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Abstract: This study determines the equivalent stress intensity factor (SIF) model that best fits the
experimental behavior of low-carbon steel under mixed modes (I and I I). The study assessed Tanaka,
Richard, and Pook’s equivalent SIF models. The theoretical values used for comparison correspond
to the experimental results in a modified C(T) geometry by machining a hole ahead of the crack
tip subjected to fatigue loads with a load ratio of R = 0.1. The comparison involved the SIF for six
experimental points and the values computed through the numerical simulation. The Paris, Klesnil,
and Modified Forman–Newman crack growth models were used with each equivalent SIF to analyze
the prediction in the estimated number of cycles. The Klesnil model showed the closest prediction
since the error between the calculated and experimentally recorded number of cycles is the lowest.
However, the material behavior reflects a reduced crack propagation rate attributed to plasticity in
the crack tip. The results suggest that Asaro equivalent SIF conservatively estimates the element
lifespan with increasing errors from 2.3% at the start of growth to 27% at the end of the calculation.
This study sheds light on the accuracy and limitations of different equivalent SIF models, providing
valuable insights for structural integrity assessments in engineering applications.

Keywords: equivalent stress intensity factor; low-carbon steel; mixed mode I/II; finite element
method (FEM); boundary element method

1. Introduction

The widely accepted Paris rule correlates the stress intensity factor (SIF) with crack
length advance per cycle. However, the Paris rule is commonly established under mode I
loading. Therefore, when more than one loading mode is present, a crack increment rule
under mixed modes and an angle prediction criterion is needed [1,2]. This is one rule to
quantify crack length increment and another to quantify crack direction [3]. In the case
of mixed-mode fracture, SIFs appear in orthogonal directions, each contributing to crack
growth and crack kinking. Several equivalent SIF (Keq) models are based on different
principles [4]. Consequently, it is necessary to identify the Keq models that best account for
the combination loading modes [5]. Therefore, when more than one loading is present, the
choice of Keq impacts the crack growth rate [6]. Previous studies [7,8] suggest a significant
decrease in the toughness of metals when mixed-mode failures occur.

Recently, the importance of Keq in fatigue crack growth has been acknowledged
in aluminum samples [9,10] and both aluminum and steel specimens [11]. Addition-
ally, numerical studies [12] investigated the effects of mode-mixity in surface cracks,
observing a difference in crack growth rate under mixed modes in steel. Moreover,
Berrios-Barcena et al. [13] reproduced FCG in a double cantilever sample of low-carbon
steel. Further research by Dirik and T. Yalçinkaya [14] tested the Tanaka model against
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numerical simulations. Compact tension (CT) samples were subjected to mode I, I I, and
I I I loading where Pook’s and Richard’s Keq models were calculated [15]. On the other
hand, Sajith et al. [16] compared various Keq models using the Paris rule and found an
acceptable agreement for the Tanaka and Irwin models. Furthermore, Zhan and Zhang [17]
explored various crack growth models considering load amplitude. Additionally, Silva
et al. [18] focused on the Tanaka Keq model combined with the Paris rule, finding a good
correlation but lacking comparison to other models. Finally, Tavares and Castro [10] com-
pared several Keq models in an Al sample but only in combination with the Paris rule;
hence, load inversion ratio, fatigue threshold, and fracture toughness were left out of the
analysis. Consequently, the literature review revealed no consensus on the Keq model that
best describes fatigue crack growth (FCG).

The structural integrity of an element is characterized by how it experiences failure,
which is categorized into three fracture modes: mode I, where the stresses act perpendicular
to the crack, generating the separation of the opposing faces; mode I I, characterized by
shear stresses causing in-plane crack edge displacement; and mode I I I, involving out-of-
plane stress, usually associated with elements subjected to torsion [4]. Figure 1 shows an
example of the three opening modes occurring simultaneously. In linear elastic fracture
mechanics (LEFM), the stress field ahead of the crack tip is described by the SIF in each
direction. Additionally, LEFM provides tools to assess the lifespan of mechanical elements
with flaws [14]. Moreover, a crack is a flaw in a solid, which can be produced by a stress
gradient, corrosion, plastic deformation, fatigue [4], or thickness reduction [19], which
requires adequate stress and time [14]. A body subjected to alternating loads, below its
elastic limit, presents a localized plastic phenomenon known as fatigue, which causes
the crack to grow in length and change its direction if more than one stress direction
is involved [1,2]. Mixed-mode loading may also occur due to multiaxial loads, a stress
concentrator, or a crack. Furthermore, the fracture toughness (Kc) measures the material’s
resistance to crack propagation [20] as a parameter for assessing failure in cracked bodies.
However, in practical case scenarios, a body is subjected to multiaxial loads, and therefore
it is necessary to consider a mixed-mode fracture [21]. Here is where the models to quantify
the combination of SIF under mixed modes come into play [5].

