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Abstract: Automatic transmission is a key factor for autonomous driving. The transmission condition
is highly affected by the quality and quantity of transmission oil in the system. However, the
oil condition is not monitored in the system, and the oil change interval and method are still a
subject of discussion. This paper analyzes the effects of oil changes in automatic transmissions. The
measurements were carried out before and after the oil change with the same external conditions.
With the vibration measurement method, data can be collected without disassembling the parts and
during operational conditions. Furthermore, time- and frequency-based analyses were conducted to
compare different transmissions’ operations. The results have shown that the effect of oil degradation
is measurable on the amplitude of the signals and, therefore, predictable with vibration diagnostics.
During the evaluation, the maximum values were compared on measurements with at least a
2-s length.

Keywords: automatic transmission; vibration; accelerometer diagnostics; oil degradation; viscosity;
BMW 225 XE

1. Introduction
1.1. Automatic Transmissions in Cars, Focusing on Oil Degradation

Nowadays, most new cars are equipped with automatic transmissions, so it is impor-
tant to deal with the transmissions’ condition, which is highly affected by the quality and
quantity of transmission oil in the system. Although the oil condition is not monitored,
some manufacturers recommend no oil change during the lifetime of the transmission
unit, but others recommend a maximum of 100,000 km service intervals. Therefore, the oil
change interval and the method are still being discussed.

Oil degradation occurs even if the manufacturer does not require the oil to be changed
in some automatic transmissions. Several studies performed different measurements on
oil pressure, and different oil quality tests have been conducted [1–5]. However, all these
papers agree that the degradation in oil quality affects the operation of the machine—for
example, the automatic transmission.

The degradation can be caused by different factors [6,7]. There can be metal or water
contamination, which affects the control parts and even the clutches and brakes of the
transmission [8]. In the new generation of automatic transmissions, the heat exchanger for
the automatic transmission fluid (ATF) is usually cooled by the engine’s cooling system.
This means that if there is a failure in the heat exchanger, cooling fluid can enter the
transmission and can cause different faults.

Overheating can also be an effect that speeds up oil degradation [9]. Overheating can
be caused by extreme conditions or low ATF levels. The transmission controller usually
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evaluates the ATF temperature to prevent damage to the unit. As the transmissions’ emis-
sion control units (ECUs) are now placed in the transmission housing and in contact with
oil, it is easier to include some sensors inside the housing. Pressure sensors, for example,
are now implemented for some necessary clutches or pressure accumulators, so they can
also be used for self-diagnosis, and there is no need to attach external pressure gauges.

Rotation sensors are already part of automatic transmission, as the ECU needs input
data to control them properly. In addition, the rotation speeds of different shafts in the
transmission can also give information about the malfunction.

Oil degradation means not only contamination but also the change in significant
friction and flow properties [10–12]. These changes are proven in some previous articles
dealing with ATF degradation. In addition, if the oil’s viscosity changes, the flow properties
will also change, which can occur in the transmission behavior [13,14]. Oil pressure tests
have already shown this effect [15].

Vibration analysis is a well-known method in the maintenance of manufacturing
machines and is nowadays used on more and more occasions in railway and automotive
diagnostics [16–20]. In some cases, automotive parts are tested with an accelerometer
during manufacturing or at the end of the line test, but these sensors are usually applied to
the part once they are manufactured, and the next time a failure occurs [21]. Long-term
analysis or self-diagnostic functions are not implemented in the automotive industry [22].

Previously published oil tests were based on oil samples evaluated in laborato-
ries [23–26]. It requires dismantling the system and taking samples; the results cannot be
evaluated inside the vehicle. Vibration measurement, on the other hand, allows on-board
measurement and evaluation. Vibration measurement was previously used mainly to look
for bearing and gear failures.

1.2. General Studies about Transmissions and Their Oils

The authors aimed to collect other promising and significant studies on the topic of
automatic transmissions and their oils. The following paragraphs deal with the up-to-
date literature.

Tang et al. [27] analyzed the improvement of the shift quality of automatic transmis-
sions. The modeling and simulation capability provided by the ITI-SimulationX software
was used to analyze the oil pressure shift rule. The study aimed at the optimized design of
the clutch based on MATLAB and fuzzy theory. The paper dealt with the wet multi-plate
clutch in detail. Using the constructed computer model, the changes in the relative ther-
mal index were traced after optimization, and the operating characteristics of the clutch
were increased.

