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Abstract: The mechanical properties of pavement materials are crucial to the design and performance
of flexible pavements. One of the most commonly used measures of these properties is the resilient
modulus (Er). Many different models were developed to predict the resilient modulus of coarse soils,
which are based on the states of stresses and the physical and mechanical properties of the soil. The
unconsolidated unsaturated drained cyclic triaxial tests were performed for three variously graded
and three well-graded sand specimens to determine the resilient modulus, and to perform predictive
modeling using the K-θ, Rahim and George, Uzan, and Universal Witczak models. Obtained Er

values directly depended on the confining pressure and deviatoric stress values used during the test.
The Octahedral Shear Stress (OSS) model, proposed by the authors of the paper, predicts the resilient
modulus with a coefficient of determination (R2) ranging from 0.85 to 0.99. The advantage of the
model is the use of small-scale data tables, meaning fixed K1 and K2 regression coefficients, and it
can be assigned to a specific specimen type without the need to determine them using the specific
deviatoric and confining stresses.

Keywords: resilient modulus; predictive models; variously graded sand; well-graded sand;
cyclic triaxial test; regression coefficients; octahedral shear stress; bulk stress

1. Introduction

The mechanical properties of pavement materials are crucial to the design and perfor-
mance of flexible pavements. One of the most commonly used measures of these properties
is the resilient modulus (Er) [1–3]. It can be determined for sandy subgrade [4–6] and clayey
subgrade [7–9].

The resilient modulus (Er) is a measure of the ability of a material to resist deformation
under repeated loading. It is commonly used in the design of flexible pavements, as it
provides a measure of the stiffness of the pavement material and its ability to resist rutting
and fatigue [10,11].

The resilient modulus (Er) of a material is affected by several factors, such as the type
and amount of loading, the moisture content of the material, and the temperature [12,13].

To determine the resilient modulus, cyclic triaxial pressure tests are performed in
the laboratory. It is difficult to perform these tests since qualified specialists are needed.
Also, the tests take quite a long time and the equipment for performing such tests is
expensive [14]. For these and other reasons, resilient modulus predictive models have
been developed which allow modulus values to be determined without cyclic triaxial
testing [15–17].

The purpose of this research work is to verify the accuracy of commonly used resilient
modulus prediction models by relating their results to the experimentally determined
resilient modulus of sandy soils, and also, to propose a more accurate model for forecasting
sandy soils modulus values.
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2. Materials and Methods
2.1. Test Procedure

To determine the resilient modulus (Er), the isotropic unconsolidated unsaturated
drained cyclic triaxial tests were performed using a Wille Geotechnik dynamic triaxial
apparatus, according to the low-stress test program (method B) provided in EN 13286-
7:2004 [2], which was slightly adjusted using confining stress from 20 kPa to 70 kPa
(Figure 1), and the minimum value of the deviator was fixed at the limit of 10 kPa due
to the limitations of the test apparatus. The maximum deviator stress and the number of
cycles for a particular state of specimen loading are provided in Figure 1. The loadings of
the specimen were performed at a frequency of 1 Hz with data recording intervals ranging
from 100 to 150 times per second. The dimensions of the samples were 100 mm in diameter
and 200 mm in height.
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At the beginning of the tests, conditioning of specimens was performed with 20,000 pe-
riodic cyclic loadings at the same frequency of 1 Hz with variable stress deviator ranging
from 10 to 200 kPa.

The resilient modulus was determined according to [18] and the formula given in EN
13286-7:2004 [2]:

Er =
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where σ1
r is residual axial stress, σ3

r is residual radial stress, ε1
r is residual or restored

axial relative deformation determined using displacement values from two vertical linear
variable differential transformers (LVDTs), and ε3

r—residual or restored radial relative
deformation determined using displacement value from radial LVDT (Figure 2).
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Figure 2. Specimen with attached mounted LVDTs before the start of cyclic triaxial test.

