is now available for the public [16].

A related approach with the Green’s function using IXS was applied to the study of local fast
dynamic response by water [17]. The S(Q, E) is directly related to the imaginary part of the Green’s
function, but the real part has to be obtained by the Kramers-Kronig analysis which makes this
approach less accurate. Because of the low resolution (0.3 eV) the time-scale was of the order of 0.1 fs.
A study with better resolution (1.7 meV) was later carried out to examine the evolution of hydration
dynamics around salt ions at the time-scale of 100 fs [18]. The idea of DyPDF goes back to Carpenter
and Pelizzari [19], and was used in a different form, after division by the energy-resolved Debye-Waller
factor to remove vibrational dynamics, for the analysis of local dynamics in amorphous and crystalline
solids [20,21].

One may argue that the DyPDF and VHF are merely the Fourier-transforms of S(Q, E), and thus
offer no new information. This argument is seriously flawed because,

1. In order to determine the DyPDF and VHF with accuracy S(Q, E) has to be measured over wide
Q-E space to reduce termination errors, and thus new information is garnered from high-Q data
which would not be obtained otherwise.

2. Local dynamics gives rise to diffuse inelastic scattering intensities in S(Q, E) which is often
difficult to recognize. They look like a part of the background and are usually discarded. However,
upon Fourier-transformation they become visible. We will demonstrate this in the two examples
to follow.

3. To determine the dispersion of excitation we only need to know the peak position of S(Q, E) in
Q-E space. However, to obtain the DyPDF and VHF we have to know the correct normalized
intensity of S(Q, E). For this purpose S(Q, E) has to be determined with much higher statistical
accuracy and proper normalization.

The situation is a complete parallel of what we encountered in the drive to use the PDF method
for the study of disordered crystalline materials decades ago [7]. The conventional method of crystal
structure analysis requires the knowledge of the precise positions of several Bragg peaks and relative
peak intensity, whereas to determine the PDF we need a well-normalized S(Q) over a wide Q space
with good statistics, including diffuse scattering as well. Consequently, much richer information is
collected by the PDF study compared to the conventional crystallographic study.

3. Dynamic Pair-Density Function of Superfluid 4He

Superfluidity of 4He was discovered by Kapitza in 1938 [22]. Soon afterwards London proposed
to explain it in terms of Bose-Einstein condensation (BEC) [23]. However, BEC occurs in ideal gas,
whereas helium liquid is not a gas but is a condensed correlated liquid with significant van der
Waals interaction. In fact, in proposing the celebrated roton model of superfluidity, Landau never
mentioned BEC [24]. Since then reconciling these two conflicting views has been a major subject of
research [25,26]. It is now known that only 7% of He atoms condense into the Bose-Einstein ground
state because of the van der Waals force [27]. Even though the collective dynamics of helium was
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carefully studied, particularly by inelastic neutron scattering [28], the real-space atomic correlation
was never directly observed. Our study using inelastic neutron scattering and DyPDF [29] is the first
to report such observation.

The INS measurements were carried out at the CNCS beamline of the Spallation Neutron Source
(SNS) of Oak Ridge National Laboratory. To cover a wide Q-E range we have to choose a high incident
energy, but it results in poor energy resolution. Thus, balancing the range and resolution is a key to
the success of this kind of experiment. Three incident energies, (Ei = 3.5, 15 and 50 meV) were chosen,
and the composite S(Q, E) was created by joining the data sets, by using the high-resolution (low Ei)
data as much as possible. The sample was liquid 4He in the standard volume-pressure (SVP) condition,
and the measurement was made at five temperature points above and below the critical temperature,
Tc = 2.17 K. Figure 1 [29] shows S(Q, E) at T = 1.83 K (superfluid state) and the difference in S(Q, E)
between T = 1.83 K and 2.85 K (normal state). In the difference figure (Figure 1b) sharpening of the
roton excitation at 0.7 meV and 2 Å−1 and opening of the energy gap below the roton are clearly seen.
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Figure 1. (a) Dynamics structure factor, S(Q, E), of 4He liquid at T = 1.83 K (superfluid state) and (b) the
difference in S(Q, E) between T = 1.83 K and 2.85 K (normal state) [29].

