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Abstract: Recently, the bridge infrastructure in Ukraine has faced the problem of having a significant
number of damaged bridges. It is obvious that the repair and restoration of bridges should be
preceded by a procedure consisting of visual inspection and evaluation of the technical condition.
The problem of fast and high-quality collection, processing and storing large datasets is gaining
more and more relevance. An effective way to solve this problem is to use various machine learning
methods in bridge infrastructure management. The purpose of this study was to create a model based
on convolutional neural networks (CNNs) for classifying images of concrete bridge elements into
four classes: “defect free”, “crack”, “spalling” and “popout”. The eight CNN models were created
and used to conduct its training, validation and testing. In general, it can be stated that all CNN
models showed high performance. The analysis of loss function (categorical cross-entropy) and
quality measure (accuracy) showed that the model on the MobileNet architecture has optimal values
(loss, 0.0264, and accuracy, 94.61%). This model can be used further without retraining, and it can
classify images on datasets that it has not yet “seen”. Practical use of such a model allows for the
identification of three damage types.

Keywords: bridge infrastructures; defects; reinforced concrete; convolutional neural network;
machine learning

1. Introduction

Bridges are one of the most important types of transport infrastructure and require
the attention of state institutions and constant funding for proper maintenance.

According to the Ministry of Regional Development of Ukraine, at the end of 2020,
12,097 road bridges were in operation and their total length was 746.8 km [1]. According to
the Ukrainian National Standard “Guidelines regarding the inspection of building objects
to determine and assess their technical condition”, the expected service life of bridges
ranges from 70 to 100 years, depending on the type of construction [2]. However, the
average age of bridges is 55 years, with approximately 12% of them being over 80 years old.
Consequently, the structural integrity of these bridges is approaching exhaustion.

Another global and urgent problem of the bridge industry in Ukraine is the need
to develop a single management system that would unify the knowledge base regarding
the condition and characteristics of all existing bridges [3]. The role of bridge manage-
ment systems consists of monitoring, diagnosing and forecasting the technical condition
of structures and planning optimal maintenance of bridges [4]. The collected data are
analyzed, verified and integrated into a centralized database [5]. This enables efficient
tracking and management of information on bridge inspections, maintenance and struc-
tural evaluation [6]. In addition, bridge management systems are important when making
decisions about the possible retrofit of bridges [7]. For instance, Rokneddin et al. studied
the present-day seismic reliability of aging bridges in highway networks, evaluated through
a time-dependent seismic fragility analysis of typical bridge classes [8].
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As a rule, data are collected at various stages during the life cycle of a bridge (Figure 1).
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Figure 1. Data collected at various phases during the bridge life cycle (source: own design).

Considering the fairly significant lifetime of bridges, the largest amount of information
and data is collected during the operation phase. Accordingly, the problem of fast and
high-quality collection, processing and storage of large datasets is gaining more and more
relevance. An effective way to solve this problem is to use various machine learning
methods in bridge infrastructure management.

This article is the third in a series of studies focused on the use of machine learning
tools that can be applied to make management decisions at the stage of bridge operation.
In the first article, the object of research was the method of quantitative assessment of
the condition of bridge components. A tool based on artificial neural networks (ANNs)
was developed to quantitatively assess the technical condition of bridge components [9].
Based on the classification tables of the operating conditions of the bridge components, five
datasets were formed: bridge span, bridge deck, pier cap beam, piers and abutments and
approaches. This approach allowed for the minimization of the uncertainties associated
with the subjective assessment of experts and for an increase in accuracy.

The aim of the second study was to determine the possible causes of defects in
reinforced concrete elements of bridges based on the identification of external indicators
using ML (machine learning) tools [10]. That study created and compared the performance
of four ML models, namely support vector regression (SVR), decision trees (DTs), random
forest (RF) and artificial neural networks (ANNs). The practical use of such models allows
for the identification of some causes of defects during a visual inspection of the structures.
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2. Background

In general, ML methods can be used in bridge infrastructure in many ways [11]. ML
models can assist in analyzing various risk factors that contribute to bridge management,
such as traffic patterns, environmental conditions and structural characteristics [12,13]. ML
models can analyze historical traffic data, including vehicle types, volumes and loadings,
to predict future traffic patterns and load demands on bridges [14]. ML algorithms can be
used to optimize bridge design by analyzing historical design data, performance data from
existing bridges and structural simulations [15]. One of the most important directions of
using ML in the bridge industry is damage identification, assessment and forecasting of
the technical condition [16,17].

