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Abstract: Building information modelling (BIM) is evolving significantly in the architecture, engi-
neering and construction industries. BIM involves various remote-sensing tools, procedures and
standards that are useful for collating the semantic information required to produce 3D models.
This is thanks to LiDAR technology, which has become one of the key elements in BIM, useful to
capture a semantically rich geometric representation of 3D models in terms of 3D point clouds. This
review paper explains the ‘Scan to BIM’ methodology in detail. The paper starts by summarising
the 3D point clouds of LiDAR and photogrammetry. LiDAR systems based on different platforms,
such as mobile, terrestrial, spaceborne and airborne, are outlined and compared. In addition, the
importance of integrating multisource data is briefly discussed. Various methodologies involved in
point-cloud processing such as sampling, registration and semantic segmentation are explained in
detail. Furthermore, different open BIM standards are summarised and compared. Finally, current
limitations and future directions are highlighted to provide useful solutions for efficient BIM models.

Keywords: building information modelling; 3D point clouds; LiDAR; registration; semantic
segmentation; interoperability

1. Introduction

In recent decades, building information modelling (BIM) has become one of the
most significant emerging technologies in the architecture, engineering and construction
(AEC) industries. The applications of BIM are gaining popularity in numerous fields such
as transport infrastructures [1–4], 3D city modelling [5,6], economic systems [7,8] and
mechanical, electrical and plumbing (MEP) fields [9–11]. BIM is defined as an intelligent
3D model that provides information about the assets during the project lifecycle, which
is useful to plan, design, create and operate infrastructures and buildings more efficiently.
BIM aims to have benefits like cost reduction and control, coordination and collaboration,
better customer service, production quality and easy maintenance [11,12]. In this way, it
saves time and gives a complete picture to the project team so that they can easily maintain
and operate buildings and unravel any complexities that might arise. Despite the benefits,
some challenges are still faced, such as interoperability, big data and a lack of automatic
processes. Therefore, standard platforms for integration and standardisation are necessary
for developing BIM to predict and analyse the future stages of as-built models or new
building models. For successful BIM implementation, high-performing measurement,
sufficient attribute information and accurate graphics are the most important factors. Laser-
scanning advancements have increased the usefulness and accessibility of 3D measurement
devices in BIM. These sensors make direct measurements from the sensor to objects in
the surroundings and are extensively employed in BIM models. Using attributes of the
objects in the model, BIM can indicate what needs to be measured. It assists in determining
the dimensions of any object by measuring points within the scanning range. The vast
volume of data generated by 3D-measurement laser scanners needs to be processed and
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transmitted efficiently. It is, therefore, necessary to have a thorough understanding of
point-cloud processing algorithms and BIM standards. At present, LiDAR is seen as a
robust method to collect 3D measurement points more efficiently. The process of capturing
a physical site or space using scan data, from the air or from the ground, to develop an
intelligent 3D model by employing BIM software, is known as ‘Scan to BIM’ [13,14].

General Framework: Scan to BIM

The Scan to BIM process is used to produce the as-built model of an asset that tends
to suffer from a lack of information, outdated plans or incomplete documentation. This is
where the Scan to BIM plays a vital role. This process takes point clouds as an input and
outputs a final 3D reconstruction model where all the assets are classified or labelled. The
framework design consists of the following steps:

1. Data capture: Laser-scanner technologies play a fundamental role in the construction
of an as-built BIM. The data are captured in the form of raw point clouds. There are
also other methods to generate point clouds such as photogrammetry. However, this
method is time-consuming and its accuracy degrades when surveying large areas.
In this step, certain points must be clear—for example, scanning parameters, point
clouds’ resolution, and their density—with appropriate equipment selected according
to the user’s application.

2. Semantic segmentation: Once the registration of all the scans is completed, it is
combined into a single 3D point cloud. Then, assets are detected and classified, which
can be further processed in BIM software.

3. BIM model: In the last step, standards such as IFC and gbXML are applied to exchange
the information between software applications for BIM.