Dong et al. [28] examined the oil pressure characteristics in the transmission control
unit of the automatic transmission of a truck. The simulation model of the control unit was
implemented in the same software as in [27]. The model has been validated on a bench test.
Based on the optimization performed, the study concluded that two main factors were the
cause of early failures: (i) collisions between hydraulic control units during shifting and
(ii) extended periods of sliding friction. With the simulation and optimization model, early
failures could be eliminated.

Kučera et al. [29] investigated different types of transmission oils. They aimed to esti-
mate the particle dispersion of abrasive particles in gearbox oil samples under test using the
LaserNet Fines-C automatic laser particle counting and classifying system, a high-accuracy
and fully automated tribo-technological diagnostic tool. The use of automated particulate
counting and other techniques (atomic emission spectrometry, infrared spectrometry) is an
effective means to monitor and evaluate lubricants.

Liu et al. [30] examined the electric oil pump of an eight-speed automatic transmission.
The considered oil pump needed to conform with the design condition: start–stop function
and efficiency improvement. The loss of power in the transmission and the leakage in
the hydraulic system were computed by a composed mathematical model, which was
validated by a forwarding driving simulation. The mathematical model was based on fluid
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mechanics. Based on the modeling results, it could be concluded that there is an optimal
size of the mechanical oil pump and electric oil pump in terms of energy consumption
reduction and minimization. Furthermore, the authors proposed control strategies for
the electric oil pump and oncoming clutch to achieve a fast and smooth starting process
in practice.

Kim et al. [31] suggested a power-based control strategy for the electric oil pump of a
six-speed automatic transmission in a hybrid electric vehicle. The presented method can
predict the viscosity factor without measuring the temperature of the ATF. In addition, it
can control the electric oil pump on the basis of performance. The viscosity coefficient was
visualized using a three-dimensional plot of the steady-state network pressure and the
power and speed of the electric oil pump. Then, the viscosity factor was utilized to control
the electric oil pump to achieve the target pressure in the system according to the control
power and according to the 3D viscosity factor–pressure–performance map. A multi-stage
control was recommended to reduce energy consumption based on low, high, and medium
power according to the vehicle’s driving conditions.

Song et al. [32] dealt with an electric oil pump control algorithm for a hybrid electric
vehicle assembled by an automatic transmission. The performance simulator was devel-
oped using the powertrain, hydraulic control system, and oil pumps (mechanical and
electrical). Based on simulation and testing results, a viscosity index–line pressure–electric
oil pump performance map is recommended to characterize the power requirements ac-
cording to the viscosity index and the required line pressure. An electric oil pump controller
programming scheme has been derived to implement an electric oil pump control using
multi-stage power for a given viscosity index. The simulation results validated that the
control algorithm of the electric oil pump fulfilled the maximum line pressure during the
gear change.

Seo and Sungdo [33] conducted research on the remanufacturing process of oil pumps
for automatic transmissions with seven speeds. The paper incorporates a bushing assembly
procedure and a gear and housing polishing process to restore the performance of the old
oil pump. The feasibility of the technology was demonstrated by comparing the volumetric
efficiency of two remanufactured and two original oil pumps. The results indicated that
the volumetric efficiency of the remanufactured oil pumps was more than 95% compared
to the original oil pumps in the five selected rpm ranges.

Farfán-Cabrera et al. [34] investigated the frictional behavior of a wet clutch using a
bio-lubricant. This lubricant was the so-called Jatropha oil. They performed laboratory
experiments, i.e., a pin-on-disk test with the comparison of ATF. ATF was mixed in different
ratios with Jatropha oil, and the mixtures were tested based on friction. The friction behavior
obtained indicated that the mixtures exhibited anti-shock properties. Therefore, Jatropha
oil can be utilized as part of an ATF mixture to improve the anti-vibration characteristics
and increase the torque transfer performance of wet clutches with controlled-locking clutch
systems, improving the overall economy of vehicles.

Cahyadi et al. [35] dealt with preliminary anti-wear testing for ATFs. The applied
method was the so-called four-ball method, which is relatively cheap, quick, and easy. They
conducted experiments on the anti-wear property of an automatic transmission lubricating
oil, and they took into consideration five-month-duration tests.