This direction can be divided into two large groups depending on the type of in-
put data. The first type is numeric input. Most often, such problems are considered as
classification or regression problems and are solved using algorithms such as support
vector regression (SVR), decision trees (DTs), artificial neural networks (ANNs), etc. ML
algorithms can analyze historical data on bridge conditions, maintenance records and
environmental factors to develop predictive maintenance models. This approach helps to
optimize maintenance schedules, extend the lifespan of bridges and minimize disruptions
to operations.

The second type is input data in the form of photo and video files. Most often, such
problems are considered as classification or segmentation problems and are solved using
algorithms of convolutional neural networks (CNNs): U-Net, RCNN, YOLO, etc. ML
algorithms can analyze data collected from sensors, laser scanning, drones and monitoring
systems. By automatically detecting and classifying visual defects, cracks or corrosion, the
models help in the early identification of deterioration, ensuring timely maintenance and
reducing the risk of failure.

It is worth noting that the successful implementation of ML in bridge infrastructure
requires access to high-quality and diverse data, as well as careful model training, validation
and interpretation.

Within the second direction, ML models can be used in the following scope:

– Detecting and classifying various types of defects on bridge structures, such as cracks,
corrosion, spalling or deformations [18]. By training the network on labeled im-
ages of different defect categories, it can learn to identify and locate these defects
accurately [19].

– CNNs can learn the normal patterns and visual characteristics of damaged bridge
components [20]. By analyzing images or videos of bridges, CNNs can identify
anomalies that deviate from the expected patterns, highlighting potential areas of
concern that require further inspection or assessment.

– CNNs can perform image segmentation to separate bridge components or regions of
interest from the background [21]. This can be useful in identifying specific areas or
elements for further analysis, such as detecting cracks or corrosion within a specific
part of the bridge. For example, Geng et al. used CNNs for detecting, locating and
quantifying corrosion damage in a truss-type bridge through the autocorrelation of
vibration signals [22].

– By comparing images or videos captured during different inspection cycles, CNNs
can identify changes in the condition of bridge elements over time [23]. This enables
the detection of progressive deterioration or changes that might require attention or
further investigation.

Summarizing the above, this study was motivated by two problems. The first one
is urgent and related to the presence of a significant number of damaged and destroyed
bridges in Ukraine which require an urgent and high-quality inventory and assessment
of their technical condition. To solve it, the CNN model was proposed, which is capable
of classifying elements of reinforced concrete structures according to four classes: “defect
free”, “crack”, “spalling” and “popout”.
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The second problem is strategic and is related to the development of a bridge manage-
ment system in Ukraine which covers a large part of them with information. Accordingly,
this study, along with the previous two, is aimed at creating effective tools based on ML
which can receive, process and store various data and generate the knowledge necessary to
make management decisions.

The novelty of this study consists of the development of the model based on convolu-
tional neural networks, which allows for the classification of reinforced concrete damage
into four classes. Moreover, the model can be used further without retraining, and it can
classify images it has not yet “seen”.

The next part of the article has the following structure: Section 3 contains a description
of the whole process of defect classification, a description of the CNN architecture used in
image classification tasks, the model parameters and evaluation metrics used in the study.

Section 4 presents the results of a productivity comparison of eight CNN models and
the examples of image classification. Section 5 presents the discussion; Section 6 presents
the conclusions of the study.

3. Methodology
3.1. General Description of the Process

As mentioned earlier, this study used the images’ division into four classes: “defect
free”, “crack”, “spalling” and “popout”. The classification of defects was selected based on
the following criteria:

- defects that are most often found in various types of reinforced concrete structures [24];
- the ability of computer vision to clearly separate one class of defects from another.

