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Abstract: This study uses the wind–vehicle–bridge coupling vibration analysis method to investigate
the bridge stiffness problem of a large-span cable-stayed-suspension cooperative system. On the basis
of the particle-damping-spring vehicle model, the TMeasy surface contact tire model is introduced,
and a set of universal wind–vehicle–bridge coupling analysis algorithm is built in the framework of
the whole process iterative method. Based on the Latin supercube sampling principle, random traffic
flow is generated and loaded onto bridge structures with different stiffness conditions to analyze the
driving comfort and safety under each stiffness condition. Combining the specification requirements,
engineering experience, and research results, the vertical stiffness limit applicable to the bridge of the
highway cable-stayed-suspension collaborative system is proposed. Existing engineering experience
shows that the vertical deflection-to-span ratio of a cable-stayed bridge under live load is distributed
between 1/400 and 1/1600, and the vertical deflection span ratio under the action of lane load is
recommended based on numerical analysis.

Keywords: cable-stayed-suspension cooperative system bridge; stiffness standards; wind-vehicle-
bridge coupling vibration; tire model; driving comfort; driving safety

1. Introduction

The cable-stayed-suspension cooperative system bridge adds cable-stayed cables to
the long-span suspension bridge to improve its wind resistance stability, which makes
up for the lack of rigidity of the suspension system [1]. It also provides a new bridge
form for mountainous and oceanic long-span bridges. At present, the long-span cable-
stayed-suspension collaborative bridges in the world include the Third Bosphorus Bridge
(main span 1408 m, two-way eight-lane high-speed + double-track railway). The Xi-
houmen Highway-Railway Bridge (main span 1488 m) and the Jingzhou Libu Yangtze
River Highway-Railway Bridge (main span 1120 m) under construction in China also adopt
the cable-stayed-suspension coordination system. The design scheme of a bridge across the
Xunjiang River adopts a (638 + 638) m space cable single tower cable-stayed-suspension
collaborative system scheme, the tower height is 231 m, and the spacing is 16 m, with a
total of 19 m (Figure 1).

Both cable-stayed bridges and suspension bridges are classic cable-supported bridge
systems, and the cable structure is prone to vibration. Bryja found that the cable car would
exhibit unstable behavior under wind loads, such as violent swinging or sliding, when
studying the interaction between aerial cable cars and cables [2]. The irregular shape of
the contact line in the railway electrification system can lead to oscillation and resonance
between the pantograph and the contact line, affecting the stable contact performance of the
pantograph with the contact line [3]. Moreover, when the wind attack angle is at a specific
value, the damping of the catenary becomes negative, and the running vibration reaches
the maximum amplitude [4]. Both of the above structures are simple cable-supported
structures, while bridge structures composed of multiple cables, such as cable-stayed and
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suspension bridges, are prone to vibration behavior under dynamic loads [5]. Under wind
loads, both cable-stayed and suspension bridges are prone to wind-induced vibration and
flutter, but suspension bridges are more susceptible to nonlinear response due to their
lower structural stiffness. The cable-stayed-suspension combined system bridge, as a
combination of cable-stayed and suspension bridges, has a more complex response under
wind and moving loads. Theoretical studies show that the structural nonlinear effect of
cable-stayed-suspension cooperative system bridges is obvious, and the stiffness problem
is more complicated than that of suspension bridges or cable-stayed bridges. The limit
value of bridge stiffness involves the comprehensive consideration of structural safety
and economy. At present, few studies examine the stiffness of bridges with cable-stayed-
suspension cooperative system, and no relevant regulations are in place. Bridge stiffness
mainly refers to its vertical stiffness and transverse stiffness [6], which are often measured
by indicators such as vertical and transverse deflection–span ratios. China’s “Code for
Design of Highway Suspension Bridges” (JTGT D65-05-2015) stipulates that “the maximum
vertical deflection value of stiffened beams caused by the frequent occurrence of lane
loads should not be greater than 1/250 of the span.” The “Code for Design of Highway
Cable-Stayed Bridges” requires that the vertical deflection-span ratio shall not exceed 1/400.
Japan’s “Road and Bridge Indication Book” specifies that the deflection–span ratio of cable
bridges shall not exceed 1/350. Bridge stiffness affects the dynamic response of vehicles
passing on the bridge. Reasonable bridge stiffness should take the comfort and safety of
driving on the bridge into consideration [7]. Given the space of a cable-stayed-suspension
cooperative system bridge in Figure 1, this study uses the wind–vehicle–bridge coupling
analysis as a means to establish a tire mechanics model considering the tire deformation
surface. This study also explores the vertical deflection–span ratio limit under the effect of
satisfying driving comfort. The value provides a reference for the limit value of the bridge
stiffness of the cable-stayed-suspension cooperative system. As the transverse stiffness of
the space cable structure is greater than that of the parallel cable structure, the study mainly
discusses the vertical stiffness of the bridge.
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Figure 1. Schematic diagram of cable-stayed-suspension cooperative system with single tower of
space cable.

