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Abstract: Structural health monitoring (SHM) is a non-destructive testing method that supports
the condition assessment and lifetime estimation of civil infrastructure. Sensor faults may result in
the loss of valuable data and erroneous structural condition assessments and lifetime estimations,
in the worst case with structural damage remaining undetected. As a result, the concepts of fault
diagnosis (FD) have been increasingly adopted by the SHM community. However, most FD concepts
for SHM consider only single-fault occurrence, which may oversimplify actual fault occurrences
in real-world SHM systems. This paper presents an adaptive FD approach for SHM systems that
addresses simultaneous faults occurring in multiple sensors. The adaptive FD approach encompasses
fault detection, isolation, and accommodation, and it builds upon analytical redundancy, which uses
correlated data from multiple sensors of an SHM system. Specifically, faults are detected using the
predictive capabilities of artificial neural network (ANN) models that leverage correlations within
sensor data. Upon defining time instances of fault occurrences in the sensor data, faults are isolated
by analyzing the moving average of individual sensor data around the time instances. For fault
accommodation, the ANN models are adapted by removing faulty sensors and by using sensor data
prior to the occurrence of faults to produce virtual outputs that substitute the faulty sensor data. The
proposed adaptive FD approach is validated via two tests using sensor data recorded by an SHM
system installed on a railway bridge. The results demonstrate that the proposed approach is capable
of ensuring the accuracy, reliability, and performance of real-world SHM systems, in which faults in
multiple sensors occur simultaneously.

Keywords: structural health monitoring (SHM); fault diagnosis (FD); multiple sensor faults;
simultaneous sensor faults; artificial neural network (ANN); adaptive fault diagnosis

1. Introduction

Structural health monitoring (SHM) is a non-destructive evaluation technique that
uses monitoring data recorded by sensors (“sensor data”), aiming to assess the condition
and to estimate the lifetime of civil infrastructure [1]. SHM is primarily motivated by
the need for safety and cost efficiency in structural maintenance, since SHM systems
allow for reduced maintenance costs and provide continuous information on structural
conditions [2]. The main target group of SHM encompasses aging infrastructure, which,
due to poor maintenance, has led to disasters, such as the collapse of the Morandi bridge
in Genoa, Italy [3]. SHM can help prevent the complete failure of civil infrastructure by
assisting maintenance activities through filling the gaps of periodic visual inspections.
Therefore, several research endeavors are underway to integrate SHM systems into “new”
approaches related to Industry 4.0 and the Internet of Things, in an attempt to bring SHM
systems into engineering practice [4], including new, user-friendly modeling and design
concepts [5].

However, the reliability and performance of SHM systems, besides the proper syn-
chronization of sensors [6], depend on the accurate operation of the sensing equipment.
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Sensors in monitoring systems may experience faults, compromising the reliability and
performance of SHM systems. Sensor faults may be caused by hardware or software
malfunctions, power outages, environmental impacts, or signal interferences [7]. The most
common sensor faults include bias, complete failure, complete failure with noise, gain,
drift, and outliers [8]. If undetected, sensor faults may compromise the accuracy of the
sensing equipment, resulting in the low reliability and poor performance of SHM systems.

Fault diagnosis (FD) approaches for monitoring systems, including SHM systems,
have been proposed to detect, isolate, identify, and accommodate sensor faults [9]. FD
for SHM systems has been based on either physical or analytical redundancy. Physical
redundancy requires installing several sensors on civil infrastructure. Then, based on
majority-voting logic, outputs of redundant sensors decide whether a sensor is faulty or
non-faulty [10]. The high cost, power consumption, and maintenance required by physical
redundancy approaches for FD have been the primary motivations for using analytical
redundancy [11]. Analytical redundancy uses mathematical models to describe a system
and takes advantage of the redundant information inherent in the sensor data. In analytical
redundancy approaches, fault detection relies on residuals between sensor data and “virtual
outputs” thereof, estimated by mathematical models [9]. The residuals are evaluated using
threshold logic or hypothesis testing for fault detection [12].