The division into classes was motivated by the Guide by the ACI Committee, “Guide
for Making a Condition Survey of Concrete in Service” [25]. Its purpose was to
standardize the reporting of the condition of the concrete in a structure. The Guide
collected a large database on the external indications of damage to concrete, illustrated
with photographs.

The classification proposed in this study has the following structure:

- “crack”. This class includes all the defects from group A.1 (various type of cracks);
- “spalling”. This class includes two groups of defects—A.2.20 (scaling) and A.2.21 (spalling);
- “popuot”. This class includes defects from group A.2.19 (popout—the breaking

away of small portions of a concrete surface that leaves shallow, typically coni-
cal, depressions).

The Guide separately distinguishes two classes of damage—scaling (A.2.20) and
spalling (A.2.21)—which differ in the reasons of damage. However, in the case of using
computer vision, it is quite difficult to separate these two types of defects, so they were
combined into one set of “spalling”.

Figure 2 shows the schematic diagram of the complete methodology used in this study.
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The whole process of classification of defects had the following sequence.

1. Data collection. It was proven that the presence of a large and high-quality dataset
is the key to the success of the CNN modeling process. A large amount is used to
mean a dataset that contains from several thousand to several tens of thousands
of images [26,27]. The quality of the dataset is based on the fact that the images
should be as close to real conditions as possible: images with background noise and
different shades of color, including surface roughness, different lighting conditions,
background debris, etc. [28,29].

The images were collected from real inspection reports of bridge structures, which
were taken for over 15 years in different regions of Ukraine. Sample images of elements
of bridge structures obtained from the survey report of a beam-type road bridge made
of precast concrete are shown in Figure 3. The survey of the bridge was carried out in
September-October 2019 in Rivne city, Ukraine. Figure 4 shows the cross-section of the
bridge as viewed from the abutment No. 0.
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2. Preliminary data preparation. The next step was to manually crop 256 by 256 pixel
defects from the images. This enabled us to obtain a dataset containing 1300 “defect
free” images, “crack”, “spalling” and 800 “popout” images. An example of four types
of images is shown in Figure 5. At the next stage of the study, “accuracy” metric was
applied to evaluate the quality of the model, which is quite sensitive for unbalanced
datasets. Therefore, it was decided to equalize the number of images in each class by
increasing the number of images in the “popout” set. For this purpose, part of the
images was rotated by 90◦ and saved in files with a new name. The entire dataset
was divided into three parts—training, testing and validation in the proportion of
80%/10%/10%, respectively.
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3. Choice of CNN model architecture (described in Section 3.2).
4. Selection of the main parameters of the CNN model: activation function, loss function,

optimization algorithm and quality measure. This process is described in Section 3.3.
5. Training of the models. The selected models were trained using supervised learning

methods. Since one of the research objectives was to determine the training time of
several types of models over 20 epochs, the callback function was not used.

6. Evaluation of the models. Pre-trained models were evaluated on a separate validation
dataset to assess their performance and identify any potential problems.

7. Using of the model. After the evaluation, a model with the highest performance was
used to classify the images it “has not seen”.