The DyPDF at T = 1.83 K is shown in Figure 2. Here the red stripe around r = 0 is due to
self-correlation, and the intensity peak at 4 Å and 0.7 meV is due to the nearest neighbor correlation
at this energy. Because 0.7 meV is the roton energy, this peak must represent the atomic correlation
in BEC. The difference DyPDF between T = 1.83 K and 2.85 K is shown in Figure 3a. The intensity
peak at 0.7 meV and 4 Å is even more pronounced, and its intensity follows the known temperature
dependence of the superfluid order parameter as shown in Figure 4. Therefore, the peak at 4 Å and
0.7 meV is unquestionably due to BEC atoms. The results are in excellent agreement with the DyPDF
calculated from the dynamic structure factor obtained by the path-integral quantum Monte-Carlo
simulation [30], shown in Figure 3b, including the BEC peak at 4 Å and 0.7 meV. The BEC nearest
neighbor distance, 4 Å, is longer than the known neighbor distance in the normal 4He fluid, 3.6 Å [31],
by a margin well above the experimental error. This result demonstrates that the BEC atoms have
different atomic correlations than the normal atoms, a conclusion not expected by the current theory.
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Now the snapshot PDF, obtained by integrating the DyPDF by Equation (4), shown in Figure 5,
shows a peak at 3.55 Å [29] in agreement with the earlier results. However, in the earlier neutron
diffraction work [31] which is highly cited, the authors used a two-axis neutron spectrometer,
thus carrying out the energy integration by not using the energy analyzer. This does not present
a problem for X-ray scattering for which the beam energy (10 s of keV) is much higher than the
excitation energies in liquid. However, for neutron scattering the neutron energy (27 meV for Ref. [31])
is not high enough to eliminate the dependence of the momentum transfer on energy. Thus, the energy
integration is not done at a constant Q. This effect was corrected for the kinetic energy in Ref. [31], but
the effect of significant changes in the roton dispersion was not included. On the other hand, in our
case the energy integration is done numerically at a constant Q, resulting in the true snapshot PDF.
The result shown in Figure 5 indicates that the PDF peak height does not show the decrease below Tc

as suggested by the earlier work [31], raising suspicion that the reported temperature dependence may
be an artifact of incorrect energy integration.
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Figure 5. Snapshot PDF, ρ0g(r), obtained by integration of DyPDF over energy by Equation (4) at
various temperatures [29]. The inset shows the variation of the first peak height with temperature,
by experiment (circles) and path-integral Monte-Carlo (PIMC) simulation (stars).

In addition, a new peak was found at 0.4 meV and 2.3 Å, both in experiment and simulation
(Figure 3). We interpret this peak to originate from coherent atomic tunneling, which provides the
atomistic mechanism of superflow. Because helium atom is so light tunneling is easy and occurs
even in the normal state. But in the normal state it is a random walk process with the distance of
tunneling distributed as the three-dimensional Gaussian function. On the other hand, in the BEC all
atoms are equivalent because they are degenerated in the single BEC ground state. Thus, they move
coherently in the same fashion, giving rise to a well-defined peak in the DyPDF. Landau explained the
mechanism of superfluidity in terms of the loss of energy dissipation channels because of the roton
energy gap. However, no discussions have been made on the real-space mechanism of superflow.
This observation provides a strong evidence that the coherent tunneling is the atomistic mechanism of
superflow. Even though the superfluidity in helium has been studied for a long time, these results
suggest there are still more to learn from the real space correlated dynamics in the superfluid.

4. Local Dynamics of Water

Water is arguably the most important liquid for life, and is most abundant on the surface of the
earth. Yet we do not fully understand its anomalous properties, such as the high freezing/melting
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points and the maximum in density at 4 ◦C. These anomalous behaviors are considered to originate
from the hydrogen bond, but its highly quantum-mechanical nature makes it very difficult to explain
these behaviors quantitatively. To understand the water dynamics at the molecular level in real
space and to relate it to viscosity we carried out inelastic X-ray scattering measurements [32] with
Ei = 21.747 keV and determined the dynamic structure factor, S(Q, E), over a wide Q-E space
(1.3 Å−1 ≤ Q ≤ 9.5 Å−1 and −10 meV ≤ E ≤ 100 meV) as shown in Figure 6, and obtained the
Van Hove function through the double Fourier-transformation. Earlier studies of water dynamics by
IXS [33,34] focused on the phonons at low Q. However, in water the phonons are overdamped and
spread in the Q-E space. In Figure 6 phonons are present but they are too weak to be seen. Instead
the majority of spectral intensity is in the quasi-elastic scattering (QES) around E = 0. The QES has
been used widely to determine diffusivity in liquids at low Q, but its Q-dependence has rarely been
explored. Figure 6 clearly shows significant Q-dependence, but it is difficult to figure out what this
means. The best way to interpret this result is to transform it into the Van Hove function, G(r, t).
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Figure 6. Dynamic structure factor, S(Q, E), for water at room temperature determined by inelastic
X-ray scattering [32].