To our knowledge, this is the first review that focuses on the entire chain of the Scan to
BIM framework. Existing research focuses on one of three topics: point-cloud processing,
3D reconstruction or building information modelling [15–17]. However, none of these
studies has given a comprehensive review of the Scan to BIM framework. Recently, the
authors in [17] published a survey based on the 3D reconstruction of buildings, which
mainly focused on data acquisition and processing techniques. In contrast, our paper
gives detailed information regarding scanning technologies, point-cloud data-processing
techniques for sampling, registration, and semantic segmentation, as well as the open
standards used in BIM, which will be useful for new researchers. This will help academics
and even construction companies to comprehend the challenges they face and gain useful
insights into future trends.

2. Research Methodology

Figure 1 outlines the structure of the review paper. In the first stage, we focus on the
importance of 3D point clouds obtained from LiDAR and photogrammetry and outline how
LiDAR data is useful in BIM. In the next stage, LiDAR systems based on different platforms
are outlined and compared. Additionally, the importance of combining multisource data
from different LiDAR and photogrammetry methods is discussed. In stage 3, various
point-cloud processing methods are explained and major challenges of traditional and
deep-learning approaches are outlined, which can be critical for developing the Scan to
BIM framework. Stage 4 defines the interoperability and open standards for Scan to BIM.
The last stage concludes and identifies future research directions.

To carry out a comprehensive review, Elsevier Scopus and Google Scholar were mainly
used. Table 1 illustrates the literature search keywords. The keyword search was carried
out utilising the “AND” and “OR” Boolean operators to combine keywords, for example,
“Scan to BIM” AND “point clouds”, “registration” AND “deep learning”.
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Figure 1. Overview of research methodology.

Table 1. Literature search keywords.

Aspect Keywords

BIM “Scan to BIM”, “BIM”, “building information modelling”

Point-cloud processing
“automatic registration”, “sampling”, “point clouds”, “LiDAR”,
“semantic segmentation”, “photogrammetry”, “deep learning”,

“remote sensing”
Standards of BIM “interoperability”, “open standards”, “IFC”

Furthermore, the numbers of different document types sampled—articles, conference
papers, reviews, book chapters and survey papers—are specified in Figure 2. There are
91 article papers and 84 conference papers, followed by 15 review papers, 1 book chapter
and 1 short review. Figure 3 displays the relevant papers published per year related to BIM,
point-cloud processing and BIM standards.

Figure 2. Documents by type.
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Figure 3. Number of relevant papers on BIM, point-cloud processing and BIM standards published
each year between 1996 and 2021.

Figures 4 and 5 show the CiteScore and SCImago journal rankings from 2011 to
2020. The top 11 journals have been included in the graphs. According to Figure 4, the
Proceedings of the IEEE International Conference on Computer Vision gained the highest
CiteScore at 37.2, and the second most commonly cited publication was the Proceedings
of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
These journals are mostly related to deep-learning methods of point-cloud processing. It
can be seen that the trend of researching deep-learning algorithms is increasing rapidly.
However, they have not been applied to large datasets of point clouds in Scan to BIM.

Figure 4. SCImago journal rank by year.
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Figure 5. SCImago journal rank by year.

To determine which publications should be included, we first limited our search to
point-cloud processing based on LiDAR data, and then we searched for BIM and open
BIM standards. In the sample, 71% of the papers in this study are related to point-cloud
processing methods and BIM, and 29% are related to BIM and BIM standards. We found
that deep-learning methods based on registration and segmentation are not fully employed
in the Scan to BIM framework. To address the aforementioned gaps, this article gives a
detailed review of the state-of-the-art point-cloud processing methods, to establish a basis
for construction applications, more specifically, ones in large-infrastructure BIM.

The main aim of this paper is to summarise the potential held by processing 3D point-
cloud data from the perspective of LiDAR and photogrammetry of different platforms,
such as terrestrial, mobile, and airborne platforms, within the Scan to BIM framework.
Then, the subsequent processing steps like registration and semantic segmentation can be
implemented and merged with different standards (IFC, gbXML), which can be used as a
foundation to build BIM.

