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Abstract: Highway railway level crossings, also widely recognized as HRLCs, present a significant
threat to the safety of everyone who uses a roadway, including pedestrians who are attempting to
cross an HRLC. More studies with new, proposed solutions are needed due to the global rise in HRLC
accidents. Research is required to comprehend driver behaviours, user perceptions, and potential
conflicts at level crossings, as well as for the accomplishment of preventative measures. The purpose
of this study is to conduct an in-depth investigation of the HRLCs involved in accidents that are
located in the northern zone of the Indian railway system. The accident information maintained
by the distinct divisional and zonal offices in the northern railways of India is used for this study.
The accident data revealed that at least 225 crossings experienced at least one incident between 2006
and 2021. In this study, the logistic regression and multilayer perception (MLP) methods are used to
develop an accident prediction model, with the assistance of various factors from the incidents at
HRLCs. Both the models were compared with each other, and it was discovered that MLP supplied
the best results for accident predictions compared to the logistic regression method. According to the
sensitivity analysis, the relative importance of train speed is the most important, and weekday traffic
is the least important.

Keywords: highway railway level crossing; manned and unmanned level crossing; road user;
multilayer perception; logistic regression

1. Introduction

India has the world’s third largest rail network, trailing behind only the United States
and China [1]. The magnitude of the Indian rail network is approximately a route of
68,442 km, of which 64,891 km are broad gauge. The rail network serves over 13,500 daily
passenger trains (including 5125 suburban EMU trains) and over 9100 daily freight trains [2].
The Indian railway network has recorded 685 crossing accidents between 2006 and 2021
at crosswalks, of which 611 occurred at driverless crossings and 74 at manned crossings,
causing 2639 deaths and 4991 non-fatal injuries between 2006 and 2020 [3]. Road traffic
accidents account for 43% of all accidents in India [4]. Accidents at driverless crossings
during the period 2006–2021 show a downward trend due to some new safety policies by
the Indian government. The purpose of this study is to conduct an in-depth investigation
of the HRLCs involved in accidents that are located in the northern zone of the Indian
Railways system. The records retained by the divisional and zonal offices of the Northern
Zone were used to collect the pertinent information, for a total of 225 rail road intersections
where at least one accident occurred between 2006 and 2021. This research, unlike some
others, investigates a wide variety of factors. Both the structural and functional aspects
of crossings are evaluated. Other than the vehicle and train details, numerous different
pieces of relevant data, including information such as time, place, driver behaviour, the
geometry of crossings, and intersection type, are also included in this study. Results from
this study will shed light on the primary factors that contribute to HRLC accidents in the
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Northern Railway Vicinity of the Republic of India. Road user safety is extremely crucial at
highway and rail intersections. This is because level crossings are areas where two modes
of transportation (i.e., rail and motor vehicles) directly interact. This kind of interaction
poses significant danger to people and property, and it can result in catastrophic outcomes.