2. Evaluation Method of Bridge Driving Comfort and Safety

Driving comfort and safety are directly related to vehicle dynamic response. Based
on the coupled vibration analysis theory of wind–vehicle–bridge, the dynamic interaction
between vehicle and bridge can be considered, and the response of bridge structure and
vehicle can be accurately solved. It is an effective method for bridge stiffness analysis
and evaluation, which is widely used in railway bridge engineering [8]. In particular, it is
applied in the setting of safe wind speed and safe driving speed [9], the evaluation and
optimization of wind barrier performance [10], the research on bridge structure vibration
and vibration reduction measures [11], and the evaluation of track irregularity of high-speed
railways [12]. However, the application research in highway bridges is relatively scarce.
Basing on the design load of Chinese bridge code, investigation and sampling results,
and equivalent theory, Deng Luji put forward a vehicle model suitable for wind–vehicle–
bridge coupling calculation in China, including the values of geometric dimensions, mass,
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stiffness, and damping, and formed a systematic vehicle model library [13]. Polish scholars
established high-precision vehicle models through the multi-body dynamics simulation
software ADAMS and LS-DYNA. This kind of model has a strong application significance
for the response of the car body, but its calculation efficiency is too slow to be suitable for
the large-scale windmill-bridge coupling analysis [14].

2.1. Dynamic Model of Bridges and Vehicles

The bridge model is simplified as a beam model, and the bridge model is established
in the finite element analysis software ANSYS (Figure 2). The beam element Beam4 is
used for the main girder and tower, whereas Link10 is used for the simulation of the
main cable, suspenders, and cables. The coupling function of degrees of freedom is used
at the connection of tower and beam to constrain the longitudinal torsion, longitudinal
translation, and lateral translation of the main beam. The end of the main girder constrains
the longitudinal, transverse, and torsional degrees of freedom around the longitudinal axis.
Both the rod element and the beam element are shown in blue, and the constraints are
shown in green. In the vehicle–bridge coupling analysis, the vehicle is usually abstracted as
a particle-damping-spring model, in which rigid bodies, such as car body, axle, and wheel,
are connected with one another through dampers and elastic elements. The motion equation
of the vehicle is constructed using the D’Alembert principle. The vehicle suspension system
and wheel are abstracted as spring-damping elements, and the vehicle mass is assumed
to be distributed in the center of mass of each rigid body. The car body has six degrees of
freedom in space, namely, floating, swinging, stretching, nodding, shaking, and rolling.
However, because the longitudinal vibration of the car along the driving direction has little
influence on the vertical and lateral vibration of the bridge, the longitudinal freedom of the
car body, that is, the degree of freedom of stretching, is generally ignored [15].
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Figure 2. Finite element model diagram of bridge.

The difficulty in the analysis of vehicle–bridge coupling vibration is the contact model
between the wheel and the bridge deck, and the key is the tire model. Wheel motion
parameters include longitudinal slip rate s, slip angle α, radial deformation ρ, camber
angle γ, wheel speedω, and yaw angle βt. According to different research purposes, tire
dynamics establishes tire longitudinal sliding model, tire cornering model, and tire vertical
vibration model. According to the applicable analysis state, it is subdivided into steady-
state model, dynamic model, and tire model for the dynamic simulation [16]. TMeasy
tire model is a tire model provided by Simpack software, which is suitable for dynamic
simulation. The calculation of the sideslip force of the tire comes from the Lugre dynamic
model [17], and the vertical stiffness nonlinear model is used. The vertical load is divided
into two parts: static load Fst

z and dynamic load FD
z . The static load is expressed as a

nonlinear function related to vertical displacement, and the dynamic load is approximately
expressed as a linear damping model, namely:

Fz = Fst
z + FD

z = a1∆z + a2(∆z)2 + dT∆
.
z (1)
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where Fz is the vertical load of the tire; ∆z is the vertical displacement of the tire; ∆
.
z is the

derivative of vertical displacement; a1 and a2 are the effective load and the radial stiffness
at twice the effective load, respectively; and dT is the vertical damping of the tire.

Fy = cy∆y + dy∆
.
y (2)

where Fy is the lateral force of the wheel, cy is the lateral stiffness of the tire, dy is the lateral
damping of tires, and ∆y is the lateral deformation of the tire.

Taking a two-axle vehicle as an example, the vehicle space dynamics model is established
in Simpack, and its topology model and entity model diagram are shown in Figures 3 and 4,
respectively. In Figure 3, the blue part represents the degree-of-freedom coupling, the red
part represents the force element, and the different numbers represent the different force
elements; number 5 in the figure represents the spring-damping force element, number 253
represents the TMeasy force element, and the green part is the constraint equation.

Infrastructures 2023, 8, x FOR PEER REVIEW 4 of 19 
 

is divided into two parts: static load 𝐹𝑧
𝑠𝑡  and dynamic load 𝐹𝑧

𝐷 . The static load is ex-

pressed as a nonlinear function related to vertical displacement, and the dynamic load is 

approximately expressed as a linear damping model, namely: 

𝐹𝑧 = 𝐹𝑧
𝑠𝑡 + 𝐹𝑧

𝐷 = 𝑎1∆𝑧 + 𝑎2(∆𝑧)2 + 𝑑𝑇∆�̇� (1) 

where 𝐹𝑧 is the vertical load of the tire; ∆z is the vertical displacement of the tire; ∆�̇� ̇ is 

the derivative of vertical displacement; 𝑎1 and 𝑎2 are the effective load and the radial 

stiffness at twice the effective load, respectively; and 𝑑𝑇 is the vertical damping of the 

tire.  