Resilient or recovered axial strain (ε1
r) is determined by dividing resilient axial dis-

placement at cycle N, defined as the displacement during the unloading part of the cycle
(between the point where the applied stresses are maximum and the end of the cycle) from
the gauge length for axial displacement (Displacement 1 and 2, see Figure 2). Resilient or
recovered radial strain is determined by dividing resilient radial displacement at cycle N,
defined as the displacement during the unloading part of the cycle, from the gauge length
for radial displacement (Displacement 3, see Figure 2). Axial displacement was determined
using two LVDTs, radial—one LVDT (Figure 2). The example determination of values of
displacements at the maximum deviator stress and the last values of displacement during
one cycle can be seen in Figure 3.
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2.2. Materials

A total of six different samples were tested and classified according to the LST
1331:2022 [19] standard: three as variously graded sands (SP) and three as well-graded
sands (SG). Particle size distribution curves are provided in Figure 4.
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Classification of all samples according to LST 1331:2022 [19] and the Unified Soil
Classification System (USCS) [20] is presented in Table 1, as well as uniformity coefficients
(Cu) and coefficient of curvature (Cc). The density of each specimen was controlled at
100±5% dry density.

Table 1. Classification of specimens according to LST 1331:2022 and USCS.

Name of Specimen Cu Cc
Soil Classification

LST 1331:2022 USCS

SP1 4.90 0.72 Variously graded sand (SP) Silty sand (SM)
SP2 4.74 0.75 Variously graded sand (SP) Poorly graded sand (SP)
SP3 4.60 0.99 Variously graded sand (SP) Silty sand (SM)
SG1 8.29 1.21 Well-graded sand (SG) Well-graded sand (SW)
SG2 17.69 1.39 Well-graded sand (SG) Well-graded sand (SW)
SG3 6.23 1.07 Well-graded sand (SG) Well-graded sand (SW)

2.3. Models

Many different models were developed to predict the resilient modulus of coarse soils,
which were based on the states of stresses and the physical and mechanical properties of
the soil [21–23]. In this study, the authors have used four main models which are based on
the stress state of the soil.

One of the most well-known models is a model developed by Hicks and Moni-
smith [24–26], also known as the K-θmodel, presented below:

Er = K1 (θ)K2 (2)

where K1 and K2 are fitting parameters or regression coefficients, and θ is bulk stress which
equals the sum of major σ1, minor σ3, and intermediate σ2 stresses.
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Another widely used model is that developed by Rahim and George [27,28], which
incorporates deviatoric stress (σ1) and atmospheric pressure (Pa) into the equation:

Er = K1Pa

(
Θ

(σd + 1)
+ 1

)K2

(3)

Uzan [29,30] proposed a model that incorporates octahedral shear stress (τoct):

Er = K1Pa

(
Θ
Pa

)K2
(
τoct

Pa

)K3

(4)

octahedral shear stress (τoct) equal to (
√

2/3)(σ1 − σ3), and K3, same as K1 and K2, fitting
parameters or regression coefficients.

Similar to Uzan’s model is the Universal Witczak [31,32] model:

Er = K1Pa

(
Θ
Pa

)K2
(
τoct

Pa
+ 1

)K3

(5)

3. Results and Discussion
3.1. Test Results

After performing unconsolidated unsaturated drained cyclic triaxial tests, resilient
modulus (Er) values were obtained, which are shown in Figure 5. Received values directly
depended on the confining pressure and deviatoric stress values used during the test,
which are presented in the test program in Figure 1.
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3.2. Modeling Results

After obtaining the resilient modulus (Er) values, using the previously listed models in
formulae 2–5 to predict the resilient modulus, modeling was performed using the nonlinear
generalized reduced gradient method to determine the average regression coefficients (Kn)
and coefficients of determination (R2) for every 100 cycles. The results of modeling for
every specimen are provided in Tables 2–7.
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Table 2. Determination of models’ average regression coefficients for specimen SP1.