2. Literature Review

Several study efforts have been carried out to date that aim to recognise and examine
the numerous reasons for injuries on highways [5–8]. Many researchers have studied
the major reasons for accidents at different intersections between roads [9,10]. All such
studies have shown that accidents happen at intersections due to the avoidance of traf-
fic. Accidents at HRLCs have been mostly governed by human factors [11]. Some of the
common behaviours of humans that result in accidents are overseeding, drunk driving,
distractions to the driver, and red light jumping. Avoiding safety gear such as seat belts
and helmets, demonstrating a non-adherence to lane driving, and overtaking in the wrong
manner are all common reasons for incidence. A human factor analysis regarding rail safety
incidents in the United Kingdom was carried out by Madigan et al. [12]. They discovered
that operational failures were linked to distractions at work and environmental factors that
led to accidents. Das et al. [13] disclosed that fatal accidents occur more often during the
day than at night. However, the vehicle’s kind and speed are major factors that affect the
prevalence of fatal accidents at highway rail grade crossings. Salmon et al. [14] conducted
research on the human factors that lead to incidental violations of safety regulations at
highway rail grade crossings. Through an investigation into the incident that occurred at
the Highways Rail Grade Crossing Khattak and Aleurites, Fordii [15] evaluated pedestrian
accidents at highway rail grade crossings and classified them into three levels of severity:
“no injury”, “injury”, and “fatality”. The results demonstrated that pedestrians are also
vulnerable to fatalities at highway-rail-grade crossings due to the higher train speeds.
Liu et al. [16] evaluated pre-crash driver behaviour at highway-rail-grade crossings with
differing types of warning devices, and the outcomes showed that drivers were likely
to stop at HRCGs with gates. Flashing lights and perceptible warning devices at gates
were found to be effective means of safety at crossings. Larue et al. [17] conducted an
analysis of the threats and misjudgements that could be made by motorists who use high-
ways and rail grade crossings that are fully protected. Numerous violations by motorists
and pedestrians were observed at the proposed highway-rail-grade crossing. It has been
suggested that planning issues can lead to an increase in violations at fully operational
highway-rail-grade crossings. Keramati et al. [18] considered the effect of different geomet-
ric parameters on accidents at HRLCs. Consideration was given to the acute crossing angle,
width (proportional to the number of tracks), distance between the highway rail grade
crossing and the nearest intersection, and the number of lanes on the highway. The results
of the conducted research demonstrated that all the considered geometric characteristics
can significantly affect accident severity and occurrence. From the above study, we found
that many factors, such as human, environmental, seasonal, and geometrical ones, and
these factors influenced the accident rate at HRLCs. Many studies have been carried out
to establish a relationship between different factors in accidents by using different mathe-
matical and statistical tools such as logistic regression, poison distribution, and binomial
distribution [19]. Apart from this, some of the latest soft computing technologies are used
in the prediction of road accidents. ANN is used in the transportation sector to enhance
mobility and safety [20,21]. Xie et al. [22] compared the Bayesian artificial neural network
(ANN), ANN (backpropagation), and negative binomial regression modelling techniques.
They also revealed that the ANN and Bayesian ANN models significantly outperformed
negative binomial regression in predicting traffic accidents. Najjar et al. [23] implemented
a back-propagation ANN for establishing the speed limits on two-lane highways in Kansas.
They utilized four roadway-related input parameters: shoulder width, shoulder type,
ADT, and the percentage of no-passing zones. In addition to predicting 85th percentile
speeds, the ANN model was created to predict the potential effects of changes to specific
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roadway and traffic-related parameters. The developed ANN was able to predict the 85th
percentile speed with an average degree of accuracy of approximately 96%. In order to
analyse and predict traffic accidents in Sudan, Ali and Bakheit [24] used an ANN (artificial
neural network) model. ANN models include principal component regression models. The
results show that ANN models fit the data more closely (as measured by the coefficient of
determination), but the predictions are otherwise very similar. Delen et al. [25] used police
reports of 30,358 car accidents between 1995 and 2000 to create eight binary multilayer
perceptron (MLP) neural network models, with different levels of injury (from no injury to
death) as the dependent variable. Their model helps one to find the most important factors
that explain each dependent variable. By using an ANN, Jadaan et al. [26] developed a
model for predicting incidences by looking at the relationship between injuries and the
factors that affect them. The model produced results that were good for Jordanian traffic.
Alkheder et al. [27] trained an ANN model to predict the severity of injury (mild, moderate,
severe, and fatal) of avenue visitor accidents with the data from 5973 incidents that occurred
in Abu Dhabi between 2008 and 2013. Overall, their model predicted an average success
rate of 74.6 percent when using the testing dataset. Sameen and Pradhan [28] made a recur-
rent neural network (RNN) to be ready for different kinds of injuries. The RNN version was
compared to the MLP and Bayesian logistic regression models (BLR). The RNN version was
found to be more correct than the ANN and BLR versions. Borja et al. [29] offered a method
for founding an accident threat prediction model. They developed models with artificial
neural networks (ANNs) and decided on the ultimate structure of the ANN version, which
enabled the use of information for incidence counts on the Swiss national roads (2009–2012).
It becomes clear that ANNs may be used as a workable approach to predict the frequency
of street accidents. In addition to the above, the emergence of various datasets has led to
the use of different prediction methods for various engineering problems [30–34]. Pattern
recognition equipment and the correct evaluation of its usage of optimized prediction
obligations are contemporary subject matters in current years [35–39]. From the above
literature study, it was concluded that HRLC accidents occur due to various factors. To
establish a relationship between these factors, we need a mathematical tool such as logistic
regression and ANN, which are widely used in accident prediction; however, very little
research has been carried out on HRLC accident prediction. From the literature review,
it was also found that most of the study was conducted in developed economies where
advanced and intelligent infrastructure is available. Apart from this, the education level of
the people was also high, due to which people can understand the importance of safety
and its effects more wisely. Hence, this study concentrated on those developing economies
where a lack of advanced infrastructure and low education levels can differ from the results
of the previous study.