Infrastructures 2024, 9, x FOR PEER REVIEW 2 of 18 
 

simulations. Compact tension (CT) samples were subjected to mode 𝐼, 𝐼𝐼, and 𝐼𝐼𝐼 load-
ing where Pook’s and Richard’s Keq models were calculated [15]. On the other hand, Sajith 
et al. [16] compared various Keq models using the Paris rule and found an acceptable agree-
ment for the Tanaka and Irwin models. Furthermore, Zhan and Zhang [17] explored var-
ious crack growth models considering load amplitude. Additionally, Silva et al. [18] fo-
cused on the Tanaka Keq model combined with the Paris rule, finding a good correlation 
but lacking comparison to other models. Finally, Tavares and Castro [10] compared sev-
eral Keq models in an Al sample but only in combination with the Paris rule; hence, load 
inversion ratio, fatigue threshold, and fracture toughness were left out of the analysis. 
Consequently, the literature review revealed no consensus on the Keq model that best de-
scribes fatigue crack growth (FCG). 

The structural integrity of an element is characterized by how it experiences failure, 
which is categorized into three fracture modes: mode 𝐼, where the stresses act perpendic-
ular to the crack, generating the separation of the opposing faces; mode 𝐼𝐼, characterized 
by shear stresses causing in-plane crack edge displacement; and mode 𝐼𝐼𝐼, involving out-
of-plane stress, usually associated with elements subjected to torsion [4]. Figure 1 shows 
an example of the three opening modes occurring simultaneously. In linear elastic fracture 
mechanics (LEFM), the stress field ahead of the crack tip is described by the SIF in each 
direction. Additionally, LEFM provides tools to assess the lifespan of mechanical elements 
with flaws [14]. Moreover, a crack is a flaw in a solid, which can be produced by a stress 
gradient, corrosion, plastic deformation, fatigue [4], or thickness reduction [19], which re-
quires adequate stress and time [14]. A body subjected to alternating loads, below its elas-
tic limit, presents a localized plastic phenomenon known as fatigue, which causes the 
crack to grow in length and change its direction if more than one stress direction is in-
volved [1,2]. Mixed-mode loading may also occur due to multiaxial loads, a stress concen-
trator, or a crack. Furthermore, the fracture toughness (Kc) measures the material’s re-
sistance to crack propagation [20] as a parameter for assessing failure in cracked bodies. 
However, in practical case scenarios, a body is subjected to multiaxial loads, and therefore 
it is necessary to consider a mixed-mode fracture [21]. Here is where the models to quan-
tify the combination of SIF under mixed modes come into play [5]. 

 

Figure 1. Example of tubular specimen subjected to fully inversed axial (F) and torque (T) loads 
showing three opening modes. Adapted from [3]. 
Figure 1. Example of tubular specimen subjected to fully inversed axial (F) and torque (T) loads
showing three opening modes. Adapted from [3].



Infrastructures 2024, 9, 45 3 of 16

Moreover, FCG is usually conducted using analytical methods for simple loading
cases, numerical methods [12–14], a combination of both, or even with non-parametric
models [22]. A review of some of them can be found in [23]. The choice of the Keq may
impact crack growth prediction. In this study, we compare the finite element method
implemented in ANSYS’s (Separating Morphing and Adaptive Remeshing Technology
(SMART)) with the dual boundary element method (BEM), which is implemented and
described elsewhere [24] for FCG under mixed modes (I and I I).