Start
Cycle

No. of
Cycles

σd σ3
K-θ Rahim and

George Uzan Universal Witczak

K1 K2 K1 K2 K1 K2 K3 K1 K2 K3

20,100 100 20.21 20.13 0.79 1.07 0.40 0.46 1.33 0.76 0.18 0.97 1.02 0.99
20,200 100 34.98 20.41 0.96 1.17 0.73 0.76 2.16 0.86 0.03 1.78 0.94 1.12
20,300 100 49.81 21.06 1.03 1.23 1.01 1.01 3.02 1.21 0.03 2.29 1.10 1.30
20,400 100 69.13 22.13 1.05 1.25 1.23 1.25 3.08 1.67 0.04 2.21 1.36 1.43
20,500 100 35.01 35.41 0.91 1.12 0.73 0.73 1.69 1.27 0.09 1.44 1.10 1.05
20,600 100 49.91 35.45 0.99 1.16 0.92 0.92 1.95 1.50 0.11 1.61 1.22 1.11
20,700 100 69.61 35.63 1.04 1.20 1.14 1.18 2.21 1.82 0.39 1.68 1.41 1.22
20,800 100 89.22 35.79 1.04 1.22 1.30 1.37 2.13 1.89 0.81 1.63 1.45 1.25
20,900 100 116.99 38.56 1.04 1.24 1.52 1.61 1.87 1.72 1.14 1.54 1.46 1.26
21,000 100 49.89 50.30 0.99 1.09 0.85 0.81 1.63 1.49 0.47 1.19 1.12 1.04
21,100 100 69.84 50.07 1.02 1.13 1.02 1.03 1.72 1.58 0.71 1.28 1.22 1.08
21,200 100 89.61 49.98 1.03 1.16 1.18 1.23 1.64 1.63 0.90 1.33 1.29 1.12
21,300 100 118.98 50.11 1.03 1.20 1.40 1.49 1.53 1.56 1.09 1.33 1.35 1.16
21,400 100 155.95 53.27 1.02 1.23 1.60 1.80 1.38 1.47 1.19 1.30 1.38 1.19
21,500 100 70.02 69.80 1.02 1.09 0.98 0.97 1.45 1.46 0.82 1.12 1.12 1.03
21,600 100 89.70 70.44 1.02 1.12 1.11 1.16 1.42 1.47 0.94 1.18 1.19 1.06
21,700 100 119.53 69.81 1.02 1.14 1.28 1.37 1.32 1.38 1.05 1.18 1.21 1.08
21,800 100 158.75 69.91 1.03 1.19 1.51 1.68 1.25 1.34 1.12 1.20 1.27 1.12
21,900 100 196.49 71.60 1.04 1.21 1.77 1.90 1.20 1.29 1.14 1.20 1.29 1.14

R2 0.983835 0.984907 0.984669 0.984817

Table 3. Determination of models’ average regression coefficients for specimen SP2.

Start
Cycle

No. of
Cycles

σd σ3
K-θ Rahim and

George Uzan Universal Witczak

K1 K2 K1 K2 K1 K2 K3 K1 K2 K3

20,100 100 19.67 20.70 1.02 1.08 0.54 0.50 1.75 0.76 0.13 1.43 0.90 1.04
20,200 100 34.42 20.57 1.02 1.16 0.73 0.76 2.16 0.88 0.02 1.80 0.93 1.13
20,300 100 49.25 20.58 1.04 1.21 0.97 0.97 2.82 1.18 0.03 2.16 1.08 1.24
20,400 100 69.39 20.73 1.05 1.25 1.22 1.24 3.04 1.65 0.01 2.19 1.35 1.42
20,500 100 34.74 35.71 1.03 1.13 0.81 0.75 1.86 1.29 0.02 1.60 1.18 1.09
20,600 100 49.66 35.76 1.03 1.17 0.97 0.95 2.06 1.52 0.07 1.71 1.29 1.15
20,700 100 69.73 35.76 1.04 1.20 1.15 1.19 2.22 1.83 0.39 1.69 1.42 1.22
20,800 100 89.55 35.78 1.04 1.22 1.31 1.38 2.13 1.89 0.81 1.63 1.46 1.25
20,900 100 119.19 35.73 1.04 1.24 1.52 1.61 1.85 1.69 1.14 1.53 1.45 1.26
21,000 100 49.88 50.75 1.01 1.10 0.88 0.83 1.65 1.51 0.45 1.23 1.15 1.05
21,100 100 69.81 51.11 1.03 1.15 1.06 1.08 1.78 1.65 0.67 1.34 1.28 1.10
21,200 100 89.70 50.75 1.03 1.17 1.20 1.26 1.67 1.67 0.90 1.35 1.32 1.13
21,300 100 119.44 51.21 1.04 1.20 1.42 1.52 1.54 1.58 1.09 1.35 1.37 1.17
21,400 100 159.00 50.89 1.04 1.22 1.63 1.79 1.38 1.42 1.17 1.30 1.36 1.18
21,500 100 69.92 70.74 1.02 1.10 1.00 0.99 1.47 1.50 0.81 1.15 1.15 1.04
21,600 100 89.81 70.91 1.02 1.13 1.12 1.18 1.44 1.50 0.94 1.19 1.21 1.07
21,700 100 119.79 71.20 1.03 1.16 1.32 1.42 1.36 1.43 1.06 1.21 1.26 1.10
21,800 100 159.53 70.92 1.03 1.19 1.51 1.69 1.25 1.34 1.12 1.20 1.27 1.12
21,900 100 198.92 71.31 1.03 1.20 1.76 1.87 1.18 1.26 1.12 1.18 1.26 1.12

R2 0.995557 0.995565 0.995525 0.995596
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Table 4. Determination of models’ average regression coefficients for specimen SP3.