3. Methodology
3.1. Selection of Study Area and Data Collection

This study collected data from the Northern Railways, North Central Railways, North
Western Railways, North Eastern Railways, and Northeast Frontier Railways in India.
The total length of railways in the abovementioned railway zone is 23,319 km [40], and
this encompasses different parts of different Indian states. Data were collected from the
database of the zonal head office and divisional head office via the right to information
(RTI) act and from a direct visit to the office. The accident data were collected from 2006 to
2021. These data contain the following: place of accident, time, date, type of train involved,
type of vehicle involved, number of fatalities and injuries, type of injuries, and manned or
unmanned level crossing. The sample demonstration of the dataset is shown in Table 1.
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Table 1. Sample demonstration of the dataset.

S. No. Date of
Accident

Brief Description
Casualties

Reason
Killed Major Injuries Minor Injuries

1 21 January
2014—01:35

Train No.12,485 Up
Nanded-Sri Ganganagar
Express left Pakki at
01:23 hr towards Abohar.
While the train was
approaching Manned
Level Crossing Gate No
A/47-A (Engineering,
Interlocked Gate)
between Pakki and
Abohar stations, one Car
(No. PB-10DW-7202,
Toyota Etios Liva), after
hitting the closed boom
of MLC Gate No.
A-47/A, dashed against
the train engine, thus
causing the death of 02
car occupants. The car
driver was unhurt.

2 0 0

Negligent
driving by a
road vehicle
driver who did
not stop at the
closed gate.

2 9 December
2012—18:48

Maruti car no-
PB-08W-1789 was stuck
with train no-54,621 at
manned level crossing
gate no-A-82 between
the Dasua–Khudda
Kurala part of the
Pathankot–Jalandhar
section.

2 0 1

L-xing Gate
A-82, before
granting a line
clear to train
No-54,621 to
Station
Master/Khuda
Kurala (due to
which the gate
remained in an
open condition),
resulted in an
accident.

3.2. Primary Investigation of the Accident Data of Northern Railways

This study primarily concentrates on looking at the characteristics of RRLCs that
experienced accidents in the northern zone of Indian Railways between 2006 and 2021. A
total of 225 crossings were found in the northern zone out of 355 unmanned level crossings,
where at least one accident occurred between 2006 and 2021. The data illustrate that the
number of RRLC accidents increased from 2006 to 2014, then decreased over the next
seven years. From the data, it is observed that fatalities were highest in 2011, whereas 2019
and 2020 had no accidents at level crossings. The drastic decrease in accidents is due to
some of the major safety enhancement policies and planning in road safety that has been
conducted by the Government of India. By 2025, the Indian government intends to remove
2500 unmanned level crossings from national highways [41]. The majority of level crossings
are regularly maintained. The primary objective of the Indian government is to improve
the existing infrastructure of railways through the routine monitoring of level crossings,
road signs and signals, and surface types. Another cause for the reduction in accidents in
2020–21 was the lockdown that occurred due to the spread of COVID-19. Indian Railways
is planning to remove all unmanned levels from major national highways by the year
2022, which is another reason for accident reduction [40]. Railroad level crossing (RRLC)
casualties in the northern zone depend on the type of crossing, the presence of light, the
surface of the intersection area, the type of warning system deployed, traffic characteristics,
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driver characteristics, and environmental factors. There is a total of 87 RRLCs at the most-
threatened crossings, which is where the lighting is inadequate. Between 2006 and 2021,
non-gated RRLCs accounted for 86.7% of accidents. Most of the crossings have crossbucks
or stop signs that are not properly maintained, some road signs that are broken, and some
that are found to be faded in colour. According to the data, 20% of RRLCs have inadequate
protection, which is one of the causes of accidents. According to Figure 1, the majority of
accidents (88%) occur during the day because trains and road traffic interact more during
the day than at night. Countries such as India that have a daytime work culture are also a
prominent cause for daytime accidents. Most of the accidents that occur at unmanned level
crossings compared to manned level crossings are shown in Figure 2.
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These events occurred because unmanned level crossings are not protected by gates.
In the study area, several unmanned level crossings were found without proper signs,
broken stop signs, and several had road signs that had faded in colour.