In this paper, a comparison is made between three Keq models combined with three
FCG models, each covering different zones of the Paris plot. There has been a lack of
studies concurrently exploring multiple Keq models with different crack growth models
to assess the combination that best matches experimental results. This study seeks to
fill this void by providing a comprehensive analysis that evaluates the performance of
different Keq and crack growth model combinations under varying experimental conditions.
Additionally, numerical results are validated with experimental data from the literature at
ambient temperature.

2. Background

This section provides the formulations used on the paper.

2.1. Equivalent SIF Models

Despite the wide variety of models available, this paper evaluates three, each with
a distinct formulation. Some models are experiment-based, while others are based on
numerical data fitting.

The Tanaka criterion [25,26] is derived from the Weertman dislocation model [27],
which determines that crack propagation occurs when strains in the plastic zone reach
the critical value. Equation (1) represents the formula for the Tanaka model, which has
demonstrated a close correlation between experimental and numerical results, particularly
for steel specimens [28].

KTanaka =

K4
I +8K2

II +

(
8K4

III

)
1−v

0.25

(1)

where Ki is the SIF and ν is the Poisson ratio. Moreover, Asaro’s analysis of stresses at the
crack tip derived from the consideration of the release of potential energy [29] is represented
by Equation (2). Furthermore, due to the influence of the Poisson ratio, this model depends
on either plane stress or plain conditions if mode I I I is present.

KAsaro =
(

K2
I + K2

II

)0.5
(2)

Pook [30] proposed the value of Keq for the formula shown in Equation (3) for a beam
subjected to three-point bending. Although the tests on the specimen initially anticipated a
dominant mode I, the crack tip rotation occurred until it was eventually aligned with the
specimen’s side.

KPook =
0.83KI +

√
0.4489K2

I +3K2
II

1.5
(3)

Accordingly, one can see that an appropriate equivalent SIF model defines the accuracy
of the lifespan estimation [31].

2.2. Crack Growth Models

Understanding crack growth is essential for assessing the lifespan of structural com-
ponents. This section examines three models.



Infrastructures 2024, 9, 45 4 of 16

The Paris rule, shown in Equation (4), establishes a relationship between the crack
growth rate and the equivalent SIF [32], where a corresponds to the crack size and N to the
number of cycles and the constants C and m depend on the material, geometry, and test
conditions. However, this model is only valid for stable crack growth and does not account
for the load inversion rate [33].

da
dN

= C ·
(
∆Keq

)m (4)

The Klesnil–Lukas model, represented by Equation (5), introduces the concept of the
fracture threshold, Kth, which is particularly useful in cases where the applied load either
does not cause crack growth or barely exceeds the threshold value. The constants C and m
remain consistent with those in the Paris rule [34].

da
dN

= C · (∆ Km
eq−∆Km

th

)
(5)

A more detailed model, the Modified Forman–Newman, can describe the three regions
of crack growth by incorporating the threshold and fracture toughness, Kc, as depicted in
Equation (6).

da
dN

=
C
(
∆Keq

)m
(∆K − ∆Kth(1 − 0.82R))p

(
1+ 0.82 tan−1(ηR)

η

)
(

1 − ∆Keq
(1−R)Kc

)q (6)

where the additional constants p, q, and η are adjusted to experimental results and R
represents the load reversal ratio.

Figure 2 illustrates the comparison between the Paris, Klesnil, and Modified Forman–
Newman models for R = 0.1. The Klesnil model exhibits conservative behavior in Region
I. As it enters Region II, its trend converges with the Paris rule. Finally, the modified
Forman–Newman model predicts less conservatively, with higher growth rates, and
can predict unstable growth in Region I I I. In all models, the lifespan of each crack
increment ∆a or increment in cycles ∆N can be estimated by separating variables in
Equation (4). In the case scenario of mixed-mode loading, the crack increment is a
function of Keq or ∆Keq for alternating loads [2]. Integrating the Paris rule yields
Equation (7), incorporating established parameters and introducing the variable T to accom-
modate additional terms alongside the constants C and m as described in the Klesnil–Lukas
and Forman–Newman models.

∆a∫
0

(da)
C · T ·

(
Keq

)m =

∆N∫
0

dN= ∆N (7)

Moreover, fully defining the crack path under mixed modes requires establishing the
crack kinking angle θ, as shown in Equation (8). The model is derived from the maximum
tangential stress (MTS) criterion [14]. Recent evaluations of several models based on
experimental data concluded that, in some cases, the computational cost could be high
despite reducing the error in prediction [2].