Start
Cycle

No. of
Cycles

σd σ3
K-θ Rahim and

George Uzan Universal Witczak

K1 K2 K1 K2 K1 K2 K3 K1 K2 K3

20,100 100 20.06 19.92 1.00 0.98 0.38 0.39 1.40 0.89 0.28 0.84 1.04 0.99
20,200 100 34.74 20.06 1.03 1.14 0.71 0.73 1.96 0.91 0.00 1.67 0.95 1.10
20,300 100 49.84 20.28 1.04 1.21 0.97 0.97 2.74 1.16 0.00 2.13 1.08 1.23
20,400 100 69.53 20.20 1.05 1.24 1.21 1.22 2.98 1.61 0.02 2.14 1.33 1.39
20,500 100 34.91 35.68 1.03 1.13 0.81 0.76 1.85 1.28 0.02 1.60 1.18 1.09
20,600 100 49.83 35.74 1.03 1.17 0.97 0.96 2.07 1.52 0.06 1.71 1.29 1.15
20,700 100 69.60 35.68 1.04 1.20 1.15 1.19 2.22 1.83 0.38 1.69 1.42 1.22
20,800 100 89.55 35.68 1.04 1.22 1.31 1.38 2.13 1.89 0.81 1.63 1.46 1.25
20,900 100 119.55 35.56 1.04 1.24 1.53 1.61 1.86 1.70 1.14 1.54 1.46 1.26
21,000 100 49.88 50.90 1.02 1.10 0.89 0.83 1.66 1.52 0.44 1.24 1.16 1.05
21,100 100 69.86 50.88 1.03 1.14 1.05 1.07 1.77 1.64 0.68 1.33 1.27 1.10
21,200 100 89.70 51.16 1.03 1.17 1.21 1.28 1.68 1.69 0.89 1.37 1.33 1.14
21,300 100 119.74 50.79 1.04 1.20 1.41 1.51 1.53 1.57 1.09 1.34 1.36 1.16
21,400 100 159.51 50.80 1.04 1.22 1.63 1.79 1.38 1.42 1.17 1.30 1.36 1.18
21,500 100 69.95 70.69 1.02 1.10 0.99 0.99 1.47 1.50 0.81 1.15 1.15 1.04
21,600 100 89.92 71.23 1.02 1.13 1.13 1.19 1.44 1.50 0.94 1.20 1.22 1.07
21,700 100 119.84 70.90 1.03 1.16 1.31 1.41 1.36 1.42 1.06 1.21 1.25 1.09
21,800 100 159.55 71.21 1.03 1.19 1.52 1.69 1.25 1.34 1.12 1.21 1.27 1.12
21,900 100 199.62 70.94 1.03 1.21 1.76 1.88 1.18 1.26 1.12 1.18 1.26 1.12

R2 0.997692 0.997666 0.997671 0.997683

Table 5. Determination of models’ average regression coefficients for specimen SG1.