Wang and Li [36] studied the poly-alpha-olefin-based ATFs. The tested lubricants
were applied in buses for a sixty-thousand-kilometer test to be able to determine and check
their performance changes as a function of the driven mileage. Several parameters were
determined, i.e., viscosity and wear resistance under high temperatures. So-called crankcase
simulation tests were executed regarding the research. As expected, the higher the driven
mileage, the lower the kinematic viscosity, the viscosity index, and the maximum no-bite
load values. In the end, the crankcase simulation tests were not adequate in predicting the
driving tests with high accuracy.

Wu et al. [37] considered optimizing die-casting procedures for heavy-duty automatic
transmission oil circuit boards. The authors analyzed the high-pressure die casting (HPDC)
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technology as an adequate solution to avoid molding defects. First, the injection molding
tool was designed. Then, trial data from the Taguchi method orthogonal array (L25)
were employed as a practice specimen, and the porosity of the injection molded part
was studied as a function of the casting variable parameters. In particular, the velocity,
temperature, and injection pressure were evaluated, while the mathematical modeling
satisfied the accuracy test. The particle size optimization approach was used to optimize
the model to achieve the minimum porosity. The experimental results demonstrated that
the optimization obtained with the particle size optimization algorithm is preferable to the
results achieved from the Taguchi method and offers a substantial enhancement compared
to the pre-optimization ones.

The above-mentioned and cited papers, of course, do not cover all of the fields of
transmissions and their applied oils; however, the authors decided to prepare a short
overview from this aspect, too.

1.3. Novelty and the Structure of the Current Paper

This paper analyzes the effect of oil change in an automatic transmission that has not
been required in original equipment manufacturer (OEM) applications and has not been
mentioned in previous studies. The measurements were carried out before and after the
oil change with the same external conditions. The vibration measurement method can
collect data without disassembling the parts during operational conditions. Furthermore,
time- and frequency-based analyses were conducted to compare different transmissions’
operations. This study aimed to analyze the possibility of using accelerometers to detect
oil degradation in conventional automatic transmissions, not only for bench or one-piece
analysis but also for self-diagnostic transmissions [11,38–40].

The car (BMW 225 XE) was selected to have a modern but conventional automatic
transmission with a hydrodynamic torque converter. However, it was also essential to test
a vehicle with an automatic gearbox that did not have a prescribed oil change interval and
to ensure that the oil was genuine before the change.

The study had both short-term and long-term objectives: to measure the effect of
oil degradation using the Pico NVH kit and to investigate the applicability of a new
diagnostic function.

Indicating the need to change the oil in automatic transmissions or the initial failure
of the transmission can increase the service life, reduce the possibility of failure, and thus
reduce repair costs and material consumption.

Maintenance can be flexible and condition-dependent, which is the most reliable and
environmentally friendly of all maintenance methods.

The structure of this work is as follows: Section 2 contains the Materials and Methods,
Section 3 is the Results and discussion, and Section 4 is the Conclusions.

2. Materials and Methods

The measurements were executed on a BMW 225 XE vehicle assembled with a TF72-
SC-type automatic transmission. However, the original ATF worked for 98,000 km (see
Figure 1). This traveled distance is long enough to cause oil degradation due to an AT
supplier, which recommends an ATF change every 100,000 km. In addition, although the
selected vehicle is a plug-in hybrid car, the transmission’s output shaft continuously rotates
when the car is running.

The oil change was done with the Launch CAT 501-S Automatic Oil Change Equip-
ment, which allows the use of a detergent. The aim of the detergent is to flush the system
and clean it as much as possible. More than 95% of the ATF can be changed with the proper
equipment, which means that the oil’s properties after the change are very similar to the
brand-new oil.
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All the vibration measurements were performed before and after the oil change to
compare the results under different external conditions.

The PicoDiagnostics NVH kit was applied to take the measurements. The first task
was to place the sensors on the car. The Pico NVH kit has a 4-channel scope, which allows
for recording two sensors and two directions. The first sensor was placed on the gearbox
and the second sensor on the transmission mounting bracket. The x direction of the sensor
on the gearbox recorded the vertical (i.e., up and down) movements (see Figure 2), while
the z direction recorded the lateral (i.e., back and forth) movements (see Figure 3). The
sensor on the bracket also recorded the same (i.e., the same directions of movement).
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After mounting the sensors at the proper place on the vehicle, the next step was to
place the sensors, the attenuators, and the scope with the computer together (see Figure 4).
On the transmission, forward and backward movements were recorded by channel A
(blue wire), up and down movements by channel B (red wire), and finally, on the bracket,
forward and backward movements were recorded by channel C (green wire) and up and
down movements by channel D (yellow wire).
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The measurements were fulfilled with the following conditions:

• idling;
• acceleration with the gear change;
• 50 km/h vehicle speed in 3rd gear;
• standstill with “D” selected.