𝐹𝑦 = 𝑐𝑦∆𝑦 + 𝑑𝑦∆�̇� (2) 

where 𝐹𝑦 is the lateral force of the wheel, 𝑐𝑦 is the lateral stiffness of the tire, 𝑑𝑦 is the 

lateral damping of tires, and ∆y is the lateral deformation of the tire.  

Taking a two-axle vehicle as an example, the vehicle space dynamics model is estab-

lished in Simpack, and its topology model and entity model diagram are shown in Figure 

3 and Figure 4, respectively. In Figure 3, the blue part represents the degree-of-freedom 

coupling, the red part represents the force element, and the different numbers represent 

the different force elements; number 5 in the figure represents the spring-damping force 

element, number 253 represents the TMeasy force element, and the green part is the con-

straint equation. 

 

 

 

 

Figure 3. Topological model diagram of two-axle vehicle. 

Figure 3. Topological model diagram of two-axle vehicle.

Infrastructures 2023, 8, x FOR PEER REVIEW 5 of 19 
 

 

Figure 4. Solid model diagram of two-axle vehicle. 

2.2. Effect of Fluctuating Wind Field on Vehicle–Bridge System 

The wind-induced response of the bridge considers the resistance, lift, torque, and 

buffeting force of the stiffening beam caused by the average wind. The average wind-

induced response is taken according to the Code for Wind-resistant Design of Highway 

Bridges, and the buffeting force is calculated by considering the unsteady and local spatial 

correlation of buffeting force on the basis of the Scanlan quasi-steady aerodynamic for-

mula [18]. The existing aerodynamic admittance function is usually a function in fre-

quency domain, which cannot be directly used to solve the buffeting force of bridges in 

time domain. Usually, the equivalent wind spectrum method and buffeting force spec-

trum method can be used for time domain analysis. The cross-section of bridge structure 

is very complex and often blunt, so obtaining the accurate expression of aerodynamic ad-

mittance function of specific cross-section is difficult at this stage [19]. In the absence of 

accurate aerodynamic admittance function, the simplified flat aerodynamic admittance 

function expression proposed by Liepmann is generally used for flat streamlined sections, 

whereas the aerodynamic admittance function can be safely set to one for relatively pas-

sive bridge structural sections without considering the influence of aerodynamic admit-

tance. The aerodynamic effect of wind on bridge is shown in Figure 5 and the buffeting 

resistance, buffeting lift, and buffeting moment per unit length of main girder are ex-

pressed as follows: 

𝐹𝑏,𝑑
𝐻 = 𝜌𝑈𝐵{

𝐻

𝐵𝐶𝐻,𝑑(𝛼)𝜒𝐻𝑢𝑢(𝑡)
+ 1/2[𝐻/𝐵

𝑑𝐶𝐻,𝑑(𝛼)

𝑑𝛼
𝜒𝐻𝑤𝑤(𝑡)]} (3) 

𝐹𝑏,𝑑
𝑣 = 𝜌𝑈𝐵{𝐶𝑉,𝑑(𝛼)𝜒𝑉𝑢𝑢(𝑡) + +1/2[

𝑑𝐶𝐻,𝑑(𝛼)

𝑑𝛼
+ 𝐻/𝐵𝐶𝐻,𝑑(𝛼)]𝜒𝑉𝑤𝑤(𝑡)} (4) 

𝐹𝑏,𝑑
𝑀 = 𝜌𝑈𝐵2[𝐶𝑀,𝑑(𝛼)𝜒𝑉𝑢𝑢(𝑡) + +1/2

𝑑𝐶𝑀,𝑑(𝛼)

𝑑𝛼
𝜒𝑀𝑤𝑤(𝑡)] (5) 

where  𝐹𝑏,𝑑
𝐻 , 𝐹𝑏,𝑑

𝑣 , and 𝐹𝑏,𝑑
𝑀  are buffeting resistance, buffeting lift, and buffeting moment of 

main girder caused by pulsating wind, respectively; u  and w  are horizontal and verti-

cal fluctuating wind speed components; d/dα is the derivation of wind attack angle; 𝜒𝐻𝑢, 

𝜒𝐻𝑤are aerodynamic admittance functions related to buffeting resistance; 𝜒𝑉𝑢, 𝜒𝑉𝑤  are 

aerodynamic admittance functions related to buffeting lift; and𝜒𝑀𝑢  , 𝜒𝑀𝑤 are aerody-

namic admittance functions related to buffeting torque. 

Figure 4. Solid model diagram of two-axle vehicle.

2.2. Effect of Fluctuating Wind Field on Vehicle–Bridge System

The wind-induced response of the bridge considers the resistance, lift, torque, and buf-
feting force of the stiffening beam caused by the average wind. The average wind-induced
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response is taken according to the Code for Wind-resistant Design of Highway Bridges, and
the buffeting force is calculated by considering the unsteady and local spatial correlation
of buffeting force on the basis of the Scanlan quasi-steady aerodynamic formula [18]. The
existing aerodynamic admittance function is usually a function in frequency domain, which
cannot be directly used to solve the buffeting force of bridges in time domain. Usually,
the equivalent wind spectrum method and buffeting force spectrum method can be used
for time domain analysis. The cross-section of bridge structure is very complex and often
blunt, so obtaining the accurate expression of aerodynamic admittance function of specific
cross-section is difficult at this stage [19]. In the absence of accurate aerodynamic admit-
tance function, the simplified flat aerodynamic admittance function expression proposed
by Liepmann is generally used for flat streamlined sections, whereas the aerodynamic
admittance function can be safely set to one for relatively passive bridge structural sections
without considering the influence of aerodynamic admittance. The aerodynamic effect
of wind on bridge is shown in Figure 5 and the buffeting resistance, buffeting lift, and
buffeting moment per unit length of main girder are expressed as follows:

FH
b,d = ρUB{ H

BCH,d(α)χHuu(t)
+ 1/2[H/B

dCH,d(α)

dα
χHww(t)]} (3)

Fv
b,d = ρUB{CV,d(α)χVuu(t) + +1/2[

dCH,d(α)

dα
+ H/BCH,d(α)]χVww(t)} (4)

FM
b,d = ρUB2[CM,d(α)χVuu(t) + +1/2

dCM,d(α)

dα
χMww(t)

]
(5)

where FH
b,d, Fv

b,d, and FM
b,d are buffeting resistance, buffeting lift, and buffeting moment of

main girder caused by pulsating wind, respectively; u and w are horizontal and vertical
fluctuating wind speed components; d/dα is the derivation of wind attack angle; χHu,
χHw are aerodynamic admittance functions related to buffeting resistance; χVu,χVw are
aerodynamic admittance functions related to buffeting lift; and χMu, χMw are aerodynamic
admittance functions related to buffeting torque.
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Figure 5. Aerodynamic effect of wind on bridge.

The wind load borne by vehicles is usually described by Baker’s expression based on
quasi-steady theory:

FS = 0.5ρU2
r (t)CS(Ψ)A0 (6)

FL = 0.5ρU2
r (t)A0CL(Ψ) (7)

MR = 0.5ρU2
r (t)CR(Ψ)A0hv (8)

where FS, FL, and MR are the lateral force, lifting force, and overturning moment acting on
the center of mass of the car body, respectively; CS(ψ), CL(ψ), and CR(ψ) are the lateral force,
lift, and overturning moment coefficients of the vehicle, respectively, which are obtained by
CFD test; A0 is the windward area of the vehicle; hv is the distance from the center of mass
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of the car body to the road surface; Ur is the relative speed between the vehicle and the
wind; and ψ is the corresponding deflection angle. Assume that the wind with the speed of
U acts vertically on the longitudinal axis of the road, and the vehicle travels at the speed of
Uv. The relative speed and its deflection angle are calculated according to the following
formula, where u(x,t) represents the turbulent wind acting on the vehicle at time t.

Ur =
√
(U + u(x, t))2 + U2

y (9)

ψ = arctan
(
(U + u(x, t))/Uy

)
(10)

2.3. Vehicle–Bridge Interaction and Solution

According to the static and dynamic interaction and displacement coordination among
vehicle subsystem, bridge subsystem and wind, the vibration equation of a vehicle–bridge–
wind coupling system can be established as shown in Equations (11) and (12):

Mc
..

Xc + Cc
.

Xc + KcXc = Fb
c + Fw

c (11)

Mb
..

Xb + Cb
.

Xb + KbXb = Fc
b + Fw

b (12)

where Mc, Cc, and Kc are the mass, damping, and stiffness matrices of the vehicle, respec-
tively; Fb

c is the force of the bridge on the vehicle;Fw
c is the force of the wind on the vehicle;

Mb, Cb, and Kb are the mass, damping, and stiffness matrices of the bridge, respectively;
Fc

b is the force of the vehicle on the bridge;Fw
b is the force of the wind on the bridge; Xc is

the displacement of the vehicle center of mass; and Xb is the displacement at the contact
point of the vehicle axle.

The irregularity of the bridge deck is regarded as a spatial random function z = z(x,y),
and the position and direction of the tire are respectively represented by the position vector
r0C and the unit vector eyR. The geodetic coordinate system is taken as the reference system
(Figure 6b), where r0C is the vector formed by connecting the point C of the tire centroid
with the origin of the geodetic coordinate system, indicating the displacement of the tire
centroid relative to the geodetic coordinate system. The unit vector eyR determines the
direction of the tire plane.
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When the tire is on an uneven road surface, the position of the projection point P
of the tire center of mass on the ground along the tire center plane cannot be directly
calculated. To approximate the position of the contact point, the wheel–ground contact
surface is assumed to be a plane, which is determined by the road conditions where the tire
is located. Figure 6a shows a schematic diagram of this calculation method, taking the tire
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centroid C as the center point and the plane passing through point C and perpendicular
to the tire center plane as the reference plane, a rectangle with a semi-longitudinal length
of ∆x = 0.4× r0 and a semi-transverse length of ∆y = 0.4× b0 is selected, where r0 and
b0 represent the unloaded state. The intersection of the four vertices of the rectangle with
the road surface along the tangent direction line of the tire center plane is the road surface
characteristic point. If the four feature points are not in the same plane, the elevation of the
feature points is automatically adjusted to place them in the same plane. The normal vector
en of the wheel pavement plane determines the Z-axis of the track at this moment, and the
intersection of the tire center plane and the pavement determines the X-axis and Y-axis
of the track at this moment. The midpoint of this intersection is the P-point, hereinafter
referred to as the geometric contact point (Figure 7).
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When solving, the bridge subsystem is assumed to be rigid, and the vehicle motion
and vehicle force time history are obtained by solving the independent vehicle equation.
Then, the wheel force is applied to the bridge, and the bridge deck motion state is obtained
by solving the independent bridge equation. The superposition of the bridge deck motion
time history and bridge deck irregularity is used as a new vehicle system excitation for the
next iteration until the force between the vehicle and the bridge deck converges (Figure 8).
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2.4. Driving Comfort and Safety