Passenger trains are more involved in accidents compared to goods trains, as shown
in Figure 3. This is because goods trains move at a slower speed compared to passenger
trains. In the northern zone of railways, the number of passenger trains is higher compared
to goods trains, so there is less interaction between vehicle and train (which is a major
reason for passenger train accidents). Accidents at level crossings are also influenced by
the geometry of the crossings. More accidents occur at skewed-geometry level crossings
than at linear ones. This is because the motorist has less available sight distance.

In the study area, the trains run from major cities where traffic volume is very high; as
such, more train-traffic interaction takes place. Due to this, more accidents occur in urban
areas compared to rural areas, as shown in Figure 4. The dry season has fewer accidents
than the wet season. The dry season is summer, while the wet season is autumn and winter.
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In the wet season, visibility is disturbed by heavy rain and fog. For the study area, a similar
result shows up in Figure 5. Peak hours experience more accidents compared to non-peak
hours due to the increased interaction of vehicles and trains. This is also valid for the study
area, as shown in Figure 6.
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Descriptive Statistics of the Variable

In descriptive statistics, the maximum, minimum, mean, standard deviation, and
variance of all variables are calculated and tabulated in Table 2. The speed of the train
varies from 22 km/h to 120 km/h. However, the average train speed is 64.9 km/h. The
variation in speed is also shown in Figure 7.

Table 2. Descriptive statistics of the variable.

Descriptive Statistics

Variable N Min. Max. Mean Std.
Deviation Variance

Rural or urban area
(AUR) 225 0 1 0.64 0.480 0.230

Fatal and non-fatal
accidents (AFN) 225 0 1 0.631 0.483 0.234

No. of railway track
(TN) 225 0 1 0.61 0.488 0.238

Day and night (TDN) 225 0 1 0.573 0.495 0.246

Weather (WDW) 225 0 1 0.587 0.497 0.244

Manned and unmanned
level crossings (LCMU) 225 0 1 0.827 0.380 0.144

Surface type (SBC) 225 0 1 0.462 0.499 0.250

Average speed (V) 225 22.0 120.0 64.9 23.9 571.0

Type of train (TPG) 225 0 1 0.740 0.438 0.192

Vehicle type (VCN) 225 0 1 0.710 0.464 0.235

Road geometry (GCS) 225 0 1 0.524 0.505 0.251

Warning device (WIN) 225 0 1 0.58 0.495 0.551

Weekend and weekdays
(WWWD)

225 0 1 0.267 0.443 0.196

Peak and non-peak
hours (HPN) 225 0 1 0.360 0.481 0.231

Gauge of track (GBM) 225 0 1 0.733 0.434 0.0197

Negligence of driver or
gateman (NGD) 225 0 1 0.667 0.472 0.223
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3.3. Model Development and Analysis
3.3.1. Models

There are two methods that were used for the analysis of data in this study. Analysis
was completed by using both methods, and the results were compared.
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I. Logistic regression;
II. Artificial neural network.

Logistic Regression

The regression method, also known as logistic regression, was used to fit the accident
data. In order to predict future events, probabilistic systems were modelled using logistic
regression techniques. The distributions of the explanatory variables or predictors were
not necessary in these direct probability models [41]. If p is the probability that a binary
response variable Y = 1 when input variable X = x, then the logistic response function is
modelled as

P = P(Y = 1|X = x) =
eβ0+β1X1+β2X2+β3X3 .................+βnXn

1 + eβ0+β1X1+β2X2+β3X3 .................+βnXn
(1)

This function represents an s-shaped curve and is non-linear. Here, β is the coefficient
of the predictor or input of the variable x that is used in a regression equation.

Artificial Neural Networks

A neural network machine-learning model has been extensively used in predictive
applications. Warren McCulloch, a neurophysiologist, and Walter Pits, a logician, based
the first artificial neuron on a biological neuron in 1943 [42]. In artificial neural networks,
feedforward networks and feedback networks are the two main architecture types. Feedfor-
ward, or multi-layer, networks have been used quite often when constructing neural models.
In such models, several layers as a hidden layer and one output layer may be included.
The general mathematical expression of an ANN model is represented in Equation (2).