3.2. CNN Architecture Used in Image Classification Task

VGG16 (Visual Geometry Group) (2014) [26] is the type of CNN that is often used
in classification tasks due to its simplicity and high performance [30]. It consists of
16 convolutional and fully connected layers with a fixed-size input image. VGG16 em-
ploys small convolutional filters (3 × 3) stacked on top of each other, enabling deeper
representations and increased model capacity. InceptionV3 (2015) [31] is a popular CNN
architecture developed by Google. It introduced the concept of “inception modules”, which
employ parallel convolutions with different filter sizes to capture local and global features
of an image. This architecture significantly improved the accuracy of image classification
models and has been influential in subsequent CNN designs. ResNet50 (2015) [32] is a
recurrent-neural-network (RNN)-based architecture primarily used for image recognition
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tasks. Unlike traditional CNNs, which operate on fixed-sized windows, ReNet50 processes
images using recurrent connections, allowing it to capture spatial dependencies across
different image regions. This unique design enables ReNet50 to effectively model com-
plex patterns and relationships within images. Xception (2016) [33] utilizes depth-wise
separable convolutions extensively, separating the spatial and channel-wise operations,
which reduces the model’s computational complexity to a large scale. Xception achieves
state-of-the-art performance on various image classification benchmarks while maintaining
a relatively compact model size. DenseNet201 (2017) [34] is a CNN architecture designed
for image classification tasks. It employs a deep network structure with 201 layers, utilizing
a combination of convolutional, pooling and fully connected layers. DeneNet201 is known
for its exceptional performance in accurately classifying images across various datasets.
MobileNet (2017) [35] is a lightweight CNN architecture designed for mobile and embed-
ded devices with limited computational resources. It focuses on reducing the number of
parameters and computations while maintaining competitive accuracy. MobileNet utilizes
depth-wise separable convolutions which separate the spatial and channel-wise convolu-
tions, resulting in a smaller model size and faster inference speed compared with traditional
CNNs. NASNetLarge (2017) [36] is a neural architecture specifically developed for the task
of object detection. It combines feature extraction and object-detection modules, enabling
accurate localization and classification of objects in images. NASNetLarge leverages a
“neck-and-anchor” design, which effectively captures multi-scale contextual information
and improves the detection performance across different object sizes and aspect ratios.
EfficientNetV2 (2019) [37] is an advanced CNN architecture that focuses on achieving
high performance while maintaining computational efficiency. By utilizing a compound
scaling technique, EfficientNetV2 achieves excellent accuracy with fewer parameters com-
pared with traditional CNN models, making it computationally efficient and suitable for
deployment on resource-constrained devices.

3.3. Model Parameters and Evaluation Metric

The softmax activation function was used, which is often applied for multiclass
classification tasks [38]. In multi-class classification tasks, the output of the softmax function
is often interpreted as the predicted probability distribution over the classes. The class
with the highest probability is typically chosen as the predicted class label. The function
transforms the input vector into an output vector of the same shape, where each element
represents the probability of the corresponding class. The output values range between 0
and 1, and the sum of all probabilities is equal to 1, making it suitable for representing class
probabilities. The softmax calculates the probability pi for each class i using the following
formula [39]:

pi =
ezi

∑k
j ezi

(1)

where z1, z1, ..., zn¯input vector and i—classes.
The categorical cross-entropy loss function is a widely used loss function in multi-class

classification problems, where each input sample belongs to exactly one class and the goal is
to assign the correct class label [40,41]. It measures the dissimilarity between the predicted
probability distribution and the true probability distribution of the classes. Given a pre-
dicted probability distribution (obtained from the output of a softmax activation function)
and the true labels in the form of a one-hot encoded vector, the categorical cross-entropy
loss is computed by taking the negative logarithm of the predicted probability correspond-
ing to the true class label. The categorical cross-entropy loss function is determined with
the formula [42]:

lossCCE = −
[
y1·log(ŷ1) + y2·log(ŷ2) + y3·log

(
ŷ3
)
+ y4·log(ŷ4)

]
(2)

where y1, y2, y3, y4—true values and ŷ1, ŷ2, ŷ3, ŷ4— predicted values.



Infrastructures 2023, 8, 123 8 of 13

The loss function aims to minimize the difference between the predicted probabilities
and the ground truth labels. It penalizes larger deviations between the predicted and
true probabilities, encouraging the model to assign higher probabilities to the correct
class. Minimizing the categorical cross-entropy loss during training helps the model learn
appropriate weights and biases to make accurate predictions for each class.