A special class of mathematical model used for FD falls into the category of artificial
intelligence (AI), motivated by the complex and, frequently, nonlinear relationships within
sensor data. In this context, neural networks have been extensively used in FD for SHM.
In [13], multilayer neural networks were used to detect faults in the mechanical components
of wind turbines. Similarly, neural networks have also been used to evaluate and to assess
SHM systems. In [11], artificial neural network (ANN) models were embedded into wireless
sensor nodes to autonomously detect and isolate sensor faults in a decentralized manner.
In [14], the approach proposed in [11] was extended from the time-domain to the frequency-
domain for FD. Furthermore, a combination of ANN models and convolutional neural
network models was reported in [15], in which ANN models were used for sensor fault
detection, isolation, and accommodation, while convolutional neural networks performed
fault identification. However, the previously mentioned analytical redundancy approaches
for SHM have been limited to the diagnosis of sensor faults occurring in individual sensors
at different times, thus limiting their application to real-world SHM systems, in which
sensor faults in multiple sensors may occur at the same time (simultaneous sensor faults).

Simultaneous sensor faults have rarely been considered within the scope of SHM
systems for civil infrastructure, but have been a matter of interest in other disciplines and
applications, as will be presented in the following two paragraphs. In the chemical industry,
for example, a state-observer design has been used to exploit analytical redundancy in a
nonlinear process system, specifically a chemical reactor, to differentiate between and isolate
simultaneous sensor and actuator faults [16]. Moreover, in [17], simultaneous sensor and
actuator faults were addressed using a descriptor fuzzy sliding-model observer. In [18], a
review of data-driven approaches for FD in chemical processes was carried out. The authors
of the review pointed out that most of the data-driven approaches are application-specific,
and simultaneous FD is still a challenge. In addition, in the context of simultaneous sensor
and actuator faults, descriptor observers for control systems, tested on a simulation example
have been suggested [19]. Sensors and actuator faults were also addressed in [20], focusing
on signals in a finite-frequency domain, and simultaneous actuator faults of quadrotor
unmanned aerial vehicles have been detected using adaptive fuzzy state estimators and
an integral terminal sliding-model control [21]. Furthermore, simultaneous sensor and
actuator faults for fixed-wing unmanned aerial vehicles were investigated using recurrent
wavelet fuzzy neural networks and a fractional-order sliding-model control in [22], and a
backstepping approach in [23]. In [24], simultaneous actuator and sensor faults as well as
simultaneous faults in multiple sensors were detected and identified in a linear simulation
of unmanned aerial vehicles, using a Kalman filter approach.
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An analytical redundancy approach was proposed in [25] to detect and isolate faults of
multiple sensors in heating, ventilation, and air conditioning systems, for which robustness
and scalability were also have been investigated [26]. In [25], fault detection was realized
by an adaptive threshold, based on differential-algebraic estimators and a reasoning-based
logic for fault isolation. The approach has been extended to detect and isolate faults of
multiple heterogeneous sensors of marine fuel engines [27]. Furthermore, the approach
has been extended to consider multiple sequential or simultaneous sensor faults for a
network of interconnected cyber-physical systems and large-scale interconnected nonlinear
systems [28,29]. Principal component analysis (PCA) has been proposed for the detection,
isolation, and accommodation of faults in multifunctional sensors, i.e., sensors that measure
more than one parameter and are more prone to fail simultaneously [30]. The authors
in [31] suggested adding artificial neural networks to PCA to detect multiple faults in
the rotors and stators of industrial motors. A data-driven approach based on residuals
for industrial controllers was investigated in [32] to accommodate multiple simultaneous
sensor faults.

In summary, despite the large body of research conducted on FD in SHM in civil
infrastructure, most approaches address sensor faults occurring in individual sensors [33],
in which over a period of time only one sensor is faulty [7], and do not consider sensor faults
occurring in multiple sensors simultaneously. Research in other disciplines, such as the
chemical industry, and aviation and flight-control systems, have addressed simultaneous
sensor faults, but studies addressing the monitoring of civil infrastructure have been scarce.
Furthermore, FD studies for simultaneous sensor faults in real-world SHM systems, where
noise, external effects, and different loading conditions may affect the performance of FD
approaches, have also been limited. In addition, to the knowledge of the authors, FD
approaches adapting to the new state of the SHM systems after detecting multiple sensor
faults have not been proposed.