3. 3D Point-Cloud Data

The foundation for 3D models in a built environment, in Scan to BIM, is point clouds. A
point cloud is a collection of points where each has its own set of x, y and z coordinates, and
in some cases, additional attributes (intensity, RGB, GPS time), representing the recorded
environment in terms of its 3D shape or feature. Scan to BIM is used in modelling in
such applications as urban planning, environmental monitoring, disaster management and
simulation. The geometry of the 3D object is captured by combining a large number of
spatial points into a single dataset with a common coordinate frame.

The two most common approaches in remote sensing to generate point clouds are
photogrammetry and LiDAR. Figure 6 illustrates the surveying images of photogrammetry
and LiDAR. Photogrammetry is a passive remote-sensing technique that captures multiple
digital images from different angles to determine the geometry of an object. It provides
coloured and fully textured point clouds and is quick and cost-effective. On the other
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hand, LiDAR is an active remote-sensing technique that emits laser beams to measure the
environment. It illuminates the surface with a series of laser lights. The time it takes for the
reflected light to reach the sensor is measured by the system.

Figure 6. Surveying images of (a) photogrammetry [18] and (b) LiDAR [19].

Depending on the environment to be captured, each technique has its own set of
features. LiDAR is the most promising tool and is widely used for Scan to BIM applications
because of its high accuracy and speed. Photogrammetry, on the other hand, produces
less complicated data but requires more processing time. LiDAR and photogrammetry
may also complement each other [20] and are receiving tremendous interest in the devel-
opment of remote-sensing technology. Related work is further discussed in Section 4.2.
A comparison of photogrammetry and LiDAR is made in Table 2. In case study [21], the
authors examined and compared the accuracy of aerial LiDAR, mobile-terrestrial LiDAR
and UAV photogrammetry data elevations. They concluded that mobile-terrestrial or UAV
photogrammetry is more ideal for as-built projects when terrain models of roads or other
paved surfaces are required. Aerial LiDAR, on the other hand, is more suitable for larger
projects, especially surveying undeveloped areas, because of its high accuracy.

Table 2. Comparison of photogrammetry and LiDAR.

Photogrammetry LiDAR

Sensor type Passive sensor Active sensor
Cost Low High

Point density High Medium
Automation level High Medium

Portability High Medium
Processing time Low High

Range Medium High
Usage in low-lit conditions Low High

Time flight More flight time required Less time flight required
Power consumption Low High

The quality of the point cloud is mainly evaluated by its accuracy, precision, point
density and resolution. Accuracy refers to the closeness of the measured value to the true
(actual) value, whereas precision is the closeness of repeated measurements of the same
object. It is worth noting that since the true value of 3D spatial coordinates is not known,
the accuracy of the true value can only be estimated [22]. Point density, on the other hand, is
the number of points per square metre, while resolution deals with the level of identifiable
details in the scanned point clouds. Not all instruments necessitate the same degrees of
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accuracy and point density. The levels required mainly depend on the acquisition and
processing times. Moreover, they are influenced by further factors such as the geometry of
the scan, environmental conditions, types of instruments used, etc.

Many challenges are associated with processing large LiDAR point clouds, including
data storage and integration. Processing generates a large amount of data in a minimum
amount of time. The challenges associated with collecting, storing and processing massive
data make the point clouds class as ‘big data’ [23]. The authors in [24] explained big data as
characterised by five Vs. Data from multisource and multimodal sensors are heterogeneous
(variety), which results in massive data (volume). Due to this, significant time is required,
which reduces the processing efficiency (velocity) and increases the demand to convert
a vast amount of point cloud data into reliable (veracity) and actionable data (value).
Therefore, it becomes critical and time-consuming to process and exchange such huge
data. For example, the computational cost increases as the size of the point cloud increases,
leading to time complexity. To address this bottleneck, compression methods have been
adopted in numerous applications for 3D point clouds [25–27], which alleviate the problem
of large-volume point clouds, to maintain the same quality of information.