AN = ϕ
[
bo + ∑k=m

k=1

{
wk ∗ ϕ

(
bk + ∑i=n

i−1 wikxi

)}]
(2)

where AN = normalized output of the model; ϕ = activation function, bo = bias at the output
layer neuron; wk = weight between the output layer neuron and kth neuron of the hidden
layer; bk = bias associated to kth neuron of the hidden layer; wik = weight between ith
neuron of the input layer and kth neuron of the hidden layer; xi = normalized ith variable
(neuron) of the input layer; n = number of input variables; and m 1

4 number is the neurons
in the hidden layer.

3.3.2. Preparation of Model Data

In this paper, in order to establish a predictive model for railroad level crossing
accidents, fatal and non-fatal accidents were selected as the dependent variables. A fatal
accident is coded as y = 1 and a non-fatal accident as y = 0. Another variable is shown in
Table 1 with a coded value. All dependent variables were coded as shown in Table 3.

Table 3. Details of the independent variables for the proposed model.

Variable Abbreviation of
Variables Measure of Variable Coded Value

Rural or urban area AUR Nominal 0 = Rural area,
1 = urban area

Fatal/non-fatal
accidents AFN Nominal 0 = Non-fatal,

1 = Fatal

No. of railway track TN Nominal 0 = One track,
1 = For two-track

Day and night TDN Nominal 0 = Day time,
1 = Night time
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Table 3. Cont.

Variable Abbreviation of
Variables Measure of Variable Coded Value

Weather WDW Nominal 0 = Dry weather,
1 = Wet weather

Manned and
unmanned level
crossings

LCMU Nominal

0 = Manned level
crossing,
1 = Unmanned level
crossing

Road surface type SCE Nominal 0 = Concrete,
1 = Earthen

Average speed V Nominal 0 = less than 50,
1 = greater than 50

Type of train TPG Nominal 0 = Passenger train,
1 = Goods train

Vehicle type VLH Nominal 0 = Light vehicle,
1 = Heavy vehicle

Road geometry GCS Nominal 0 = Curve,
1 = Straight

Warning device WIN Nominal
0 = Not installed
properly,
1 = Installed properly

Weekend and
weekdays WWWD Nominal 0 = Weekend,

1 = Weekdays

Peak and non-peak
hours HPN Nominal 0 = Non peak hour,

1 = Peak hour

Gauge of track GBM Nominal 0 = Meter gauge,
1 = Broad gauge

Negligence of driver
or gateman NGD Nominal 0 = Gateman,

1 = Driver

4. Result
4.1. Result of Logistic Regression Model

The binary logistic regression model that was built within an IBM SPSS Statistics
22 environment was used for the analysis. The findings of the statistical analysis are
summarized in Table 4, including the following information for each predictor: (1) estimate
(2) standard error; (3) Wald; (4) degree of freedom; (5) p-value; and (6) Exp (B).

According to the findings of the statistical analysis, the majority of the considered
predictor variables were statistically significant with p-values of less than 0.05. (See Table 4).
Furthermore, for the entire model, the p-value was less than 0.001, which shows that the
model was statistically significant. Moreover, some of the predictor variables considered
had relatively high p-values. This is because certain aspects were shared by all the RRLCs
that had at least one accident during the 15-year study period. The road surface at crossings
was not significant because the crossing is a very short distance; thus, it does not have much
impact. The majority of the manned RRLCs in the northern zone of the Indian railways
have active warning devices installed. The p-value for gauge of track was 0.210, which is
not statistically significant because the majority of RRLCs in the northern zone have similar
gauges of trains.
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Table 4. Results of the logistic regression using fatality as the dependent variable.

Variable Estimates S.E. Wald df p-Value

Rural or urban area 8.941 2.525 12.541 1 0.000

No. of railway track 6.794 2.526 7.234 1 0.007

Day and night 3.823 1.492 6.567 1 0.010

Weather 3.067 1.720 3.179 1 0.045

Manned and unmanned level crossings −1.233 1.594 0.599 1 0.042

Road surface type −1.185 1.309 0.820 1 0.365

Average speed 0.237 0.068 12.156 1 0.000

Type of train −1.725 1.928 0.800 1 0.371

Vehicle type −0.716 0.587 1.487 1 0.223

Road geometry −0.640 1.351 0.225 1 0.047

Warning device 2.320 1.235 3.531 1 0.048

Weekend and weekdays 4.119 2.213 3.464 1 0.063

Peak and non-peak hours 0.744 1.354 0.301 1 0.583

Gauge of track 0.271 1.400 0.117 1 0.847

Negligence of driver or gateman −0.444 1.295 0.037 1 0.032

Interceptions −27.037 9.381 8.306 1 0.004

The area under the curve (AUC) for the MLP model is 0.94, which is more than 0.90;
hence, the model can distinguish between fatal and non-fatal accidents very well. The
accuracy of the model is 0.97, which is close to 1.0; this implies that the model can accurately
predict fatalities 97 times out of 100 with the given condition of level crossings. This is
shown in Table 5.