To extend FD in SHM towards simultaneous sensor faults in multiple sensors, this
paper presents an adaptive FD approach based on analytical redundancy (AFDAR). The
AFDAR approach builds upon previous work, in which artificial neural networks and
signal processing was proposed for FD in SHM systems [11,15]. Therein, the sensor data
of individual sensors was estimated using artificial neural networks, to which correlated
sensor data from other, typically neighboring sensors were used as input data, addressing
single-fault occurrence under the premise that the input data to each ANN is non-faulty.
However, as multiple sensors in real-world SHM systems may exhibit faults simultaneously,
ANN models will use data from faulty sensors as input data and, thus, contaminate the
predictions. By contrast, the AFDAR approach proposed in this study combines ANN
models with moving averages of individual sensor data to detect, isolate, and accommodate
sensor faults in multiple sensors. Fault identification is not included in this work because
it is independent from single-fault occurrence or multiple-fault occurrence and has been
effectively addressed in previous work [15].

The remainder of the paper is structured as follows: Section 2 introduces the method-
ology of the AFDAR approach. Next, the implementation of the AFDAR approach is
described in Section 3, including an algorithmic representation. In Section 4, two valida-
tion tests, using artificial and real-world faults, are performed with sensor data recorded
from a SHM system installed on a railway bridge. The results of the validation tests are
presented and discussed in Section 5. Finally, the work presented herein is summarized
and an outlook on future work as well as potential improvements in the AFDAR approach
are suggested.
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2. Methodology of the AFDAR Approach

This section introduces the methodology of the AFDAR approach for fault detection,
isolation, and accommodation. In particular, the ANN models and the moving average
(MA) concept are briefly discussed.

The motivation behind using ANN models for fault detection lies in the capabilities of
ANN models to combine complex relationships between sensor data to make predictions.
Artificial neural networks are a class of algorithms that use parallel computational princi-
ples, inspired by biological nervous systems. The scope of artificial neural networks covers
tasks that are difficult to solve with deterministic algorithms or classical physics-based
models, for example nonlinear problems, such as the diagnosis of sensor faults [11]. To
present the methodology of the AFDAR approach, the topology of an exemplary ANN
model is shown in Figure 1. In general, each ANN model has an input layer, one or several
hidden layers, and an output layer. The input layer encompasses the input neurons, to
which input data are fed. Since the purpose of each ANN model is to predict the sensor
data of a single sensor using correlated data from neighboring sensors (hereinafter termed
“correlated sensors”), the sensor data from the correlated sensors are used as input data.
Each hidden layer ` is formed by neurons that receive weighted combinations w of the
outputs of neurons (“activations”) belonging to the preceding layer `-1, to which the neu-
rons of layer ` are connected via arrows, termed “synapses”. Each activation of layer ` is
computed through an “activation function”, which is applied when the input of a neuron
exceeds a threshold. The last hidden layer forwards its activations to the output layer,
which yields the predictions of the ANN model, i.e., in this study, the virtual outputs of a
single sensor.
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The AFDAR approach consists of four steps: (i) initialization, (ii) fault detection,
(iii) fault isolation, and (iv) fault accommodation. The initialization step starts with investi-
gating the correlations inherent in data recorded by sensors in the SHM system to find a set
of correlated sensors. Thereafter, data from the set of correlated sensors are prepared to
train the ANN models. In this context, and to avoid overfitting of ANN models, the data
are divided into training data (70%), validation data (20%), and testing data (10%). During
the training phase, the training data are fed into the ANN model, in which the model
“learns” from existing relationships between known input data (sensor data from correlated
sensors) and known output data (sensor data from the single sensor). Meanwhile, the
validation data are used to evaluate the model performance during the training phase and
tune the weights of connections between neurons in the ANN model. Upon completing
the training phase of the ANN models, the testing data are used to evaluate the prediction
capability of the ANN model with a different set of known input–output data, independent
from the set used in the training phase.

The virtual outputs are compared with the sensor data from the single sensor, and if the
residuals of the comparison lie below the fault detection threshold, the training is considered
successful. Once the training has been successfully finished, fault detection is performed
in the second step by feeding new input data into the input layers of the ANN models
and producing new virtual outputs. The occurrence of faults is declared if the difference
between the virtual outputs and the sensor data exceeds the fault detection threshold.

Fault isolation follows fault detection, i.e., the declaration of the occurrence of sensor
faults as a result of the virtual outputs produced by the ANN models. A fault time stamp
is utilized to specify a time window with length N, for which the moving average values ui
of p data points uij (j = 1, . . . , p, p < N) are computed for sensor i (Equation (1)).

ui =
1
p

p

∑
j=1

uij (1)

Gradual or abrupt changes in the ui values are indicative of faults. It should be noted
that the reliability of the MA in isolating faults can only be ensured once the faults have
been detected by the ANN models, and the corresponding fault time stamp has been
established. In other words, bypassing the fault detection step and simply attempting
to track changes in MA values of sensor data from individual sensors across the entire
time period of monitoring may result in “false positives” because these changes may be
attributed to fluctuations in the sensor data induced by variability in loading and/or
environmental conditions affecting the structure being monitored by the SHM system.