The optimization algorithm ADAM (Adaptive Moment Estimation) was used, which
combines ideas from both the AdaGrad and RMSProp algorithms [43]. The algorithm
has gained popularity due to its effectiveness and efficiency in optimizing deep neural
networks. It has been successfully applied to various tasks, including image recognition,
natural language processing and reinforcement learning. ADAM offers several advantages,
including fast convergence, robustness to different types of neural network architectures
and the ability to handle sparse gradients effectively. ADAM adapts the learning rate for
each parameter individually based on estimates of the first and second moments of the
gradients. It maintains a learning rate per parameter, allowing it to adapt the learning
rate on a per-parameter basis. The update rule for this algorithm involves calculating
exponential moving averages of the gradients and their squared values. The updated
parameters are computed using a combination of the moving averages and the current
gradients. ADAM performs bias correction to address the initialization bias issue. This
correction helps in the early stages of training, when the parameter estimates are biased
due to initialization.

The accuracy was used as evaluation metric [44], and it was calculated by dividing
the number of correctly predicted samples by the total number of samples in the dataset. It
represents the proportion of correctly classified instances. Accuracy values are expressed
as a percentage, ranging from 0% to 100%. A higher value indicates a better-performing
classifier, while a lower one suggests more errors in the predictions. This metric is easy
to understand, interpret and communicate. It provides a simple and intuitive measure of
overall model performance, making it widely used in classification tasks. Accuracy may
not be the most appropriate metric in situations where class imbalances exist within the
dataset. When the classes are imbalanced, accuracy can be misleading because a classifier
that always predicts the majority class may achieve a high accuracy even if it performs
poorly on the minority class.

4. Results

The modeling was performed in Python using the numpy, matplotlib and tensorflow
libraries. PC characteristics: processor AMD Ryzen 5 5600X 6-Core 3.70 GHz, RAM 32.0 GB,
NVIDIA GeForce RTX 3070 8.0 GB, Windows 11 64-bit. Table 1 shows the results of model
performance testing.

Table 1. Comparison of ANN models’ performance.

DenseNet
201

EfficientNet
V2

Inception
V3

Mobile
Net

NASNet
Large

ResNet
50 VGG16 Xception

Total times, s 2405 5949 1252 1250 4996 1588 2026 1522

Mean times, s 120 297 63 63 250 79 101 76

Categorical
cross-entropy 0.078 0.2343 0.1414 0.0264 0.065 0.0422 0.0525 0.0313

Accuracy, % 91.82 86.21 89.54 94.61 92.28 93.1 92.73 93.49

In general, it can be stated that all CNN models showed high performance. The model
built on the MobileNet architecture has the highest value for accuracy and, at the same
time, the lowest value for categorical cross-entropy (loss, 0.0264, and accuracy, 94.61%). The
model built on the EfficientNetV2 architecture has the lowest accuracy value and, at the
same time, the highest categorical cross-entropy value (loss, 0.2343, and accuracy, 86.21%).
The situation is similar with the training time—the lowest values for the total training
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time (20 epochs) and the average time of one epoch are in the MobileNet model. The
EfficientNetV2 model shows the longest time indicators. It is worth noting that the models
based on ResNet50 and Xception also show indicators close to the MobileNet model.

Figures 6 and 7 show a comparison of the loss function and accuracy for the training
and validation datasets for the best (MobileNet) and worst (EfficientNetV2) CNN models.
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Figure 6a shows the comparison of the results of loss function for the training and
validation datasets of the MobileNet model. The maximum loss function of the training
set was in the first epoch—0.287; that of the validation set was in the first epoch—0.173.
The minimum loss function of the training set was in the 20th epoch—0.011—and that of
the validation set was in the 20th epoch—0.009. Figure 6b shows the comparison results
of the loss function for the training and validation datasets of the EfficientNetV2 model.
The maximum loss function of the training set was in the first epoch—0.631; that of the
validation set was in the first epoch—0.451. The minimum loss function of the training set
was in the 20th epoch—0.069—and that of the validation set was in the 12th epoch—0.208.