Comfort and safety evaluation is based on the vehicle–bridge coupling vibration
theory, which is an evaluation index that meets the human sensory and safety require-
ments. The most widely used comfort evaluation method is the 1/3 frequency doubling
method [20] and the total weighted acceleration method (RMSV) proposed in ISO2631
standard. In recent years, the RMSV method has been widely used in research [21], which
is more comprehensive than the frequency doubling method. The former obtains weighted
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acceleration root mean square value aw by considering multi-directional vibration after
weighting filtering the vehicle acceleration time domain signal. Its calculation formula is as
follows:

aw =

[∫ 80

0.9
W2( f )Ga( f )d f

]0.5

(13)

where W(f ) is the frequency weighting function, and there are different weighting functions
in ISO2631 standard for different vibration directions; Ga( f ) is the power spectral density
function of the acceleration time domain signal.

Judging human comfort by aw value (Table 1), this study uses 0.315 m/s2 as the
comfort limit for subsequent analysis.

Table 1. Weighted acceleration grading table.

Level aw (m/s2) Comments

1 <0.315 Comfortable
2 0.315–0.630 A little uncomfortable
3 0.500–1.000 Less comfortable
4 0.800–1.600 Uncomfortable
5 1.250–2.500 Very uncomfortable
6 >2.000 Extremely uncomfortable

The roll safety factor RSF and sideslip safety factor SSF are often used as evaluation
indicators [22]. The evaluation criteria of vehicle roll accident in the Specification for
Dynamic Performance Evaluation and Test Appraisal of Locomotive and Rolling Stock
(GB/T 5599-2019) are as follows:

RSF = min{
∣∣∣∣∣∑k

i=1(FLi + FRi)

∑k
i=1(FLi − FRi)

∣∣∣∣∣} ≥ 1.2 (14)

where FLi is the axle load of each wheel on the left, and FRi is the axle load of each wheel
on the right.

The sideslip resistance of a vehicle is defined as:

FSR = µs(Fvl + Fvr)− (Fhl + Fhr) (15)

where Fvl and Fvr, respectively, represent the vertical contact forces of the windward wheel
and the leeward wheel of an axle, and Fhl and Fhr, respectively, represent the lateral contact
forces of the windward wheel and the leeward wheel of an axle; µs is the lateral attach
rate between the wheel and the road surface, which can be set to 0.7, 0.5, 0.15, and 0.07
according to the road conditions, representing the four basic road conditions of dry, wet,
snow, and ice, respectively.

When the vehicle has the tendency of lateral sliding, the vehicle is considered to have
already a sideslip safety accident. Therefore, the dimensionless SSF after considering the
safety reserve factor can be defined as:

SSF =
FSR − 1.645σSR

0.2µsGa
≥ 1.0 (16)

where Ga is the gravity of an axle of a vehicle, and generally the axle with light axle weight is
taken; 0.2 is the safety reserve factor; FSR is the average value of vehicle side-slip resistance,
and σSR is the variance of vehicle side-slip resistance.

3. Simulation of Random Traffic Flow Based on Latin Hypercube Sampling

Sampling is a universal means to obtain random samples. For random variables with
specific distribution, the Monte Carlo (MC) sampling method or Latin hypercube sampling
method (LHS) can be used [23]. It is difficult for the random variables generated by the
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MC method to approximate the actual probability distribution accurately when the sample
size is small. In contrast, LHS sampling can effectively reduce the complexity of calculation
by layering the probability and then sampling layer by layer, and its approximation effect
is obviously better than that of the MC method when the sample size is small [24].

Taking one-dimensional LHS sampling as an example (Figure 9), the cumulative
distribution curve is divided into several equal intervals through stratification. Only one
sample is randomly selected in each stratification to form a group of one-dimensional
random variables, which is suitable for single parameter sample sampling. LHS sampling
is a memory-related sampling method, which takes into account the samples that have
been used before, and it has a good approximation effect. It is suitable for the simulation of
random traffic flow with a sample size of 10 digits and 100 digits.
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Figure 9. Schematic diagram of Vera Ding Chao cubic sampling.

Random traffic flow is mainly composed of four parts: the number of vehicles, the
distribution of vehicle types, the distribution of axle load and wheelbase, and the distribu-
tion of vehicle speed and vehicle weight. Traffic volume forecast usually converts motor
vehicles into the equivalent traffic volume of a standard vehicle according to their occupa-
tion of the road when driving on the road for statistical study. Generally, it is converted
into the number of standard cars (pcu). According to the road traffic forecast report, the
fleet with a total number of vehicles of 30 pcu is selected as the total number of sampling
samples. LHS is used to stratify the distribution of vehicle type, axle load wheelbase,
speed, and vehicle weight. Among them, the proportion of vehicle types conforms to the
uniform distribution (Table 2), the distribution of axle load and wheelbase conforms to
the lognormal distribution, and the distribution of vehicle speed and distance conforms
to the normal distribution [25]. The axle load distribution of V1 car generated by Python
language programming is shown in Figure 10, and the typical random fleet pattern in six
lanes is shown in Figure 11.