Start
Cycle

No. of
Cycles

σd σ3
K-θ Rahim and

George Uzan Universal Witczak

K1 K2 K1 K2 K1 K2 K3 K1 K2 K3

20,100 100 20.11 20.04 0.65 1.04 0.31 0.41 1.10 0.78 0.29 0.72 1.10 0.97
20,200 100 34.71 20.29 0.87 1.18 0.68 0.74 2.01 0.87 0.05 1.65 0.96 1.08
20,300 100 50.01 20.25 0.96 1.22 0.97 0.97 2.84 1.18 0.06 2.13 1.07 1.22
20,400 100 69.92 20.29 1.04 1.24 1.20 1.23 3.00 1.63 0.06 2.14 1.33 1.39
20,500 100 35.07 35.36 3.07 1.12 0.65 0.72 1.51 1.27 0.08 1.28 1.05 1.03
20,600 100 50.06 35.38 0.95 1.16 0.88 0.91 1.86 1.50 0.11 1.55 1.18 1.09
20,700 100 70.00 35.64 1.03 1.19 1.12 1.16 2.17 1.79 0.42 1.63 1.39 1.21
20,800 100 89.84 35.68 1.04 1.22 1.31 1.38 2.13 1.89 0.81 1.63 1.46 1.25
20,900 100 119.85 35.68 1.04 1.24 1.54 1.63 1.87 1.72 1.14 1.55 1.47 1.27
21,000 100 50.16 50.91 0.99 1.11 0.89 0.84 1.66 1.53 0.43 1.25 1.17 1.05
21,100 100 70.09 50.95 1.02 1.14 1.05 1.08 1.76 1.64 0.68 1.33 1.27 1.10
21,200 100 89.92 50.29 1.03 1.16 1.19 1.24 1.65 1.64 0.90 1.33 1.30 1.12
21,300 100 119.88 50.51 1.03 1.20 1.40 1.50 1.53 1.56 1.09 1.33 1.35 1.16
21,400 100 159.86 50.91 1.01 1.23 1.63 1.79 1.38 1.42 1.17 1.29 1.37 1.18
21,500 100 70.14 70.58 0.99 1.07 0.96 0.97 1.41 1.46 0.83 1.11 1.11 1.03
21,600 100 90.08 71.13 1.02 1.13 1.13 1.19 1.44 1.50 0.94 1.20 1.21 1.07
21,700 100 119.93 70.98 9.72 1.15 1.31 1.42 1.36 1.43 1.06 1.27 1.24 1.09
21,800 100 160.02 70.42 1.03 1.18 1.51 1.67 1.24 1.32 1.11 1.20 1.26 1.11
21,900 100 199.62 70.71 1.03 1.20 1.76 1.87 1.18 1.25 1.12 1.18 1.26 1.12

R2 0.244736 0.991775 0.991805 0.991622



Infrastructures 2023, 8, 29 8 of 13

Table 6. Determination of models’ average regression coefficients for specimen SG2.

Start
Cycle

No. of
Cycles

σd σ3
K-θ Rahim and

George Uzan Universal Witczak

K1 K2 K1 K2 K1 K2 K3 K1 K2 K3

20,100 100 20.23 20.32 0.78 1.09 0.43 0.47 1.39 0.74 0.16 1.07 1.01 1.00
20,200 100 34.90 20.38 0.92 1.18 0.73 0.76 2.16 0.87 0.04 1.77 0.95 1.11
20,300 100 49.98 20.53 0.99 1.23 0.99 0.99 2.92 1.20 0.04 2.21 1.09 1.26
20,400 100 69.82 21.03 1.05 1.26 1.25 1.27 3.12 1.71 0.01 2.24 1.38 1.45
20,500 100 35.17 35.50 3.34 1.13 0.74 0.74 1.70 1.28 0.06 1.45 1.09 1.05
20,600 100 50.01 35.51 0.98 1.17 0.94 0.93 2.00 1.50 0.10 1.64 1.23 1.12
20,700 100 69.90 35.69 1.04 1.20 1.15 1.18 2.22 1.83 0.39 1.68 1.42 1.22
20,800 100 89.82 35.74 1.04 1.22 1.31 1.39 2.13 1.90 0.81 1.64 1.46 1.25
20,900 100 119.51 36.04 1.04 1.24 1.54 1.63 1.87 1.72 1.14 1.55 1.48 1.27
21,000 100 50.02 50.27 0.95 1.10 0.84 0.81 1.61 1.48 0.49 1.17 1.11 1.03
21,100 100 69.88 50.44 1.02 1.14 1.03 1.05 1.75 1.61 0.70 1.30 1.24 1.09
21,200 100 89.81 50.38 1.03 1.17 1.19 1.25 1.66 1.65 0.90 1.34 1.30 1.12
21,300 100 119.75 50.37 1.03 1.19 1.40 1.50 1.52 1.55 1.09 1.33 1.34 1.16
21,400 100 159.38 51.40 1.02 1.24 1.65 1.83 1.40 1.46 1.18 1.31 1.40 1.20
21,500 100 69.88 70.03 1.01 1.09 0.97 0.96 1.44 1.46 0.83 1.11 1.11 1.03
21,600 100 89.94 70.34 1.02 1.12 1.11 1.16 1.41 1.46 0.94 1.17 1.18 1.06
21,700 100 119.82 70.48 9.13 1.15 1.30 1.40 1.35 1.41 1.05 1.25 1.22 1.08
21,800 100 159.64 70.57 1.03 1.19 1.51 1.68 1.24 1.33 1.11 1.20 1.26 1.11
21,900 100 199.34 70.84 1.04 1.21 1.77 1.90 1.19 1.27 1.13 1.20 1.28 1.13

R2 0.234674 0.994574 0.994593 0.994436

Table 7. Determination of models’ average regression coefficients for specimen SG3.