Table 5. Confusion matrix for the logistic regression.

Model Confusion Matrices Accuracy Sensitivity Specificity AUC

Non-fatal Fatal

Logistic regression Non-fatal 80 3 0.96 0.98 0.09 0.94

Fatal 2 140

Logistic Regression Model Validation

Four pseudo-R-square statistical tests were used to assess the fitness of the proposed
model, giving satisfactory results for all tests. First, the -2 log-likelihood (or -2LL) test was
performed (this is also referred to as the model deviance). The lowest value of the -2LL was
zero, which signifies a perfect predictive performance (increasing values relative to zero
indicate a worse model fit [43]). This indicator is typically not very insightful regarding the
characteristics of a poor fitted model. For the proposed model, the value of -2LL was 0.089,
which is near zero and indicates that the model is fit for prediction. The second test used
was Cox and Snell’s R square. Cox and Snell’s R-square is based on the log likelihood of
the model compared to the log likelihood of a baseline model. However, with categorical
outcomes, it has a theoretical maximum value of less than 1, even for a “perfect” model.
The most significant value of the Cox and Snell R square is 1, which indicates a perfect fit,
and decreasing values relative to 1 signify a worse model fit [43]. For the proposed model,
this value was 0.943, which is near one and signifies a good fit. The third statistical test
performed was the Nagelkerke R-square. The largest value of the Nagelkerke R square is
1, which indicates a perfect fit, and decreasing values relative to 1 signify a worse model
fit [44]. For the proposed model, this value was 0.973, which is near one and signifies a
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good fit. The fourth test used was McFadden’s pseudo-R-square, which lies between 0.2
and 0.4 for a good-fit model. For the proposed model, this value was 0.31, which shows
that the model is a perfect fit. The Hosmer and Lemeshow [45] test provide an additional
global fit test, comparing the estimated model to one with a perfect fit. If this assessment
is not significant, it reveals that the model is a well-specified fit model. If it is significant,
then we have evidence that the model is misspecified or does not fit the model. Here, the
Hosmer and Lemeshow tests were not statistically significant [χ2 (8) = 0.286, p = 1.000],
suggesting that the model fits adequately. From the above details, it was found that the
proposed model satisfied all statistical fitness tests.

4.2. Results of the ANN Model

The ANN model used in this study was developed using 15 independent variables, as
per Table 2, by taking fatal and non-fatal accidents as the dependent variables. Optimization
of the model was done with the gradient descent algorithm. The activation function for
the input layer and output layers were hyperbolic tangent and sigmoid, and these give a
maximum accuracy of the model, as shown in Table 4. The accuracy of training and testing
was 100% for fatal accident prediction. Non-fatal accident accuracy for training and testing
were 96.9 and 94.7, respectively. There are seven hidden layers used in this model. The
confusion matrix for the ANN model is shown in Table 6.

Table 6. Results of the ANN model.

Model Activation Function Confusion Matrices Accuracy

Training Testing Training Testing

MLP
Model Input t Layer Output

Layer Fatal Non
Fatal Fatal Non

Fatal

Hyperbolic Sigmoid
Tangent Fatal 98 0 44 0 100 100

Non-fatal 2 62 1 18 96.9 94.7

4.2.1. Area under Curve (AUC) from ROC Curve

The area under the curve (AUC) for the MLP model is 0.986, which is more than 0.90;
hence, the model can distinguish between fatal and non-fatal accidents very well [46]. This
is calculated using the ROC curve, which is drawn using specificity on the X axis and
sensitivity on the Y axis.

4.2.2. Sensitivity Analysis for the ANN Model

A sensitivity analysis was carried out in order to determine which of the many possible
factors had the greatest impact. The connection weights in a neural network model were
deduced using the formulas proposed by Garson [47]. In addition to that, Shahin et al. [48]
applied this theory to the field of civil engineering. We were able to determine the relative
importance (RI) of each independent variable with the assistance of this analysis. According
to Table 7, the variables were ranked based on the decreasing order of their corresponding
relative importance values. As the ranks were assigned to each of the variables in Table 6,
it was observed that the variable ‘speed of the train’ had the highest RI of 32.1%. The
‘level crossing type’ variable was observed to be the second most important variable.
Similarly, “weekend and weekend day traffic” was discovered to have the lowest impact
on model output.
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Table 7. Sensitivity analysis of all variables.