Different data evaluation methods can be used [15,40–42]. In this case, the Pico
Diagnostics software was applied. The software can analyze in time and frequency domains
with the limitation that at least 2 s of measurements must be converted to the frequency
domain to ensure sufficient data for evaluation.

Table 1 contains the available parameters of the measurement device.
As the oil viscosity depends on the temperature, the measurements were done at the

operating temperature (80 ◦C). The oil temperature was measured via the serial OBD port
with the Launch Euro Tab II diagnostic tool.
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Table 1. The available parameters of the measurement device based on the official datasheets.

NVH Kit Specifications

Weight (interface/accelerometer/microphone) 120 g/80 g/20 g

Dimensions:

Sensor interface (inc. BNCs-Bayonet
Neill–Concelmans) 105 mm × 65 mm × 27 mm

Magnet (inc. fitted grub screw) 12 mm × ø18 mm

Sensor extension lead length 3 m

Battery (lithium primary cell) CR123(A) 3 V (user-replaceable)

Battery life (shelf/vibration mode/microphone mode) 10 years/6 months/2 months

Maximum measurable acceleration ±5 g

Vibration frequency range (3 dB) DC to 350 Hz

Shock survivability (accelerometer head) 10,000 g

Operating temperature range (accelerometer head) –40 ◦C to 85 ◦C

Thread mounting (accelerometer) 1/4” × 28 UNF

EMC approvals CE: Meets EN 61326-1:2006 [43]

3. Results and Discussion

The evaluation of the measurements was performed in the time and frequency do-
mains. Time-based evaluation is appropriate to compare the peaks. Observation on the
same scale ensures the assessment of the differences in the vibration efficiently. On the
other hand, frequency-based evaluation is necessary as the transmission elements rotate, so
periodic signals are generated.

This evaluation was carried out under the operating conditions previously described
and, therefore, cannot be clearly extrapolated to the entire operating characteristics of the
vehicle. The temperature varied slightly during the measurement. There was a load varia-
tion between the different measurement modes, resulting in a temperature variation. The
applicability of the measurement was limited by the fact that only operating temperatures
were measured.

During idling, the transmission oil pump is working, and the input shaft is rotating,
so several vibrations can occur. In Figures 5 and 6, it can be easily seen how the oil change
decreased the vibrations on the transmission. Both directions show lower peaks and signals.
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For further investigations with the Pico Diagnostics software, Fourier transformation
was done, and 3D frequency analysis was possible, showing the vibrations in the frequency
domain (see Figure 7).
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Figure 8 clearly shows that the transmission vibration is lower after the oil change,
barely approaching 220 mg (1.0 mg means an acceleration of 10–3 × 9.80665 m/s2). This
change corresponds to a difference of around 21%, which can be considered relevant. The
up and down movements on the gearbox have also been reduced to 76.5 mg, a reduction of
28%. However, it is also worth comparing them over time, as Figure 6 clearly shows that
the sensor detected much less vibration on the gearbox after the oil change. The large and
high-amplitude vibrations disappeared, and only small vibrations were detected in the
time domain test. The idle speed measurement after the oil change showed no change, so
the external conditions were the same during the two different measurements.

The sensor on the bracket shows fewer vibrations as there is no high torque, and the
rubber elements decrease the vibrations. As a result, there was no significant change in
the vibrations on the bracket, which means that only the sensor on the transmission could
recognize the effect of the oil change.
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Measurements were carried out with no constant speed (see Figures 9 and 10). Due
to this, it was more difficult to analyze because of the parameter change. Furthermore,
carrying out the same acceleration and same gear change is impossible during a road test.
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Acceleration from 0 km/h to 70 km/h was evaluated in 30-s-long measurement data
to minimize the deviation caused by the different measurement conditions. To be able to
carry out a proper evaluation, a longer measurement time was applied, which means that
the frequency analysis contains data from different vehicle speeds. In addition, the gear
changes were done manually to ensure the same engine speeds during the measurements.
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Before the oil change, the highest vibration on the gearbox was 894 mg. As in the
previous measurement, the highest vibration was also found in the back-and-forth move-
ment of the gearbox. The maximum value for the up-and-down movement of the gearbox
was 301 mg. The variations and the oscillation excursions were also clearly visible in the
time domain.