θMTS = 2 tan−1

 KI
4KI I

− (
sgn

4

[
KI
KI I

]
)

√
KI
KI I

2
+ 8

 (8)
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3. Materials and Methods

A modified C(T) specimen data, as shown in Figure 3, was retrieved from the litera-
ture [35], where SIFs were experimentally estimated for different crack lengths. The sample
was made of low-carbon steel and had a material composition detailed in Table 1. The
specimen was drilled to modify the stress fields ahead of the crack tip, inducing mixed
modes I and I I. Sample dimensions are shown in Figure 3a.
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of six reported intervals named 0 to e [30].

Table 1. Material composition for modified C(T) sample.

Element Fe C Si Mn P S Other

% 98.9 0.268 0.046 0.68 0.0042 0.025 0.0768

The modified C(T) specimen initially developed a horizontal crack, which later curved
due to the influence of the drilled hole. The SIF ranges in modes I and I I were found by
fitting displacement fields to Williams’ displacement model in an infinite plate using the
digital image correlation (DIC) technique, as extensively detailed in [35]. Thus, calculations
were conducted for six crack lengths, designated as 0, a, b, c, d, and e, respectively, as
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illustrated in Figure 3b, with numerical values in Table 2. Extensive details about SIF
calculations are available in [35].

Table 2. Experimental parameters C(T) sample [35].

Point a [mm] θ◦ Load [kN] N ∗ 105 [Cycles] ∆KI·MPa
√

m ∆KII·MPa
√

m

0 2.1 0 7 1.09 13.12 0.46

a 4.1 0 6.2 1.70 17.78 0.47

b 6.31 −5 5.6 2.12 18.14 0.59

c 8.24 −5 5 2.53 19.67 1.17

d 10.33 −7 4.6 2.76 22 1.55

e 12.58 −24 4.1 2.97 26.85 3.55

Once the experimental results were available for evaluating the numerical models,
obtaining the crack growth constants was necessary, as depicted in Table 3. For the Paris
rule, tests with R = 0.1 are required. As for the Forman and Modified Forman–Newman
models, data for low-carbon plain steels can be found in the literature [36].

Table 3. Crack growth models parameters [22].

Model C[m/Cycle] m Kth[MPa
√

m] Kc[MPa
√

m] P q η

Paris–Klesnil 2.73 · 10−10 2 10.2 - - - -

Modified Forman–Newman 4.56 · 10−13 3.1 10.2 285 0.5 0.5 2.1

Therefore, to assess the equivalent SIF models, both the Finite Element Method (FEM)
and the Dual Boundary Element Method (DBEM) [37] were employed. ANSYS introduced
the SMART methodology, which allows for dynamic mesh adjustments during the simula-
tion progression [9]. This technology has been recently assessed and successfully compared
to experimental results [38]. The geometry, as illustrated in Figure 3a, was modeled in
ANSYS, using quadratic tetrahedral meshing, with an influence sphere of 20 mm around
the crack tip and element size of 0.5 mm, this resulted in a mesh comprising 127,305 nodes
and 91,640 elements shown in Figure 4a. Boundary conditions consisted of free cylindri-
cal support in the radial direction and an average bearing load of 5420 N. The analysis
configuration involved 15 steps, aligning with the experimental crack length.

On the other hand, the DBEM simplifies 2D problems to one dimension, facilitating
meshing and reducing computational costs [37]. The GID 16.0.7 software was used for the
geometric modeling, as shown in Figure 4b, which displays the mesh nodes. Boundary
conditions were set for a plane stress problem, resulting in 458 nodes and 229 elements. The
lower left corner was fixed in both directions, and the upper left corner was constrained
in the x-direction. Elements of 0.5 mm in length were used at the crack tip, and the mesh
was refined by implementing 30 elements around the drilled hole, which the crack tip
approached as it grew. The implementation of the DBEM method was carried out using an
in-house code described somewhere else [24]. It was noted that the computation time was
shorter than with FEM. Each simulation lasted approximately 18 s, unlike FEM simulations,
which took about 15.37 min using the same computer.
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4. Results
4.1. Parametric Models

Table 4 displays the SIF values obtained using the equivalent SIF models previously
described. Employing the presented crack growth models is feasible based on the results
obtained. Since the crack increment ∆a is known, Equation (7) can be applied to determine
the estimated number of cycles N. This procedure was executed for each growth model.
As a result, graphs illustrate the calculated number of cycles for each interval about the
experimentally recorded cycles and the percentage error.