Variable TR AUR SSW DDN LCMU WWWD V WYN GCS HPN NDR GBM SCE

RI 6.1 7.2 6.3 8.2 9.7 4.0 32.1 5.4 4.6 9.4 4.3 1.2 1.5

Rank 7 5 6 3 2 11 1 8 9 4 10 13 12

5. Discussion

In urban India, especially in large cities, concerns have been raised about the security
of vehicle users at level crossings and other such intersections. While statistical analysis
and modelling have been widely used to assess pedestrian safety at traffic junctions [49],
there is a need for a more holistic approach. This research has presented a new approach
and is based on the use of logistic regression and artificial neural network techniques for
determining the connection between level crossing characteristics and fatal and nonfatal
accidents. In this investigation, efforts were made to construct ANN-based models for deter-
mining the frequency of fatal pedestrian collisions. Nevertheless, several researchers have
elucidated the importance of statistical models for predicting accident frequencies [50,51].
Chakraborty and Mitra [52] created a negative binomial model to predict the catastrophic
pedestrian accident frequency in Kolkata; they demonstrated that the statistical model’s
prediction performance was nearly 50%. However, the accuracy of an ANN model is
very high when compared to statistical models [53–56]. Alkheder et al. [27] used an ANN
model to predict the degree of injury (minor, moderate, severe, and death) of avenue visitor
accidents. Their version had an average overall prediction performance of 74.60%. In this
investigation, the accuracy level for logistic regression was 96%, but the accuracy level
for the ANN model that uses hyperbolic tangent as its activation function for the input
layer and SoftMax for the output layer was 98%. Both models have better accuracy than
the statistical models used by various researchers. In addition to analysing data on the
frequency of road–railway events, it is also important to analyse the data on the triggers that
contribute to fatalities and the extent to which these factors impact. Most of the previous
studies where ML was used as an effective factor in accidents were smaller than the present
study. Some of the important factors, such as average daily traffic, age of the driver, sight
distance, and frequency of trains, may be included in future studies. These data are not
available, but they are very important for accident prediction.

6. Conclusions

In this study, the accident data from the past 15 years on rail road level crossings in
the northern zone of Indian railways were analysed. From the data, it was found that level
crossing accidents have decreased due to some initiatives by Indian railways. Unmanned
level crossings encounter more accidents compared to manned level crossings. Most of
the unmanned level crossings have road markings and signs that are either faded or not
properly installed. The speed of the trains, day and night driving, weather, rural and urban
areas, the number of railway tracks, and the surface type of the pavement at highway-
rail-grade crossings were found to be the factors significantly affecting the severity of
driver injuries at both manned and unmanned level crossings. Some of the factors, such
as the availability of signboards, road markings, and average annual daily traffic, were
not significant for the prediction of accidents, as per the proposed model. Multilayer
perception ANN has an accuracy of 98%, while logistic regression has an accuracy of 97%.
As per the sensitivity analysis, the speed of train had the greatest relative impact (32.1)
on accidents; moreover, the gauge of track had the least relative importance (1.2). This
paper includes only 15 independent variables, but some of the variables may be included
in future work, such as driver and pedestrian behaviours, sight distance, delays at the level
crossing, automatic and manual gate operations, and the width of the road near crossings.
In Indian conditions, fatal and non-fatal accidents at RRLCs can be reduced by increasing
driver and pedestrian awareness and by improving safety standards. The government
must impose severe penalties on drivers who violate traffic laws at intersections such
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as RRLCs. Intelligent signal management and monitoring systems must be adopted for
the effective reduction in accidents at level crossings. Recommendations are made for
addressing traffic engineering, road, and construction concerns to enhance the security
of road–railway infrastructure. In addition, creating and enforcing more stringent laws,
particularly regarding identified causes of fatal accidents, and increasing penalties is
recommended. State and federal governments should set aside money for the development
of national and local databases that compile data on road–railway collisions, including the
frequency of rail links, the average age of drivers, the levels of education and income they
hold, the types of property damage that they sustain in accidents, and more.
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