4. LiDAR Systems

The recent development of georeferenced data-capture devices based on light detec-
tion and ranging (LiDAR) is becoming popular in the development of remote-sensing
technology. LiDAR was first developed in the early 1960s for meteorological applications.
Due to its ability to capture three-dimensional spatial data in a short data-acquisition time
and accurately, LiDAR is being used widely for applications such as 3D modelling analysis,
asset inventory, topography, forestry management, HD maps, etc. There are two meth-
ods for range measurement in LiDAR: the (i) time of flight (ToF) and (ii) phase shift [28].
Commercial laser scanners using the ToF principle are Teledyne Optech [29], Riegl [30],
Velodyne [31] and SICK [32], while commercial phase-shift laser scanners are FARO Focus
3D [33], Hexagon-Leica [34], Z + F IMAGER® 5016 [35] and Trimble GX [35]. Phase shift
has a medium-range, high accuracy and is fast, while ToF has a longer range and is slightly
less accurate than phase shift [36].

Until now, LiDAR has been the most relevant data source for acquiring point clouds
as it is reliable, accurate and less prone to error. The data can be obtained in various ways
using airplanes (airborne), satellites (spaceborne) and ground-based modes (terrestrial or
mobile). Most LiDAR systems (airborne, spaceborne and mobile) are integrated with a
global navigation satellite system (GNSS) and inertial measurement unit (IMU), which
determine the position, distance and orientation of the vehicle, respectively. IMUs are used
to measure the accurate position, trajectory and orientation of aircraft, while the purpose of
the GNSS is to identify the absolute location in terms of X, Y and Z.

4.1. Classification of LiDAR Systems

This study will focus on three main LiDAR systems, which are the key technologies
serving as inputs for Scan to BIM, namely: mobile laser scanning (MLS), terrestrial laser
scanning (TLS) and airborne laser scanning (ALS). The high-quality data, fast acquisition
speed and longer measurement range of laser scanners mean they have a significant
benefit over other LiDAR systems, such as triangular-based LiDAR, which has a short
measurement range and is more suitable for small objects [37]. Laser scanners differ in
terms of their resolution and spatial extent. Table 3 further compares LiDAR systems based
on their characteristics and applications.

4.1.1. Terrestrial Laser Scanning

Terrestrial laser scanning is mounted on a non-moving tripod and is used for static
scans. This performs well in high-resolution mapping of the landscape, terrain or vegetation
with a range limit of 0.5–6000 m and where small infrastructure is being surveyed. Moreover,
TLS has a higher resolution compared to other LiDAR since those are static scanners.
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Table 3. Comparison of LiDAR systems on different platforms.

LiDAR Terrestrial LiDAR MLS ALS

Point density Dense (>100 pt/m2) Dense (>100 pt/m2) Up to 50 pt/m2

Scanning range Point shape Stripe shape Surface shape

Accuracy High accuracy (mm level) High accuracy (cm level) High accuracy (<15 cm)

Scanning perspective Side view Side view Top view

Sensors Laser scanner GNSS, IMU, laser scanner GNSS, IMU, laser scanner

Advantages Provides the highest level
of detail

Provides faster data, reduces
acquisition time Suitable for large area

Disadvantages Not suitable for large
infrastructure

Absolute accuracy is low
because the satellite signals

are blocked by buildings

Expensive for small
project sites

Applications Small area 3D reconstruction HD mapping, urban
monitoring, road mapping

Terrain mapping, vegetation
monitoring, power line
detection, bathymetric

applications in shallow water

4.1.2. Mobile Laser Scanning

Mobile laser scanning is mounted on a moving platform such as a van, railway,
backpack, boat or vehicle. MLS is incorporated with a laser scanner, GNSS and IMU. It
is the most widely used technology to collect point-cloud data and has received much
attention in transportation applications as road features can be captured with a high level
of detail. MLS can provide very accurate (centimetre-level) point clouds with high point
densities (up to a few thousand points/m2) [38].