Table 4. Equivalent SIF (MPa
√

m) models results from experimental values.

Point N [Cycles] ∆KI ∆KII ∆KAsaro ∆KTanaka ∆KPook

0 1.09 · 105 13.12 0.46 13.13 13.12 13.14

a 1.70 · 105 17.78 0.47 17.79 17.78 17.80

b 2.12 · 105 18.14 0.59 18.15 18.14 18.17

c 2.53 · 105 19.67 1.17 19.70 19.67 19.77

d 2.76 · 105 22 1.55 22.05 22.00 22.16

e 2.97 · 105 26.85 3.55 27.08 26.86 27.53
The results are presented in five intervals, each representing 0–a, a–b, and so forth.

4.2. Paris Rule

In this case, a conservative prediction is obtained (Figure 5). The error decreases after
the third interval once the curvature of the crack becomes noticeable. The SIF model with
the lowest mean percentage error, 40.9, corresponds to the one presented by Tanaka.
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4.3. Modified Forman Newman

When evaluating the Forman–Newman model (Figure 6), the prediction for the first
interval diverges from the conservative trend. However, subsequent intervals exhibit
a deviation from the experimental results. At the point of the highest growth rate, the
prediction tends to be conservative. Notably, both projections are significantly close in the
fourth interval. Beyond this point, as the crack curve assumes higher values, indicating
the onset of unstable crack growth. However, the number of experimental cycles remains
higher. This phenomenon could be attributed to the yielding at the crack tip due to the
material’s ductility.
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4.4. Klesnil

Finally, the growth model that presented the lowest average error percentage was
Klesnil. This behavior can be attributed to the influence of the fatigue threshold, Kth,
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indicating that its predictions are more accurate for cracks propagating in Regions I and I I.
When comparing the material’s toughness with the recorded KI values, it becomes evident
that the material is in the transition zone towards Region I I, where the growth rate tends to
stabilize. Moreover, by using Paris’s constants, Klesnil incorporates a specific R. In Figure 7,
a conservative trend in cycle predictions is observable, consistent with the previous models,
and it satisfactorily aligns with the recorded experimental value in the fourth interval.
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The results obtained from the growth models reveal that Asaro’s SIF model demon-
strated the lowest average percentage error for each of the proposed crack growth models,
as shown in Figure 8.
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The Klesnil model yields intermediate results compared to the other models during
the initial intervals. As the growth rate increases, all three models tend to linearize. Upon
closer examination of the Klesnil model, its proximity to Kth might be the cause. It is
noteworthy that both this model and the Modified Forman–Newman model only consider
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mode I in their adjustment parameters, as there is no specific methodology to calculate
them in mixed modes. However, studies suggest that the initial crack propagation energy
is higher when the mixed mode is present, especially when the presence of KII is noticeable
and KI decreases [39].

Figure 9 compares the most suitable combination of the crack growth model and
equivalent SIF (Asaro–Klesnil) with the experimentally obtained data. The results tend
to be slightly conservative, with a difference of 10% in the total number of cycles. This
trend can be attributed to various phenomena that smooth the crack tip, due to either the
material’s chemical or morphological composition or additional overload conditions [40].
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4.5. Numerical FEM

Following the acquisition of the results from the two numerical methods, the com-
parison is depicted in Figure 10 alongside the experimental results. Figure 10a shows a
similarity in the increase in the SIF concerning the crack size between the FEM simulation
and the experimental results. This factor is related to the ratio between the crack size and
the specimen width. However, In Figure 10b, this trend does not persist, possibly due to
the relatively low values attained by ∆KII. In FEM, results are computed concerning the
immediately preceding interval, requiring the establishment of a new coordinate system at
each evaluated point. During the final measured intervals, the crack exhibits its highest
curvature about the initial measurement point. However, when measured from the imme-
diately preceding point, the curvature is minimal. These results are reflected in the values
recorded by FEM, although the simulation shows a trajectory similar to experiments [2].