Table 2. Vehicle distribution table.

Symbol Category Ratio Conversion Coefficient

V1 Car 40.6% 1
V2 Bus 5.8% 2.0
V3 Buggy 13.8% 2.0
V4 Medium truck 10.9% 3.0
V5 Big truck 10.1% 4.0
V6 Trailers 10.2% 4.0
V7 Container truck 8.6% 4.0



Infrastructures 2023, 8, 62 10 of 17

Infrastructures 2023, 8, x FOR PEER REVIEW 11 of 19 
 

Table 2. Vehicle distribution table. 

Symbol Category Ratio Conversion Coefficient 

V1 Car 40.6% 1 

V2 Bus 5.8% 2.0 

V3 Buggy 13.8% 2.0 

V4 Medium truck 10.9% 3.0 

V5 Big truck 10.1% 4.0 

V6 Trailers 10.2% 4.0 

V7 Container truck 8.6% 4.0 

24252627282930313233343536373839
0

1

2

3

4

ve
hi
cl
e 
nu
mb
er
s

 

 

axel load (kN)
 

Figure 10. Axle load distribution diagram of V1 vehicle. 

 

Figure 11. Random traffic flow simulation diagram. 

4. Bridge Driving Safety and Comfort Analysis for Cable-Stayed-Suspension  

Cooperative System 

4.1. Conditions 

Aiming at the cable-stayed suspension bridge in Figure 1, an analysis model is estab-

lished based on the aforementioned wind–vehicle–bridge coupling analysis method to 

study the influence of bridge stiffness change on driving safety and comfort. 

The bridge is a single tower cable-stayed suspension cooperative system bridge with 

a main span of 2 × 638 m, and the main cable span is 2 × 730 m. Each side of the pylon is 

provided with 20 pairs of stay cables and 21 pairs of ordinary slings, in which the stay 

cables are arranged in a harp shape. The longitudinal anchorage spacing between the 

slings and stay cable beams is 16 m, and the crossing section spacing is 8 m, which is 

staggered. The length of the main girder of the single-span stay cable section is 327 m, and 

the length of the main girder of the sling section is 351 m. The cross section of the main 

girder is 26 m wide and 3 m high, and its standard section layout is shown in Figure 12. 

Figure 10. Axle load distribution diagram of V1 vehicle.

Infrastructures 2023, 8, x FOR PEER REVIEW 11 of 19 
 

Table 2. Vehicle distribution table. 

Symbol Category Ratio Conversion Coefficient 

V1 Car 40.6% 1 

V2 Bus 5.8% 2.0 

V3 Buggy 13.8% 2.0 

V4 Medium truck 10.9% 3.0 

V5 Big truck 10.1% 4.0 

V6 Trailers 10.2% 4.0 

V7 Container truck 8.6% 4.0 

24252627282930313233343536373839
0

1

2

3

4

ve
hi
cl
e 
nu
mb
er
s

 

 

axel load (kN)
 

Figure 10. Axle load distribution diagram of V1 vehicle. 

 

Figure 11. Random traffic flow simulation diagram. 

4. Bridge Driving Safety and Comfort Analysis for Cable-Stayed-Suspension  

Cooperative System 

4.1. Conditions 

Aiming at the cable-stayed suspension bridge in Figure 1, an analysis model is estab-

lished based on the aforementioned wind–vehicle–bridge coupling analysis method to 

study the influence of bridge stiffness change on driving safety and comfort. 

The bridge is a single tower cable-stayed suspension cooperative system bridge with 

a main span of 2 × 638 m, and the main cable span is 2 × 730 m. Each side of the pylon is 

provided with 20 pairs of stay cables and 21 pairs of ordinary slings, in which the stay 

cables are arranged in a harp shape. The longitudinal anchorage spacing between the 

slings and stay cable beams is 16 m, and the crossing section spacing is 8 m, which is 

staggered. The length of the main girder of the single-span stay cable section is 327 m, and 

the length of the main girder of the sling section is 351 m. The cross section of the main 

girder is 26 m wide and 3 m high, and its standard section layout is shown in Figure 12. 

Figure 11. Random traffic flow simulation diagram.

4. Bridge Driving Safety and Comfort Analysis for Cable-Stayed-Suspension
Cooperative System
4.1. Conditions

Aiming at the cable-stayed suspension bridge in Figure 1, an analysis model is es-
tablished based on the aforementioned wind–vehicle–bridge coupling analysis method to
study the influence of bridge stiffness change on driving safety and comfort.