Fault accommodation, the last step of the AFDAR approach, relies on the ability of the
ANN models to adapt to the current state of the SHM system. As a result, the knowledge
transferred from the fault isolation step is necessary for removing faulty sensors from the
input layers of the ANN models to avoid contaminating the virtual outputs. Retraining the
ANN models is accomplished by repeating the training phase, described previously, with
sensor data prior to the fault time stamp. The implementation of the AFDAR approach is
presented in the next section.

3. Implementation of the AFDAR Approach

The implementation of the proposed AFDAR approach in an SHM system is described
in this section, referring to the four steps introduced above. A flowchart depicting the work-
flow of the AFDAR approach is shown in Figure 2. In what follows, the implementation of
the four steps is briefly discussed.
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Figure 2. Flowchart of the AFDAR approach.

1. Initialization:

a. To identify correlated sensors, data recorded by the sensors in the SHM system
undergo a correlation analysis. The result of the correlation analysis determines
the number of correlated sensors k. Then, data recorded by correlated sensors
f 1→k(t) is “cleaned”, i.e., if sensor data from an individual sensor are missing
at a specific time window, the same time window is neglected in correlated
sensors.

b. The sensor data to be used for training the ANN models are normalized to
avoid extremities in activations that would hinder the training process, using
a minimum–maximum normalization, depicted in Equation (2), in which x
denotes an arbitrary measurement in the sensor data, xmin and xmax are the
minimum and maximum measurements in the sensor data, respectively, and
xnormalized is the normalized value. The same normalization is applied to newly
recorded sensor data that are fed to the ANN models after training.

xnormalized =
x− xmin

xmax − xmin
(2)

c. One ANN model Mi for each correlated sensor i (i = 1, . . . , k) is designed and
trained using sensor data from the SHM system. During the training of Mi,
sensor data from the correlated sensors (1, 2, . . . , i – 1, i + 1, . . . , k) are used
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as input data, and sensor data fi(t) from the sensor i are used as output data.
As a result of the training, model Mi estimates the virtual outputs of sensor i,
denoted by f̂i(t). The training phase of each ANN model involves selecting
the ANN architecture, in terms of the number of hidden layers and number
of neurons per hidden layer. An acceptable ANN architecture is based on the
prediction accuracy of the model Mi lying below the fault detection threshold
γ, determined by the root mean squared error (RMSE) value ε between the
virtual outputs f̂i(t) and the sensor data fi(t), as described in Equation (3).
Upon completing the training of the ANN models, the models are deployed
on a central computer of the SHM system to automatically detect, isolate, and
accommodate sensor faults.

ε =

√
1
n

n

∑
i=1

[
f̂i(t)− fi(t)

]2
(3)

2. Fault detection:

In this step, newly recorded sensor data are fed into all ANN models. In the event of
faults occurring in r sensors (1 < r < k), the residuals between the actual sensor data and the
virtual outputs in models Mn (n = 2, . . . , r) are expected to exceed γ, which, on the one hand,
issues a fault detection alert only for the r sensors. The time to marking the violation of the
fault detection threshold γ serves as the fault time stamp. On the other hand, the (faulty)
sensor data fn(t) are also used as inputs to the s models Mv (v = 1, . . . , s, r + s = k) of the
unfaulty sensors, which results in contaminating the virtual outputs of the Mv models and
in yielding residual values that also exceed γ. Evidently, despite the design and training of
ANN models dedicated for each correlated sensor, fault isolation requires further analysis
of the sensor data on an individual sensor level. However, conducting the analysis on an
individual sensor level requires the fault time stamp to, which represents the knowledge
transferred to the next step.

3. Fault isolation:

a. For fault isolation, the time window for the MA is defined around the fault time
stamp to. The time window should have an adequate length N before the fault
time stamp (to − N), to ensure the reliable tracking of the moving average.

b. Equation (1) is applied to compute the MA across the entire length of the time
window with a step of p data points of sensor i. Discrepancies between MA
values ui and the fault isolation threshold δ from time to forward indicate the
faulty sensor data of a sensor i.