Start
Cycle

No. of
Cycles

σd σ3
K-θ Rahim and

George Uzan Universal Witczak

K1 K2 K1 K2 K1 K2 K3 K1 K2 K3

20,100 100 21.18 19.94 0.61 1.01 0.32 0.41 1.13 0.82 0.51 0.73 1.09 0.97
20,200 100 34.91 20.40 0.76 1.16 0.58 0.71 1.79 0.88 0.15 1.39 0.98 1.03
20,300 100 49.65 20.32 0.83 1.20 0.81 0.93 2.44 1.17 0.19 1.77 1.06 1.17
20,400 100 69.70 20.65 0.96 1.23 1.09 1.22 2.81 1.56 0.20 1.95 1.31 1.37
20,500 100 35.49 35.62 3.49 1.12 0.68 0.71 1.58 1.26 0.12 1.32 1.08 1.04
20,600 100 50.51 35.63 0.83 1.14 0.78 0.91 1.70 1.46 0.19 1.39 1.18 1.09
20,700 100 70.05 35.70 0.91 1.18 0.98 1.15 1.94 1.70 0.48 1.42 1.37 1.20
20,800 100 89.57 35.75 0.99 1.21 1.22 1.37 1.98 1.86 0.82 1.51 1.45 1.24
20,900 100 119.07 35.77 0.99 1.23 1.42 1.58 1.72 1.68 1.14 1.43 1.43 1.24
21,000 100 50.37 49.76 0.78 1.01 0.68 0.73 1.34 1.32 0.65 0.95 1.01 1.00
21,100 100 70.17 50.61 0.92 1.09 0.91 1.01 1.53 1.54 0.74 1.15 1.17 1.06
21,200 100 90.01 50.74 0.95 1.14 1.08 1.22 1.50 1.60 0.91 1.22 1.27 1.11
21,300 100 119.80 50.87 0.99 1.19 1.32 1.50 1.43 1.56 1.09 1.26 1.34 1.16
21,400 100 159.56 50.86 1.00 1.22 1.58 1.78 1.34 1.41 1.17 1.25 1.36 1.18
21,500 100 70.23 70.54 0.87 0.99 0.83 0.89 1.23 1.33 0.88 0.96 1.02 1.00
21,600 100 90.12 71.26 1.00 1.13 1.09 1.18 1.39 1.49 0.94 1.16 1.21 1.07
21,700 100 120.09 71.32 9.72 1.05 1.14 1.28 1.18 1.29 1.04 1.11 1.11 1.04
21,800 100 159.61 70.99 0.97 1.18 1.46 1.68 1.21 1.32 1.11 1.16 1.26 1.11
21,900 100 199.78 71.17 0.93 1.17 1.59 1.79 1.07 1.20 1.09 1.06 1.21 1.10

R2 0.221460 0.799531 0.800532 0.802060

After the predictive modeling, it can be seen in Table 2 that all used models for
specimen SP1—variously graded sand almost perfectly predicted the resilience modulus
values. The coefficient of determination (R2) values of all models were higher than 0.98. The
regression coefficient K1 used in the K-θmodel (2) varied from 0.79 to 1.05 and regression
coefficient K2 varied from 1.07 to 1.25. The regression coefficient K1 used in the Rahim
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and George model (3) varied from 0.40 to 1.77 and regression coefficient K2 varied from
0.46 to 1.90. The regression coefficient K1 used in the Uzan model (4) varied from 1.20 to
3.08, regression coefficient K2 varied from 0.76 to 1.89, and regression coefficient K3 varied
from 0.03 to 1.19. The regression coefficient K1 used in the Universal Witczak model (5)
varied from 0.97 to 2.29, regression coefficient K2 varied from 0.94 to 1.46, and regression
coefficient K3 varied from 0.99 to 1.43.