Figure 10c displays the results of the equivalent SIF concerning the crack size. FEM
results are higher compared to the experimental ones, as the values of ∆KI were also high.
However, accelerated growth is observed after reaching 35% of the total crack size. The
results associated with the SIF and crack size are similar in the numerical methods and
experimental results. Figure 10d illustrates that the simulations yield a conservative result
regarding the relationship between the crack size and the number of cycles. This is because
the SIF values are close, and this difference is reflected in the growth rate, especially in
the growth constants, as shown in Figure 10e. The experimental growth rate was slower;
this is evident in the first reported value for the equivalent SIF, which is practically equal
but experimentally corresponded to 109,000 cycles, while in the FEM simulation, it was
reached at 18,100 cycles.
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4.6. Numerical BEM

The results of the BEM numerical method are split into two groups: the results with
the Paris rule (BEM–Paris) and Klesnil (BEM–Klesnil). In Figure 10a, the reported values
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of ∆KI are higher than the experimentally reported ones; however, they exhibit a similar
trend to the FEM values. Figure 10a shows that the reported values for ∆KII are near zero.
However, the experimental values measured the horizontal deformation of the specimen,
while neither of the two numerical methods accurately estimated this value; in the case
of the programs, none calculates it this way. Additionally, the values of ∆KI and ∆KII
are equal in the case of BEM–Paris and BEM–Klesnil. In Figure 10c, the trend exhibits a
behavior similar to Figure 10a because ∆K Asaro predominates over the influence of ∆KI.
In Figure 10d, in the case of BEM–Paris, the results are equal to those reported by FEM,
which also employs the same growth model, and when determining the crack propagation,
the Keq is the same.

In contrast, in the BEM–Klesnil combination, the crack propagation rate is slower at
the beginning; this may reflect some plasticity ahead of the crack tip [41]. In this case, the
reported values are close to the experimental ones. It is important to emphasize that for
this figure, the implemented growth constants were those of mode I reported in Table 3.
Finally, in Figure 10e, where the growth rate is presented concerning the equivalent SIF, the
results of BEM–Paris are the same as those of FEM for the reasons discussed earlier. A slow
initial growth in BEM–Klesnil can be observed.

Additionally, some of the points overlap with the experimental ones. However, the
general experimental growth continues to present a lower rate. In this case, new constants
are proposed for mode I/I I, for which a potential adjustment was made, obtaining the
constants C and m reported in Table 5.

Table 5. Mixed-mode Paris constants for experimental data.

Mixed-Mode Model C[m/Cycle] m R2

Experimental 9.07 · 10−9 0.9312 0.9147

Simulations were rerun but implementing the constants reported in Table 5. In this
case, the values of ∆KI and ∆KII are minimal; thus, we omitted these graphs for practi-
cality. Figure 11a illustrates that all the results, except BEM–Klesnil, overlap. However,
as the propagation progresses, the results converge as Region II develops. Figure 11b
demonstrates that both numerical methods present acceptable predictions, even slightly
conservative compared to the experimental results. If specific constants are known for
mixed modes, it is possible to use the Paris rule. In this case, the Klesnil model predicts a
conservative number of almost double cycles. This is because, in this case, the constants
already consider slow growth. This model is appropriate if the specimen presents slow
propagation and only the Paris constants are known for mode I.
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5. Discussion

Tavares and Castro [10] recently argued that although different SIF may yield the same,
different KI/KII ratios may produce different FCG rates. In Table 3, we showed a decrease
in growth constants for KAsaro. This implies a potential reduction in mixed-mode Paris
constants. Such a trend is consistent with the findings of Heirani and Farhangdoost [42],
where changes in constants were noted based on the severity of the applied mixed mode.
However, a definitive trend was not identified, attributing the variation to shifts in force
distribution throughout the body as the mixed modes become more pronounced. Never-
theless, it is evident that alterations in loading conditions, such as changes in mode mixity,
can lead to corresponding adjustments in growth constants, as highlighted before [43].