4. Fault accommodation:
5. Once the fault isolation has been completed and the r faulty sensors have been

specified, the ANN models adapt to the new conditions of the SHM system as follows:

a. Adapting the ANN models essentially entails removing sensor data of the r
correlated sensors that have been diagnosed as faulty from the ANN input
layers of all models. As a result, the architectures of the ANN models are
modified, and retraining the ANN models is necessary to produce virtual
outputs for the faulty sensors.

b. Retraining is achieved using sensor data prior to time to. Upon completing
the retraining, the virtual outputs of the Mn (n = 2, . . . , r) models are used as
substitutes for the faulty sensor data, thus accommodating the sensor faults.

The threshold γ is defined based on the maximum RMSE value (εmax) obtained during
the training of the ANN models. The reasoning behind adopting the εmax value as threshold,
instead, e.g., from the εmin of the training, is to grant each ANN model a somewhat
conservative character, avoiding “false negative” outcomes in the fault detection step, i.e.,
neglecting potential faults that would result in RMSE values marginally higher than εmin.
Furthermore, the fault isolation threshold δ is defined based on the accuracy of the sensors.
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Therefore, both thresholds γ and δ are case-specifically defined according to the application
area. The validation of the AFDAR approach, using sensor data from a real-world SHM
system is presented in the next section.

4. Validation of the AFDAR Approach

In this section, the AFDAR approach is validated via two tests using sensor data from
a real-world SHM system installed on a railway bridge. In the first validation test, sensor
faults were artificially injected into a clean dataset recorded by the SHM system. In the
second validation test, the AFDAR approach was applied to a new dataset recorded by the
SHM system over one year to diagnose real-world sensor faults. As a result, the proposed
AFDAR approach was validated, ensuring the accuracy, reliability, and performance of
real-world SHM systems in which faults in multiple sensors may occur simultaneously.

4.1. Description of the Railway Bridge and of the SHM System

The validation tests were conducted on a composite double-track railway bridge,
located in Germany. The bridge consists of two parallel steel truss girders that support a
45 cm thick reinforced concrete (RC) slab. The bridge comprises 15 spans, each 58 m in
length except for the edge spans, which are 57 m in length, and has a total length of 868 m.
The deck width is 14.1 m, and the distance between the centroids of the steel truss girders
is 6.2 m, as shown in the cross section of an inner span, illustrated in Figure 3.
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A SHM system was installed on the bridge consisting of temperature sensors, displace-
ment transducers, potentiometers, and strain gauges. In general, sensor faults have the same
mechanisms and nature, regardless of the sensor type. In other words, deviations in sensor
data from strain gauges, caused by drift, gain, bias or complete failure, follow the same
patterns as deviations in sensor data from temperature sensors. As a result, for the sake of
brevity and simplicity in the validation test, the sensor data from 10 temperature sensors were
used, which were embedded in the RC slab in the positions depicted in Figure 3 (S1, . . . , S10).
The temperature sensors were of type Pt100, measuring at a range from−35 ◦C to 105 ◦C with
a sensitivity of ±0.5 ◦C. The sensor data recorded by the temperature sensors was transferred
to a central computer, where it was processed and stored.

4.2. Description of the Validation Test

The temperature measurements used for validation were recorded over almost five
years with a sampling rate of 1.7 mHz, i.e., one temperature measurement was recorded
every 10 min, with a total of 256,000 measurements recorded by each sensor. In the
initialization step, which is common for both validation tests, correlations between the
temperature measurements recorded over a period of two years were investigated via
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correlation analysis. A strong positive correlation was unveiled by the Pearson correlation
coefficient among all 10 temperature sensors belonging to the SHM system; hence, the
number of correlated sensors was set to k = 10. The lowest correlation coefficient was 0.994
between sensors S2 and S5. Next, temperature measurements from the correlated sensors
in the SHM system were cleaned and normalized to train the ANN models.