A similar situation is seen with specimen SP2—variously graded sand (Table 3), all
used models almost perfectly predicted the resilience modulus values, and the coefficient of
determination (R2) values of all models were higher than 0.99. The regression coefficient K1
used in the K-θmodel (2) varied from 1.01 to 1.05 and regression coefficient K2 varied from
1.08 to 1.25. The regression coefficient K1 used in the Rahim and George model (3) varied
from 0.54 to 1.76 and regression coefficient K2 varied from 0.50 to 1.87. The regression
coefficient K1 used in the Uzan model (4) varied from 1.18 to 3.04, regression coefficient
K2 varied from 0.76 to 1.89, and regression coefficient K3 varied from 0.01 to 1.17. The
regression coefficient K1 used in the Universal Witczak model (5) varied from 1.15 to 2.19,
regression coefficient K2 varied from 0.90 to 1.46, and regression coefficient K3 varied from
1.04 to 1.42.

For the specimen SP3—variously graded sand (Table 4), the coefficient of determi-
nation (R2) values of all models were higher than 0.99 also. The regression coefficient K1
used in the K-θmodel (2) varied from 1.00 to 1.05 and regression coefficient K2 varied from
0.98 to 1.24. The regression coefficient K1 used in the Rahim and George model (3) varied
from 0.38 to 1.76 and regression coefficient K2 varied from 0.39 to 1.88. The regression
coefficient K1 used in the Uzan model (4) varied from 1.18 to 2.98, regression coefficient K2
varied from 0.89 to 1.89, and regression coefficient K3 varied from 0 to 1.17. The regression
coefficient K1 used in the Universal Witczak model (5) varied from 0.84 to 2.14, regression
coefficient K2 varied from 0.95 to 1.46, and regression coefficient K3 varied from 0.99 to 1.39.

For the specimen SG1—well-graded sand (Table 5), the coefficient of determination
(R2) value using the K-θmodel (2) is 0.24. Other used models almost perfectly predicted
the resilience modulus values and the value coefficients of determination (R2) for the rest
of the models were higher than 0.99. The regression coefficient K1 used in the K-θmodel
(2) varied from 0.65 to 9.72 and regression coefficient K2 varied from 1.04 to 1.24. The
regression coefficient K1 used in the Rahim and George model (3) varied from 0.31 to
1.76 and regression coefficient K2 varied from 0.41 to 1.87. The regression coefficient K1
used in the Uzan model (4) varied from 1.10 to 3.00, regression coefficient K2 varied from
0.78 to 1.89, and regression coefficient K3 varied from 0.05 to 1.17. The regression coefficient
K1 used in the Universal Witczak model (5) varied from 0.72 to 2.14, regression coefficient
K2 varied from 0.96 to 1.47, and regression coefficient K3 varied from 0.97 to 1.39.

For the specimen SG2—well-graded sand (Table 6), the coefficient of determination
(R2) value using the K-θmodel (2) is 0.22. Other used models almost perfectly predicted
the resilience modulus values. The value coefficients of determination (R2) for the rest of
the models were higher than 0.99. The regression coefficient K1 used in the K-θ model
(2) varied from 0.78 to 9.13 and regression coefficient K2 varied from 1.09 to 1.26. The
regression coefficient K1 used in the Rahim and George model (3) varied from 0.43 to
1.77 and regression coefficient K2 varied from 0.47 to 1.90. The regression coefficient K1
used in the Uzan model (4) varied from 1.19 to 3.12, regression coefficient K2 varied from
0.74 to 1.90, and regression coefficient K3 varied from 0.01 to 1.18. The regression coefficient
K1 used in the Universal Witczak model (5) varied from 1.07 to 2.24, regression coefficient
K2 varied from 0.95 to 1.48, and regression coefficient K3 varied from 1.00 to 1.45.

For the specimen SG3—well-graded sand (Table 7), the coefficient of determination
(R2) value using the K-θmodel (2) is 0.22. The regression coefficient K1 varied from 0.61 to
9.72 and regression coefficient K2 varied from 0.99 to 1.23. The coefficient of determination
(R2) value used in the Rahim and George model (3) is 0.80, the regression coefficient
K1 varied from 0.32 to 1.59, and regression coefficient K2 varied from 0.41 to 1.79. The
coefficient of determination (R2) value used in the Uzan model (4) is 0.80, the regression
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coefficient K1 varied from 1.07 to 2.81, the regression coefficient K2 varied from 0.82 to 1.86,
and the regression coefficient K3 varied from 0.12 to 1.17. The coefficient of determination
(R2) value used in the Universal Witczak model (5) is 0.80, the regression coefficient K1
varied from 0.73 to 1.95, regression coefficient K2 varied from 0.98 to 1.45, and the regression
coefficient K3 varied from 0.97 to 1.37.