Figure 7a shows the comparison of the results of accuracy for the training and valida-
tion datasets of the MobileNet model. The minimum accuracy of the training set was in the
first epoch—0.884; that of the validation set was in the first epoch—0.934. The maximum
accuracy of the training set was in the 20th epoch—0.996 and that of the validation set was
in the 20th epoch—0.997. Figure 7b shows the comparison of the results of accuracy for the
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training and validation datasets of the EfficientNetV2 model. The minimum accuracy of
the training set was in the first epoch—0.558; that of the validation set was in the second
epoch—0.806. The maximum accuracy of the training set was in the 20th epoch—0.975 and
that of the validation set was in the 12th epoch—0.935.

The next step was to check how the model would classify images that it “has not
seen”. After loading from the previously saved model files, it was “shown” four images
corresponding to the four classes. Table 2 shows example images and classification results.

Table 2. Examples of images and classification results (predicted classes are indicated in Italic).

Defect Free
(Class 0)

Crack
(Class 1)

Spalling
(Class 2)

Popout
(Class 3) Predicted Class
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The analysis of Table 2 shows that the CNN model classified “defect free”, “crack”
and “spalling” images at a high level (probability values very close to 1.0). In the case of
“popout” image classification, a result of 6.265 × 10−1 was obtained, which was the largest
value. The probability of classification into the “spalling” class (3.734 × 10−1) was also
quite high.
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5. Discussion

The possibility of using the proposed CNN model for image classification was ana-
lyzed and compared in terms of the quality of its work with models from similar studies. Li
and Zhao proposed a convolutional encoder–decoder network to detect cracks in the images
(two-class classification) [45]. The validation results showed 98.90% accuracy. Yang et al.
used three neural networks (AlexNet, VGGNet13, ResNet18) to detect and recognize struc-
tural cracks. First, a training dataset of a model was built [46]. The validation showed
that the ResNet18 model worked with most satisfactory results. Wu et al. presented a
crack detection technology based on a convolutional neural network, GoogLeNet Inception
V3 [47]. The dataset included images with and without cracks. The accuracy of the final
trained model on the test set could reach 98.50%. Shin et al. developed a convolution-based
concrete multi-damage recognition neural network. The image datasets consisted of dif-
ferent types of concrete surface damages, including surface cracks, rebar exposure and
delamination. The trained model demonstrated a damage-detection accuracy of 98.9% [48].
Zoubir et al. used the deep convolutional neural networks model to classify three types of
images; the best proposed approach achieved a high testing accuracy (97.13%) [49].

This study has several limitations. First, the model classifies four types of images, three
of which are concrete damage types. At the same time, as noted earlier, two different types
of damage were assigned to the “spalling” class—scaling and spalling—which differ in the
reasons that caused the damage. Second, this study was focused on solving the problem of
image classification and did not concern the solution of segmentation problems. The goal
of classification is to determine which objects are present in an image and potentially label
them with an appropriate class. Object classification algorithms analyze images to make
predictions about the objects present. Image segmentation involves dividing an image
into several segments based on certain criteria. The goal is to assign a label or category
to each pixel in the image, effectively creating a pixel-level mask that identifies different
objects within the image. The segmentation of different types of concrete damage is the
next direction of research.

6. Conclusions

Recently, the bridge infrastructure in Ukraine has faced the problem of a significant
number of damaged bridges. It is obvious that the repair and restoration of bridges should
be preceded by the procedure of their visual inspection and evaluation of their technical
condition. The purpose of this study was to create a model based on CNNs for classifying
images of concrete bridge elements into four classes: “defect free”, “crack”, “spalling” and
“popout”. For this purpose, at the first stage of the research, a dataset was created that
included 1300 images of each class. At the next stage, eight CNN models were created,
trained, validated and tested. In general, it can be stated that all CNN models showed
high performances. The analysis of loss function (categorical cross-entropy) and quality
measure (accuracy) showed that the MobileNet model architecture has the optimal values
(loss, 0.0264, and accuracy, 94.61%). This model can be used further without retraining,
and it can classify images on datasets it “has not yet seen”. The practical use of such a
model allows for the identification of three damage types. Further research may be aimed
at expanding the number of damage classes, increasing the level of model performance
and expanding the model by identifying more damage classes.
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