A total of 10 ANN models, equal to the number of correlated sensors (k = 10), were
trained. Each model predicted the virtual outputs of one sensor, using temperature mea-
surements from the other nine correlated sensors in the SHM system as input data. As a
result, each ANN model had nine input neurons and one output neuron; the number of hid-
den layers and neurons per hidden layer was determined with different ANN architectures.
Before training the ANN models for FD, the temperature measurements were split into
training and testing sets. An ANN with a 9-32-64-256-256-1 architecture was determined
for all ANN models, based on the lowest RMSE values ε, which lay between 0.09 and
0.15, with a total training time of approximately 680 s for each ANN model. The fault
detection threshold was set to γ = 0.15, based upon engineering judgment. Exemplarily,
Figure 4 illustrates the architecture of the ANN model M1, predicting the virtual outputs
f̂1(t) for sensor S1 using temperature measurements from correlated sensors f 2→10(t) as
input data. With the training of the 10 ANN models, the initialization phase was completed,
and the remaining steps of the AFDAR approach, i.e., fault detection, fault isolation and fault
accommodation, were executed separately for each validation test.
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Figure 4. Architecture of the ANN model for sensor 1.

In the first validation test, faults were artificially injected into a clean dataset. First, the
dataset was manually inspected to confirm a clean and fault-free dataset, in which artificial
faults could be injected. Then, under “controlled conditions”, i.e., with prior knowledge of



Infrastructures 2023, 8, 39 10 of 17

the existence of faults, faults were artificially injected into the non-faulty set of temperature
measurements to evaluate the ability of the proposed AFDAR approach. The injected
faults included complete failure, complete failure with noise, outliers, drift, bias, and
gain. Exemplary visual representations of the artificially injected faults are depicted in
Figure 5. A total of 1717 faulty temperature measurements were injected simultaneously in
multiple sensors.
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In the second validation test, the AFDAR approach was applied to new temperature
measurements recorded by the SHM system. Unlike the first validation test, where faults
were injected under controlled conditions, no prior knowledge was available about the
correct or incorrect operation of the sensors that record the data in this case. Therefore,
when faults were detected in the SHM data, the data from the faulty sensor was visualized
side-by-side with the data from the correlated sensors. The reason for visualizing the data
was to perceive deviations between the faulty sensors detected by the AFDAR approach
and the correlated sensors. The results of the validation tests are presented and discussed
in the next section.

5. Results and Discussion

In this section, the results of the AFDAR approach with faults artificially injected into
the temperature measurements are shown, followed by the results of applying the AFDAR
approach to a dataset that is newly recorded by the SHM system and contains real-world
sensor faults.

5.1. Artificially Injected Faults

The results of applying the AFDAR approach on the temperature measurements
recorded by the real-world SHM system with the artificially injected faults are shown in
Table 1, expressed by the number of detected faults and the fault detection accuracy. The
results show that 95.9% of the artificially injected faults are detected.
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Table 1. Fault detection results of artificially injected faults.

Fault Type Faulty Sensors Time Window (min) Number of Faults Number of Faults Detected Fault Detection Accuracy

Complete failure S1 + S2 101–200 200 200 100%
Complete failure (noise) S2 + S3 201–300 200 200 100%

Outliers + Drift S3 + S4 301–400 110 92 83.6%
Drift + Complete failure S4 + S5 401–500 200 191 95.5%

Bias S5 + S6 501–600 200 200 100%
Gain S6 + S7 601–700 200 200 100%

Complete failure + Outliers S7 + S8 701–800 107 107 100%
Complete failure (noise) + Drift S9 + S10 801–900 200 169 84.5%

Bias + Gain + Drift S3 + S5 + S7 901–1000 300 288 96%

Total - - 1717 1647 95.9%

To describe the results of fault detection, isolation, and accommodation, the first
row of Table 1, which addresses the simultaneous complete failure of sensors S1 and S2,
was analyzed in more detail. Fault detection was positive when residuals between the
temperature measurements of sensors S1 and S2 and the virtual outputs of models M1 and
M2 exceeded the fault detection threshold of γ = 0.15. Next, a corresponding fault time
stamp to = 101 min was recorded and transferred to the following AFDAR step, i.e., fault
isolation, to isolate the faulty sensors. A time window with length of N = 25 min was utilized
prior to the fault time stamp of to = 101 min, for which the MA was calculated individually
for each sensor in the range of the correlated sensors (k = 10). At this point, it was still
unknown which sensors were faulty. Then, if the residuals between the MA of each sensor
and the recorded temperature measurement from to = 101 min onward exceeded the fault
isolation threshold δ, the sensor was isolated. The value of the fault isolation threshold (δ)
was set to the accuracy of the temperature sensors ± 0.5 ◦C. The MA value for the sensors
S1 and S2 was 6.2 ◦C and 5.6 ◦C, respectively; however, no temperature measurements
were recorded from to = 101 min onward. As a result, both sensors S1 and S2 were isolated.