4.1.3. Airborne Laser Scanning

An airborne laser scanner, on the other hand, is mounted on a helicopter, plane or
drone to collect data at a very high speed. Again, it consists of laser scanners, GNSS and
IMU. ALS is widely used in terrain mapping, urban monitoring, vegetation monitoring,
power line detection, etc. However, ALS has a lower density compared to terrestrial and
mobile laser scanners and becomes expensive when covering large areas.

4.2. Multisource Point-Cloud Data

When there are noisy data induced by a complex environment or missing information,
data captured from a single source becomes inadequate for 3D reconstruction. As stated
in Table 2, LiDAR (ALS, MLS, TLS) and photogrammetry have different characteristics
and scanning perspectives. For instance, terrestrial and mobile LiDAR capture data from a
side-scanning view with a high resolution, whereas airborne LiDAR captures data from the
top view covering large areas but has low resolution. In some cases, ALS fails to provide
complete information on objects such as building facades and trees beneath their canopy.
This is where ground-based LiDAR (mobile and terrestrial) has proven to be useful in
providing data faster and with a high resolution. Photogrammetry provides semantic and
textural information, with a high automation level, high horizontal accuracy and low cost,
but it cannot operate efficiently in low-lit conditions. LiDAR, on the other hand, has high
vertical accuracy and can operate in low-lit conditions. These technologies complement
each other, providing high-quality and accurate 3D models that can be obtained at the
automation level.

To combine data from multisource scans, the point clouds must be aligned in a common
coordinate frame. This can be achieved using registration methods, where two point clouds
are first aligned in a common coordinate frame. Local co-registration is applied and then
unnecessary points, outliers and noise are filtered out to obtain compatible point clouds [39].
Weng et al. [38] proposed the integration of point clouds in three levels: low, medium and
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high. At the low level, point clouds from different sources are processed separately and
then merged to obtain final results. At the medium level, features are extracted from
one data source, and based on that extracted information, the second dataset is analysed
for the final results. At the high level, all the data sources are directly transformed into
a single coordinate frame, and then further processing is done of the combined dataset.
Although their proposed approach seems plausible, it has not been tested or validated yet.
Registration methods are further discussed in detail in Section 4.2.

Numerous studies have attempted to use multisource data in various applications
such as 3D building models, urban mapping, forest inventories, agriculture and flood
disasters. Multisource data can be achieved by combining different LiDAR platforms (aerial,
mobile and terrestrial) or LiDAR with photogrammetry. For example, Yang et al. [40] and
Cheng et al. [41] achieved automatic registration of terrestrial and airborne point clouds
using building outline features. Yan et al. [42] combined two terrestrial point clouds (TLS-
TLS) and TLS-MLS point clouds using a genetic algorithm. Son and Dowman [43] extracted
building footprints by combining satellite imagery data with airborne laser scanning.
Romerio-Jaren and Arranz [44] used TLS and MMS point clouds to determine 3D surfaces
from building elements. Kedzierski et al. [45,46] and Abdullah et al. [47] generated 3D
building models by integrating terrestrial and airborne data. Gonzalez-Jorge et al. [48]
combined aerial and terrestrial LiDAR data to survey roads and their surroundings, while
Zhu and Hyyppa [49] used ALS and MLS data to extract and reconstruct 3D models in a
railway environment. To enhance the extraction of the road centreline, Zhang et al. used
high-resolution (VHR) aerial images and LiDAR [50].

Combining multisource data is advantageous in many ways; nevertheless, there
are some challenges with heterogeneous point-cloud data. LiDAR and photogrammetry
have different scan view angles, light intensities and point densities, which make data
registration difficult. Small overlaps occur, which make it hard to match the correspondence
between the point clouds, resulting in poor automation and loss of 3D information. Existing
literature has tried to solve this issue. However, such methods still need improvement and
more efficient algorithms are required to align and unify heterogeneous point-cloud data.