Figure 7 shows G(r, t) − 1 of water, H2O, determined by IXS, compared to the results of MD
simulation [32]. Because X-rays are scattered mainly by oxygen atoms, the results mostly describe
the O-O correlation. The features near r = 0 describes self-correlation, the motion of one atom due to
ballistic motion and diffusion, whereas the features at larger r describe the correlation between distinct
atoms. At t = 0 the Van Hove function is equal to the snapshot PDF; G(r, 0) = g(r). The peak at r = 2.8 Å
describes the first neighbor O-O distances whereas the second peak at 4.5 Å corresponds to the second
O-O distances. As time increases these two peaks move closer to each other, and appear to merge.
Clearly the dynamics of the first and second neighbors are correlated, and molecules are not making
random walk. As soon as a nearest neighbor goes away a second neighbor moves in to take its place,
in order to maintain the coordination around the molecule. Such correlations are absent in metallic
liquids [32]. Metallic atoms are bound by isotropic metallic bonds, and have coordination numbers
(the number of nearest neighbors) as high as 12 or more [35]. Thus, the leaving and joining of a nearest
neighbor are not correlated [36]. In contrast the hydrogen bond keeps the local coordination of water
constant, creating the dynamic correlation between the nearest and next-nearest neighbors. The Van
Hove function captures such dynamic correlation convincingly.
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Figure 7. The Van Hove function, G(r, t) − 1, for water at room temperature (a) determined by inelastic
X-ray scattering, (b) by molecular dynamics simulation [32].

As time increases the PDF peaks decay, indicating that correlations become weaker. The decay
function has two components, the fast one due to ballistic motion of atoms, and the slow one because
of the rearrangement of molecular connectivity due to cutting of bonds [37]. With the help of MD
simulation it is possible to relate the second relaxation time to the time to lose one neighbor, τLC.
As shown in Figure 8 τLC is nearly equal to the Maxwell relaxation time, τM = η/G∞, where τM is
η is viscosity and G∞ is the high-frequency shear modulus. The mechanical response of a liquid
is time-dependent, and τM is the time-scale to separate the solid-like response (τ < τM) from the
liquid-like response (τM < τ). This equality, τLC = τM, was predicted by simulation for metallic
liquids [38]. Note that this equality connects a macroscopic time-scale, τM, to a microscopic time-scale,
τLC, and explains the atomistic origin of viscosity. The reason behind this remarkable relationship can
be explained in terms of the atomic-level stress [39]. As is well-known the Maxwell relaxation time is
given by the Green-Kubo equation of the fluctuation-dissipation theorem [40],

τM =
∫ ∞

0

〈σxy(0)σxy(t)〉〈
(σxy(0))2

〉 dt, (9)

where σxy(t) is the shear stress at time t. Thus, τM is the time-scale of the shear stress correlation.
Now we can express the macroscopic stress, σxy(t), in terms of the atomic-level stress;

Vσxy = ∑
i

Ωiσ
xy(i), (10)

where V is the macroscopic volume, and Ωi and σxy(i) are the local atomic volume and the atomic-level
shear stress of the i-th atom [39]. This equates τM to the correlation time of the atomic-level shear
stress [41]. Now the atomic-level stress depends on the local configuration of the neighbor atoms [42],
and changes when the neighbor configuration is changed. This is the reason why losing one neighbor
kills the temporal correlation of the atomic-level stress, equating τLC to τM. The result in Figure 8
proves this equality for water. The fact that it was predicted for metallic liquids and proven for water
suggests that this equality is a general property of a liquid. Indeed, this relationship holds even for
organic molecular liquid [43].

It is interesting to note that the decay of the Van Hove function with time is not uniform in r.
For instance, the decay times of the first and second peaks are vastly different. A recent simulation
shows that the decay time increases linearly with distance for uncorrelated high-temperature liquid,
as shown in Figure 9 [44]. This r-dependence is a purely geometrical effect, and does not suggest
collective atomic motions. In Ref. [44] the power law of r-dependence is shown to be equal to (d− 1)/2,
where d is dimensionality. Therefore the widely known de Gennes narrowing, the narrowing of QES
at the peak of S(Q), is not necessarily indicative of collective excitation as is often claimed, but more
often than not it is a mere consequence of this geometrical statistical effect. For the same reason,
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the α-relaxation time, defined at the maximum of S(Q), is not a real structural relaxation time. It is
just the Maxwell relaxation time enhanced by a geometrical factor. For this reason it is not possible to
differentiate the collective effect from the geometrical effect just by studying F(Q, t) or the relaxation
time τ(Q) at several Q values as is often done. Only through the r-dependence of the VHF collective
effect can be separated from the pure geometrical effect.Quantum Beam Sci. 2018, 2, x FOR PEER REVIEW  9 of 12 
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5. Limitations of the Method