In the final step, fault accommodation, temperature measurements recorded by the faulty
sensors S1 and S2, f 1(to ≥ 101) and f 2(to ≥ 101), could not be replaced with the virtual
outputs f̂1(to ≥ 101) and f̂2(to ≥ 101), respectively, because temperature measurements
recorded by sensor S1 f 1(to ≥ 101) were used as an input for model M2, which would result
in the contamination of the virtual output f̂2(to ≥ 101), and vice versa. Consequently, both
models M1 and M2 were adapted to this simultaneous fault by modifying the architecture
of the ANN models M1 and M2. Thus, temperature measurements from S1 and S2 were
shifted from the ANN input layer of models M1 and M2 to the output layer, and data
prior to to = 101 min was used to train the adapted model M1,2. Figure 6 illustrates the
architecture of the adapted ANN model, M1,2, predicting the virtual outputs f̂1(t) and f̂2(t)
for both sensors, S1 and S2.

Representing a case with more than two simultaneous faults, the fault detection step
was activated in the time window 901–1000 min after residuals between the temperature
measurements of sensors S3, S5, and S7 and the virtual outputs of the models M3, M5, and
M7 exceeded the fault detection threshold of γ = 0.15. A fault time stamp of to = 901 min
was recorded and transferred to the fault isolation step. Upon isolating the three faulty
sensors, models M3, M5, and M7 were adapted to the three simultaneous faults in the fault
accommodation step, and data prior to to = 901 min was used to train the adapted model
M3,5,7, predicting virtual outputs f̂3(t), f̂5(t), and f̂7(t) for sensors, S3, S5, and S7.

In Figure 7, a visual representation of the temperature measurements and the arti-
ficially injected faults are presented in Figure 7. Furthermore, in Figure 7, the results of
applying the AFDAR approach are presented. As can be seen from Figure 7, the AFDAR
approach has successfully achieved FD for sensor faults occurring simultaneously in mul-
tiple sensors of the SHM system. The continuous blue line represents the temperature
measurements obtained by the sensors in the SHM system with the artificially injected
sensor faults, the dashed green line shows the virtual outputs of the ANN models, and the
dotted black lines represent the fault detection thresholds.
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5.2. Real-World Sensor Faults

The results of applying the AFDAR approach with temperature measurements newly
recorded by the SHM system are presented herein. The temperature measurements used
in this validation test correspond to a period of one year; specifically, 52,560 temperature
measurements were recorded by each sensor. Table 2 introduces the number of faults
diagnosed by the AFDAR approach in the newly recorded data.

Table 2. Real-world sensor faults detected by the AFDAR approach.

Sensor S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Total

Number of faults 0 18 274 0 1 0 0 4339 0 0 4632

As shown in Table 2, the AFDAR approach has diagnosed 4632 faults in the new
data recorded over one year. To ensure that the proposed AFDAR approach correctly
detected real-world sensor faults, and since data were recorded by the same type of sensors
(temperature sensors), the data recorded by all temperature sensors were visualized side-
by-side. By visualizing and comparing the data, deviations in the faulty sensor data can be
observed. Figure 8 shows the data recorded by the correlated sensors in the SHM system. In
the figure, the continuous red line represents the data recorded by sensor S3, the continuous
green line represents data recorded by sensor S8, and the dotted lines show data recorded
by the correlated sensors in the SHM system.
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SHM system.

As depicted in Figure 8, from December 5, data recorded by sensor S8, represented
with the green continuous line, started deviating from the data recorded by the other
sensors. The deviation in the data recorded by sensor S8 may be attributed to a drift
occurring in the sensor. Furthermore, in the figure, between December 19 and December
20, no data were recorded by sensor S3, which may be attributed to a complete failure of
the sensor.

The faults occurring simultaneously in sensors S3 and S8 were detected by the AF-
DAR approach, as the recorded temperature measurements exceeded the fault detection
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threshold, as shown in Figure 9. The figure shows data recorded by sensors S3 (top, contin-
uous red line) and S8 (bottom, continuous green line). The dashed green line shows the
virtual outputs of the ANN models, and the dotted black lines represent the fault detection
thresholds. It should be noted that a total of 274 simultaneous faults occurred in sensors
S3 and S8 between December 19 and December 20; however, the focus was drawn only
on simultaneous faults that occurred in the aforementioned period, which fall within the
scope of this paper.
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Figure 9. Comparison of temperature measurements and virtual outputs with the fault threshold.