The experimental data acquired through DIC were processed and compared with
numerical methods FEM and BEM (see Figure 10a,b). The results unveiled a consistent
trend of higher KI values in FEM, aligning with other studies [44]. However, it has been
shown that FEM cannot reproduce conditions such as fatigue-induced plasticity, crack
roughness, debris, friction, crack flank interlocking, and the microstructural effect on
the crack path [45]. Their impact on LEFM parameters can be seen when selecting the
experimental data to work with. For example, choosing the full field displacement may
capture the plasticity in the very near region potentially leading to higher KI, or it may yield
negative KI values if the fields are in compression. Alternatively, choosing points behind
the crack tip may pick the effect of crack roughness and crack flank interlocking [46,47],
which may shadow KII. Additionally, the CP was satisfactorily studied somewhere else [47].
Of course, these scenarios are out of scope, but they are worth mentioning.

Other researchers [48] have encountered similar results, addressing them by imple-
menting a theta-method in FEM simulations to calculate KI values and computing the crack
opening displacement factor (COD) using DIC data or the J integral to avoid the plasticity
fields around the crack tip [46]. However, in our experience, the J integral implementation
for mixed-mode fields has been a challenge. Similarly, in the study by [49], it was resolved
through a hybrid experimental–computational approach. The FEM robustness and RPIM
(Reduced-Order Proper Orthogonal Decomposition Integration Method) computations
were experimentally validated, through Thermal Stress Analysis (TSA), with the achieved
SIF solution. Such an approach appears suitable for cases of mixed-mode loading and
could serve as a potential solution for this issue.

Regarding KII, the simulations did not show a specific trend, potentially due to their
low magnitudes. However, a consistent pattern emerged, showing higher values for both
KI and KII in FEM [50], as reported in Figure 10d. For future studies, it is essential to
recognize that achieving convergence between experimental and computational results
may require the implementation of alternative algorithms.

The sample’s thickness and the assumption of plain strain conditions influence the
accuracy of computational predictions. Despite the sample’s relatively small thickness
(only 8.7 mm), the assumptions regarding plain strain conditions influenced the computa-
tional results. In the BEM simulations, the superficial calculation led to lower values than
experimental findings [51], see Figure 10c. This discrepancy suggests that the idealized
conditions assumed in the computational model may not fully represent the real-world
behavior of the material.

Examining the relationship between crack size and the number of cycles, the discrep-
ancy reaches 100% at its peak. This can be attributed to crack tip-induced plasticity, as the
material is a low-carbon steel. According to the COD formulation, the plasticity mecha-
nisms governing crack closure [52] are proportional to the SIF but inversely proportional to
r0.5, significantly influencing the experimental growth slope [53] as shown in Figure 10e.

6. Conclusions

Three fatigue crack growth rules (Paris, Klesnil–Lukas, and Modified Forman–Newman)
were tested with experimental data from the literature combined with three equivalent
SIF models (Asaro, Pook, and Tanaka). It was found that the equivalent Stress Intensity
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Factor (SIF) model proposed by Asaro exhibits the lowest percentage error in predicting
cycle differentials among the evaluated growth models, with a mean error within the range
of 18.4–41.2%. Asaro, Tanaka, and Pook’s models exhibit close results, originating from
maximum stress theoretical principles, resulting in conservative predictions for Experimen-
tal ∆KI and ∆KII values compared to ASTM E647-23, which are notably lower in the initial
three intervals (where mostly mode I is present), leading to slower crack propagation. This
phenomenon may be attributed to localized plasticity.

If specific constants are known for mixed modes, it is possible to use the Paris rule.
When not available, the Klesnil fatigue crack growth model showed the smallest range of
error in predicting cycle differentials, ranging from 18.4% to 22.1%. The total cycle count
calculation using the Asaro equivalent SIF model showed slightly conservative behavior,
with a satisfactory adjustment of 10%. The Klesnil growth model offered closer predictions
due to its ability to model regions I and I I of crack propagation. Observing the mate-
rial’s propagation threshold, SIF values indicated that the data reside at the entry limit of
Region I I.

DIC-acquired and processed experimental data were compared against commercial
FEM and BEM numerical methods using SIF as a benchmark. The comparison revealed
a higher ∆KI value in FEM, agreeing with other studies [39]. Differences were attributed
to idealized conditions in the simulations, notably impacting ∆KII values without a spe-
cific trend. Notably, BEM’s over-the-surface calculations led to lower values, as shown
in Figure 10c.
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