In the INS and IXS measurements the maximum of the timescale is set by the energy resolution,
and the minimum by the incident energy (4 meV = 1 THz). The energy resolution in INS is typically
a few percent of the incident energy. For IXS the backscattering analyzer crystal sets a hard limit of
about 1.6 meV, thus limiting the timescale only up to 3 ps. The Q-range is determined by the incident
energy and the spectrometer set-up in both cases. For our IXS measurement Ei was 21.747 keV, with 2θ

up to 60◦, which limited the Q-range up to 9.5 Å−1. With INS we can achieve better energy resolution,
but then the Q-range becomes limited. In the case of the experiment shown in Figure 1 Ei = 3.5 meV
results in ∆E = 0.2 meV, but the Q-range is limited to 2.5 Å−1. By combining with the data with
Ei = 15 meV the Q-range up to 5 Å−1 was attained, and extended to 9 Å−1 with Ei = 50 meV.

The limited Q-range results in spurious oscillations upon Fourier-transformation, known as
termination errors [7]. Unlike in crystals in liquids S(Q, E) do not have sharp features and attenuate
relatively fast with Q. Thus the limitation of the Q-range up to 10 Å−1 does not pose serious threat
to the integrity of the results. Simulations in Ref. [27] indicate that only the portion of the Van Hove
function below 100 fs is compromised, and beyond 100 fs the termination effects are minimal. Thus at
present the time range of the VHF by IXS is 0.1–3 ps, that by INS is 0.1–20 ps.
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It is possible to extend this range up to 100 ps using backscattering INS [45], but the Q-range
of backscattering INS is limited to about 2 Å−1, appropriate only for some soft matter. The neutron
spin-echo technique (NSE) [12] stretches this rage even further to 1 ns. However, NSE measurements
are time-consuming, and it is difficult to cover wide Q-range necessary for obtaining the VHF.
A major future possibility is to use an X-ray free-electron laser (XFEL) with X-ray photon correlation
spectroscopy (XPCS) [46]. With the expected upgrade of LCLS-II [47] with 1 MHz repetition rate the
prospect of determining F(Q, t) over a very wide Q-t range is becoming realistic.

6. Study of Local Dynamics: Major Change in Near Future

Majority of materials studied in the 20th Century in condensed-matter-physics, materials science
and related disciplines were crystalline, even though actual materials used were both crystalline and
non-crystalline. This is already changing in the 21st Century, as more complex materials are being
studied and used, and life sciences move closer to the center of scientific research activities. Therefore,
the traditional approach to atomic dynamics in terms of phonons and diffusion has to evolve, shifting
the focus more on local correlated dynamics. The Van Hove function and the dynamic PDF are the right
languages to discuss such local dynamics. Now that their feasibility has been proven, they will be more
widely used by many researchers. Indeed, the VHF was recently measured for liquid Bi [48]. I predict
in ten years up to 1/3 of the results of inelastic neutron scattering experiments may be presented in
real-space, just as that much of neutron powder diffraction results are now presented as the PDF in real
space following our advocacy [7]. Indeed, DyPDF was recently used in the study of local dynamics in
lead-free relaxor ferroelectrics [49], and more measurements to determine DyPDFs for various complex
matters are scheduled. Concomitantly the scattering facilities need to be developed to accommodate
this demand. We need wider Q range, low background, high intensity and high energy resolution to
achieve better results in real-space. These needs are in conflict with each other. In the design of a new
instrument good compromises have to be struck to produce the optimal result.

7. Conclusions

The science of dynamic aperiodic matter, such as liquid, gel and colloid, has been less developed
compared to that of crystalline solids, because most of the theories and experimental approaches in
condensed-matter-physics assume periodicity and thus are powerless for aperiodic matter. We propose
a real-space approach to dynamics as an alternative to the traditional approach in the momentum space.
Recent advances in radiation sources and instrumentation made it possible to determine the dynamic
pair-density function (DyPDF) and the Van Hove function by inelastic scattering experiments. We have
shown that they bring in new information hitherto impossible to garner, by the demonstrations on
superfluid 4He and water. We predict that these real-space methods will be used widely in the study
of dynamics in complex materials in near future.
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