To describe the results of the fault detection, isolation, and accommodation for simul-
taneous real-world sensor faults, sensors S3 and S8 between December 19 and December
20 were analyzed in more detail. Similar to the previous validation test, fault detection was
performed when residuals between the recorded temperature measurements from sensors
S3 and S8, and the virtual outputs of models M3 and M8, exceeded the fault detection
threshold of γ = 0.15. Then, fault isolation was conducted using the fault time stamp to
of simultaneous fault occurrence in both sensors S3 and S8, which was determined at
to = 01:20, on December 19. First, the fault isolation threshold was set to the accuracy of
the temperature sensors ± 0.5 [◦C]. Then, observing that the residuals between the MA
values of sensors S3 and S8 and the respective temperature measurements at to exceeded
the fault isolation threshold δ, the faulty sensors were isolated. Finally, fault accommodation
was performed: Since both sensors S3 and S8 were faulty, models M3 and M8 were adapted
by modifying the architecture of the ANN models. The ANN architecture was modified by
shifting sensors S3 and S8 from the input layer to the output layer, and data prior to to were
used to train the adapted ANN model M3,8. Figure 10 illustrates the architecture of the
adapted ANN model M3,8, predicting the virtual outputs f̂3(t) and f̂8(t) for both sensors
S3 and S8.
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6. Summary and Conclusions

Sensor fault diagnosis concepts have been increasingly adopted by the SHM com-
munity because sensor faults may significantly disrupt monitoring strategies. Contrary
to sophisticated FD approaches in several disciplines addressing complex scenarios with
multiple sensor faults, FD approaches for SHM have typically considered single-fault
occurrence, which may underestimate the risks posed by sensor faults in real-world SHM
systems. To extend FD to SHM by covering the occurrence of simultaneous sensor faults
in multiple sensors, this paper has presented the AFDAR approach, an adaptive FD ap-
proach for simultaneous sensor faults in SHM systems, based on analytical redundancy.
The AFDAR approach combines ANN models with moving averages of individual sensor
data (i) to detect, (ii) to isolate, and (iii) to accommodate sensor faults in multiple sen-
sors. Fault identification, commonly regarded as another step within fault diagnosis, has
not been included within the scope of the AFDAR approach, because the identification
of faults is independent from single-fault occurrence or multiple-fault occurrence and
has been effectively addressed in previous work. Fault detection is achieved with ANN
models, which predict virtual outputs for each sensor of an SHM system, on the basis of
comparison between the virtual outputs and actual measurements. Then, the faults are
isolated by comparing the moving average of the sensor data around the time instance
of fault detection, individually for each sensor, with the fault isolation threshold. Finally,
fault accommodation is conducted by replacing faulty data from sensors with the virtual
outputs predicted by the ANN models upon adapting the models by removing faulty
sensor data from the input neurons. As opposed to other analytical redundancy approaches
that have been reported for SHM, the AFDAR approach considers multiple sensor faults
occurring simultaneously.

To validate the AFDAR approach, two validation tests have been conducted. In the
first validation test, artificial sensor faults were injected into a dataset containing sensor
data recorded by a real-world SHM system installed on a composite (i.e., steel truss and
reinforced concrete slab) railway bridge. In the second validation test, the proposed AFDAR
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was applied with sensor data newly collected by the SHM system to evaluate the ability
to diagnose real-word sensor faults. The results achieved in the validation tests have
confirmed the accuracy, reliability, and performance of the FD approach to detect, isolate,
and accommodate sensor faults. Furthermore, the AFDAR approach has been proven
capable of adapting to the new conditions of the SHM system regardless of the number
of faulty sensors. In summary, the AFDAR approach can be used to ensure the accuracy
of any type of sensors and thus ensure the reliability and performance of SHM systems
installed on civil infrastructure.

In future research, the AFDAR approach may be extended and validated on damaged
structures to investigate ways of differentiating between structural damage and sensor
faults. Finally, the AFDAR approach may be distributedly implemented into wireless
sensor nodes to automatically assess the condition of SHM systems on board the sensor
nodes. Decentralizing the AFDAR approach into wireless sensor nodes, as opposed to
transmitting all sensor data to central servers, is expected to decrease the energy spent on
data communication, to reduce storage requirements, and to avoid the analysis of large
amounts of raw data in central servers.
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