3.3. Proposed Model

The values of regression coefficients (Kn) for all used predictive models strongly
fluctuate at different deviatoric stresses and confining stresses (Tables 2–7). Therefore, to
accurately predict the resilient modulus of test specimens, large-scale data tables should
be used, meaning that regression coefficients (Kn) need to be determined using specific
deviatoric and confining stresses. To avoid this, a new, simpler model was searched for,
which would help make resilient modulus predictions with sufficient accuracy.

The models for predicting the resilient modulus presented in the Materials and Meth-
ods chapter were based on three main stress variables—deviatoric stress, bulk stresses, and
octahedral stress. The power dependence of the resilient modulus on the bulk stress is
presented in Figure 6. Power dependence, compared to linear, exponential, logarithmic,
and 2nd order polynomials, best predicted the fit of values for the dependence of the
resilient modulus on bulk stress.
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The linear dependence of the resilient modulus on octahedral stress is presented in
Figure 7. Linear dependence, compared to power, exponential, logarithmic, and 2nd order
polynomial, best predicted the fit of values for the dependence of the resilient modulus on
octahedral stress.
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As can be seen from Figures 6 and 7, the linear dependence of the resilient modulus
on octahedral stress had a coefficient of determination from 0.85 to 0.99, while the power
dependence of the resilient modulus on the bulk stress had a coefficient of determination
only from 0.68 to 0.83. Based on these results, the authors of the paper propose the following
Octahedral Shear Stress (OSS) prediction model:

Er = K1 τoct − K2 (6)

where K1 and K2 are regression coefficients which are provided for every tested specimen
separately in Table 8.

Table 8. The OSS models’ regression coefficients for specimens.

Name of Specimen
Soil Classification OSS Model (ER = K1 τoct − K2)

LST 1331:2022 USCS K1 K2 R2

SP1 Variously graded sand (SP) Silty sand (SM) 16.08 53.90 0.98
SP2 Variously graded sand (SP) Poorly graded sand (SP) 15.60 19.46 0.99
SP3 Variously graded sand (SP) Silty sand (SM) 15.91 37.24 0.85
SG1 Well-graded sand (SG) Well-graded sand (SW) 16.09 56.29 0.99
SG2 Well-graded sand (SG) Well-graded sand (SW) 16.24 55.74 0.99
SG3 Well-graded sand (SG) Well-graded sand (SW) 15.58 77.73 0.85

4. Conclusions

After the determination of the resilient modulus values of variously graded sands
(SP1, SP2, SP3) and well-graded sand (SG1, SG2, SG3), and predictive modeling using the
models reviewed in the Materials and Methods chapter, the following conclusions can
be drawn:

- Using the K-θmodel developed by Hicks and Monismith to predict resilient modulus,
the coefficient of determination (R2) value using determined regression coefficients
provided in Tables 2–7 ranges from 0.22 to 0.99;
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- Using the Rahim and George model to predict resilient modulus, the coefficient
of determination (R2) value using determined regression coefficients provided in
Tables 2–7 ranges from 0.80 to 0.99;

- Using the Uzan model to predict resilient modulus, the coefficient of determination
(R2) value using determined regression coefficients provided in Tables 2–7 ranges
from 0.80 to 0.99;

- Using the Universal Witczak model to predict resilient modulus, the coefficient of de-
termination (R2) value using determined regression coefficients provided in Tables 2–7
ranges from 0.80 to 0.99;

- The Octahedral Shear Stress model, proposed by the authors of the paper, predicts the
resilient modulus with a coefficient of determination (R2) ranging from 0.85 to 0.99,
using regression coefficients provided in Table 8. The advantage of the model is the
use of small-scale data tables, meaning that fixed K1 and K2 regression coefficients
can be assigned to a specific specimen type without the need to determine them using
specific deviatoric and confining stresses. Additional investigation of the regression
coefficient must be performed, separately taking into account different stress states of
specimen to avoid overfitting as much as possible.

Authors hope that more advanced laboratory testing such as cyclic triaxial testing will
be performed to derive more accurate prediction models or to calibrate existing models for
the determination of the resilient modulus. Wider use of a resilient modulus determined by
prediction models could potentially help to design road structures more accurately while
saving time and expenditures.
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