When tested in the frequency range before the oil change, the maximum vibration
in the gearbox corresponded to 894 mg (Figure 11). As in the previous measurement,
the highest vibrations were found in the back-and-forth movement of the gearbox. The
maximum value for the up-and-down movement of the gearbox was 301 mg. The variations
and the oscillation excursions were also clearly visible in the time domain.
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After the oil change (see Figure 12), the vibrations on the gearbox reached 747 mg, so
there was a reduction of around 17%, which can be considered a relevant change. There
was also a change in the x direction accelerations, where we measured 245 mg, a slightly
higher reduction of 19%. The time domain analysis in Figure 10 also shows that although
some reduction can be seen, only small vibrations were decreased.
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The measurements were carried out with constant vehicle speed operation on the same
good-quality road to provide as similar conditions as possible. With a 50 km/h vehicle
speed, 20-s-long measurements were executed to obtain sufficient data to compare the
behavior before and after the oil change was done.
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At a constant speed, 654 mg was the highest value measured before the oil change,
and the gearbox’s back-and-forth movement was the most significant. If we consider the
condition after the oil change, we find that there is a slight change in the vibration of the
gearbox, dropping to 626 mg. As with the previous measurement, the authors considered
the percentage change, which was a 5% decrease. If we considered the up-and-down
movement on the transmission, a value of 227 mg was measured before the oil change,
and 199 mg after the oil change. This means a 13% decrease. Moreover, if we consider
the time domain, it can be seen that there is a slight difference between the two graphs
(Figures 13 and 14).
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The standstill in “D” is a measurement wherein a gear is engaged, but there is no
vehicle speed, so it is better to compare the transmission’s behavior with different oil
quality. In this measurement (see Figures 15 and 16), before the oil change, the measurement
unit recorded 297 mg as the highest acceleration amplitude for the forward and reverse
movement of the gearbox, while, after the oil change, the authors measured 260 mg in the
frequency domain. The acceleration in the x direction before the oil change was 122 mg,
while, after the oil change, this value decreased to 108 mg, which means a 12% decrease.
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When examining the time range, it can be seen that both the forward–backward and
up–down movements of the transmission are much smoother than before the oil change,
with both types of movement losing the small vibrations and high excursions, the latter
being particularly noticeable in the up–down movement.

Table 2 contains the results as a summary based on the comparison of the maximum
values of the frequency-based analysis.

Table 2. Comparison of maximum values of frequency-based analysis.

Operating Conditions
Maximum Values in Frequency Domain (mg)

Difference (%)
Before Oil Change After Oil Change

Idling 271 214 21

Acceleration with the
gear change 894 747 16.4

50 km/h vehicle speed in
3rd gear 654 625 4.3

Standstill with “D”
selected 297 260 12.4

The results have shown that the ATF degradation could have been detected under
different operations. For example, the change in the vibration of the conventional automatic
transmission can be a sign of the transmission’s service time.
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As not only conventional automatic transmissions can be found on the market, it is also
essential to perform similar measurements on different types of automatic transmissions,
such as continuously variable transmission (CVT) or dual-clutch transmission (DCT) types.
The location of the sensors can also be analyzed to identify the best place or places to install
accelerometers. As the accelerometer could also be helpful in identifying different types of
faults in the transmission, further analysis should be carried out with other faults.

These results can be used in manufacturer specifications and life cycle planning
methods.

4. Conclusions

The authors offer the following relevant statements based on the carried out investigation:

• Vibration measurement can be an appropriate method for detecting oil degradation.
• Accelerometers should be placed on the transmission unit itself to be able to detect the

changes in the ATF properties.
• Both the time and frequency domains can be applied to detect the change in automatic

transmission operation.
• In the measured operating conditions, the difference in vibration with the old and new

oil was approximately from 4.3% to 21%.
• To be able to ensure the same conditions for the comparison, the torque, engine speed,

vehicle speed, and temperature parameters must be measured.
• Flexible service intervals can be applied due to the vibration of the conventional

automatic transmission.
• Vibration-based flexible service intervals can extend the lifetime of the automatic

transmission. In addition, compared to fixed intervals, it can reduce costs and be
environmentally friendlier, as the ATF is changed only when necessary according to
the operational conditions.

• Further studies can be performed on the topic of oil degradation and vibrations: a
comparison at different temperatures, oil analysis from the samples, different types of
automatic transmissions, and long-term measurement.
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