The bridge is a single tower cable-stayed suspension cooperative system bridge with
a main span of 2 × 638 m, and the main cable span is 2 × 730 m. Each side of the pylon
is provided with 20 pairs of stay cables and 21 pairs of ordinary slings, in which the stay
cables are arranged in a harp shape. The longitudinal anchorage spacing between the slings
and stay cable beams is 16 m, and the crossing section spacing is 8 m, which is staggered.
The length of the main girder of the single-span stay cable section is 327 m, and the length
of the main girder of the sling section is 351 m. The cross section of the main girder is 26 m
wide and 3 m high, and its standard section layout is shown in Figure 12.
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To facilitate parameter analysis, based on the vertical static deflection span ratio of
1/330 under the load of two-way six lanes in the preliminary design scheme, the vertical
deflection span ratio is adjusted by reducing the elastic modulus of the main girder, main
cable, and stay cable, as shown in Table 3. Considering the driving situation in actual
operation, two kinds of driving conditions, namely, ordinary driving conditions and
extreme driving conditions, are compared under each torsion–span ratio. Ten kinds of
analysis conditions are obtained. Among them, under normal driving conditions, random
traffic loads are arranged on two-way six lanes, with 20 vehicles (30 pcu) in each lane,
of which the proportion of heavy vehicles is 60%, and the maximum speed is 120 km/h.
Under extreme driving conditions, lane loads (static loads) are arranged in five lanes as
simulated traffic jams according to design specifications. Random traffic flow (20 vehicles,
120 km/h) is arranged in the sixth lane for loading to obtain dynamic response. In the
analysis, the bridge deck wind speed is considered as the design wind speed of 25 m/s,
and the pavement grade is Grade B.

Table 3. Stiffness parameters of bridge under extreme working conditions.

Conditions Number Deflection–Span Ratio under Lane Load

1 1/330
2 1/300
3 1/280
4 1/250
5 1/200

Figure 13 shows the time history of vertical displacement in the left span under ordi-
nary driving conditions (six-lane random traffic flow). Table 4 shows the static deflection
and dynamic deflection under the same load. The influence of vehicle–bridge coupling
vibration on deflection is analyzed by examining the vertical static displacement in the
left span corresponding to vehicle load when the vertical displacement is maximum. The
figure shows that the vertical dynamic deflection of the bridge increases gradually with the
decrease of stiffness. When the bridge stiffness drops to 1/200, the vertical response value
increases obviously because the whole bridge softens.
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Figure 13. Time history of vertical displacement in the middle span of left girder under ordinary
driving conditions.

Figure 14 shows the vertical dynamic displacement time history of the left span under
extreme driving conditions (i.e., the static deflection caused by the load of five lanes is
deducted). Table 5 shows the static deflection and dynamic deflection under the same load.
From the head car to the bridge tower, the vertical displacement in the middle of the span
first increases and then decreases to zero level. As the team drives to the right half span, the
middle node of the left span is warped by the right load and presents a periodic vibration
trend. The variation trend of the vertical response of the bridge under various stiffness
conditions is roughly the same as that under ordinary driving conditions.
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Table 4. Comparison table of static and dynamic displacement caused by vehicles under ordinary
driving conditions.

Conditions Number
Maximum Displacement in Left Span (cm)

Vehicle-Induced Static Displacement Coupled Vibration Displacement

1 13.79 15.18
2 17.94 19.63
3 22.87 24.67
4 34.54 37.14
5 67.28 74.27
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Figure 14. Time-history diagram of vertical displacement of left span.

Table 5. Comparison table of vehicle-induced static and dynamic displacement under extreme driving
conditions.

Condition Number
Maximum Displacement in Left Span (cm)

Vehicle-Induced Static Displacement Coupled Vibration Displacement

1 2.7 3.71
2 4.37 4.46
3 5.32 5.50
4 6.35 7.44
5 12.35 14.88

4.2. Vehicle Dynamic Response Analysis

Under normal driving conditions, the vertical acceleration time history of the center
of mass of the vehicle in the most unfavorable driving state (the driving speed is 120 km/h)
is shown in Figure 15. When the vehicle is driving in the pure suspension section, the
acceleration change is not obvious. When the vehicle approaches the transition section of
cable-stayed suspension, the ride comfort of the bridge deck worsens, and the vertical ac-
celeration of the vehicle increases owing to the change of structural stiffness. When driving
to the cable-stayed section, the acceleration changes tend to be gentle, the displacement at
the bridge tower is very small due to the constraint, and the corner at the junction of the
tower and beam is discontinuous under the action of vehicle load. Therefore, the vertical
acceleration of the vehicle here increases obviously. The vertical acceleration trend of
vehicles under each working condition is basically the same. Owing to the large response of
the bridge under 1/200 working condition, the corresponding vehicle acceleration response
is larger than that of other vehicles.
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The vertical acceleration response of vehicles in the most unfavorable situation in
the fleet under extreme working conditions is shown in Figure 16. Owing to the large
deformation of the bridge beam under static and live load, the driving alignment of vehicles
under each working condition is quite different, and its curvature changes faster than that
under ordinary driving conditions. As a result, the acceleration response of vehicles
under extreme working conditions is obviously greater than that under ordinary driving
conditions. When the bridge stiffness decreases, because the suspension cable segment
itself is more flexible, its ability to resist deformation is weaker than that of the cable-
stayed segment when the overall stiffness decreases uniformly. Therefore, the greater the
overall stiffness decreases, the greater the deflection ratio corresponding to vehicle load,
the more obvious the deformation of the suspension cable segment, and the greater the
vertical acceleration response of the corresponding vehicle. When the vehicle travels to the
cable-stayed section, the vertical acceleration response also increases with the decrease of
stiffness, but its increase is weaker than that of the cable-stayed section.
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Compared with ordinary driving conditions, the peak value of vertical acceleration of
the vehicle is smaller under extreme working conditions. At this time, because there is only
one lane under extreme working conditions, the load value is small and the corresponding
dynamic displacement is smaller. The main reason the dynamic response of vehicles under
extreme driving conditions is generally greater than that under ordinary driving conditions
in other sections is that the initial alignment of the bridge is deteriorated owing to the
full load on the driveway under extreme driving conditions. In addition, the main girder
alignment in the sling area and stay cable area is quite different, which increases the deck
irregularity. As the self-weight of random traffic increases the irregularity of the bridge
deck, to reduce the interference of self-weight, the single-lane load in extreme working
conditions is replaced by a V1 vehicle with a self-weight of 2.4 t, so as to explore the
influence of bridge alignment change on the vertical weighted acceleration of the vehicle.
The vertical acceleration time history of vehicles under various working conditions is
obtained by analysis. The weighted acceleration root mean square value is compared with
the extreme working conditions, as shown in Table 6:

Table 6. Root mean square value of vertical acceleration under extreme driving conditions az (m/s2).

Deflection–Span Ratio Single Car Random Traffic Flow

1/330 0.108 0.242
1/300 0.110 0.239
1/280 0.125 0.263
1/250 0.180 0.320
1/200 0.516 0.514

The change of static alignment has an obvious influence on the root mean square value of
vertical acceleration of vehicles. When the deflection is less than 1/250, the bridge alignment
is relatively smooth, and the comfort decreases slightly with the increase of deflection. When
the stiffness decreases to 1/200 corresponding to vehicle load (10.5 kN/m per lane), the linear
deformation of the bridge is serious, and the driving comfort is seriously reduced.

4.3. Evaluation of Driving Safety and Comfort and Limit Value of Bridge Deflection Ratio

According to Formulas (13) to (16), the comfort and safety indexes of the vehicle are
obtained after the vehicle response processing, as shown in Tables 7 and 8. Under normal
driving conditions, the driving safety of vehicles meets the requirements, and the comfort
is more sensitive to the change of vertical stiffness than safety. When the vertical deflection
ratio is controlled below 1/250, the driving comfort still meets the requirements of the
specification. When the vertical deflection ratio reaches 1/200, the vehicle still has a high
safety reserve, but its driving comfort exceeds the limit.

Table 7. Comfort and safety index of vehicles under ordinary driving conditions.

Torsion Span Ratio aw (m/s2) RSF SSF

1/330 0.188 2.688 2.666
1/300 0.192 2.681 2.663
1/280 0.236 2.677 2.652
1/250 0.291 2.584 2.637
1/200 0.406 2.336 2.544

Compared with ordinary driving conditions, the driving safety and comfort of vehicles
will decline under extreme driving conditions, but the safety index is still in a reasonable range.
When the vertical torsion span ratio is greater than 1/280, the root mean square value aw of
vehicle weighted acceleration reaches 0.315, which no longer meets the comfort requirements.
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Table 8. Vehicle comfort and safety index under extreme driving conditions.

Torsion Span Ratio aw (m/s2) RSF SSF

1/330 0.278 2.295 2.477
1/300 0.293 2.245 2.455
1/280 0.315 2.231 2.446
1/250 0.41 2.184 2.434
1/200 0.639 2.158 2.247

As can be seen from the above, for the cable-stayed cooperative system bridge studied
here, the vehicle driving safety index is easier to meet under each deflection–span ratio,
and the driving comfort becomes the limiting factor of the deflection–span ratio. The
comparison of comfort indexes under various working conditions is shown in Figure 17.
From the point of view of driving comfort, the bridge deflection ratio must be controlled to
not be greater than 1/280.
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The distribution of vertical stiffness index of the bridge under construction and com-
pleted cable-stayed cooperative system is shown in Figure 18, the blue signs represent
the values. The figure shows that the vertical deflection span ratio of the cable-stayed
cooperative system in the existing projects is between 1/619 and 1/402 [1,26,27], mostly for
highway-railway dual-purpose bridges.
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Combining the requirements of driving safety and comfort and the existing engineer-
ing practice experience and considering a certain safety reserve, the limit value of the
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deflection–span ratio of the cable-stayed-suspension cooperative system bridge is sug-
gested to be 1/300. The designed vertical deflection–span ratio of the bridge should be
1/330 to meet the requirements of driving safety and comfort.

5. Conclusions

1. The evaluation of driving comfort and safety of bridges based on vehicle–bridge
coupling vibration theory can be used as a reference method for determining bridge stiffness
of long-span flexible bridges. Using random traffic simulation and a more accurate tire
model is beneficial to improve the accuracy of road vehicle–bridge coupling vibration
analysis.

2. The vertical stiffness difference between the suspension cable area and the stay cable
area of the cable-stayed cooperative system bridge is obvious. The vertical acceleration
response increases obviously when the vehicle travels to the transition section of the stay
cable. The suspension cable section is more flexible than the stay cable section and more
sensitive to the change of overall stiffness.

3. The bridge deflection ratio has a significant impact on vehicle ride comfort. The
greater the deflection ratio, the worse the ride comfort index. From the point of view of
ride comfort, the vertical deflection ratio of the single-tower space cable-stayed suspension
cable cooperative system studied here is suggested to not be greater than 1/300.

4. On the basis of this study, the numerical analysis method proposed in this paper can
be used to study the mechanical behavior of bridges under different loads and its influence
on the driving performance in the future. A scaled model can be established for testing,
providing a theoretical basis for the design of bridges with a cable-stayed-suspension
cooperative system.
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