5. Point-Cloud Processing

Processing a 3D point cloud involves registration, sampling and outlier-removal
techniques and compression methods so that subsequent steps like segmentation, object
detection and classification can be implemented. When the data are acquired from LiDAR
or photogrammetry, they take the form of raw point clouds. These point clouds must
first be aligned and combined in a common coordinate frame, which is called registration.
Outlier-removal techniques are used to remove the noise and outliers present in the point
clouds, while sampling or compression methods are applied to reduce the size of the
point clouds.

5.1. Down-Sampling

Point clouds generated by LiDAR are very large and it becomes difficult and time-
consuming to carry out processes such as registration, segmentation and 3D reconstruction.
To lift the burden, sampling is necessary. Generally, sampling is the pre-processing step for
3D point clouds. Other processes such as filters and outlier removal are also considered
in the pre-processing steps. Further details about the filtering methods of point clouds
are presented in review paper [51]. Fast and efficient down-sampling is important and
is the first step to process point clouds. Until now, there has been no in-depth review
paper published on 3D point-cloud down-sampling. This section will review the existing
algorithms for sampling 3D point clouds. Software such as CloudCompare, Leica and Z+F
Laser Control software, Autodesk and Geomagic Suite are often used in down-sampling
3D point clouds.

Different approaches have been developed to sample point clouds. Al-Durgham [52]
proposed an adaptive down-sampling approach where points in a low density are kept,
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while redundant points in a high density are removed. This method has since been
adopted in various studies. Lin et al. [53] extended the method based on planar neigh-
bourhoods. Al-Rabwabdeh et al. [54] incorporated planar adaptive down-sampling and
Gaussian sphere-based down-sampling methods for irregular point clouds. This method
was time-consuming, however, as it evaluated the local density based on the neighbouring
information, hence limiting the ability to accelerate its performance.

Another sampling approach is octree-based, which was developed by El-Sayed et al. [55].
The authors presented an octree-balanced down-sampling approach with principal com-
ponent analysis (PCA). In this method, point clouds are first converted into small cubes
using the octree approach. The cubes are then down-sampled based on their local densities.
Finally, PCA is applied on a down-sampled octree structure.

The methods based on down-sampling the points in normal spaces are normal-space
sampling (NSS) [56] and dual normal-space sampling (DNSS) [57]. NSS samples the points
in translational normal spaces, while DNSS samples the points in both translational and
rotational components. NSS and DNSS have low computational costs and are simple
methods. However, they are not suitable for large-scale point clouds as they ignore the
spatial distribution of the sampling points.

For large-scale point clouds, Labussiere et al. [58] proposed a novel sampling method
named the spectral decomposition filter (SpDF). This approach aims to reduce the number
of points while retaining the geometric details with a non-uniform density. First, geometric
primitives are identified, with their saliencies, from the input point clouds. Then, density
measures from saliencies are computed for each geometric primitive. If the geometric
primitive density is higher than the desired density, each geometric primitive is sub-
sampled, and the process is repeated until the density is less than the desired density. In
the end, it provides an output as a uniformly sampled point cloud, which can be used
efficiently in large-scale environments. However, the computational time required for this
method is high and may limit its real-time applications.

To reduce large datasets, Wioleta Błaszczak-Bąk [59] developed an optimal dataset
method (OptD) for ALS point-cloud processing, specifically for digital terrain applications.
The OptD method is a fully automated reduction method that produces an optimal result
based on optimisation criteria. It can be performed in two ways: OptD-single, based on
single-objective optimisation, and OptD-multi, based on multi-objective optimisation. The
OptD methods have also been leveraged in MLS [60,61]. For example, the authors in [60]
modified the OptD method called OptD-single-MLS to handle MLS data. This method
was tested on both raw sensory measurements and georeferenced 3D point clouds. OptD
methods have also provided viable solutions when using TLS datasets for sampling in
building and structure diagnostics [62–64]. Recently, Blaszczak-Bak et al. [65] used the
OptD approach to reduce the data from LiDAR datasets’ ALS/MLS, to extract off-road
objects such as traffic signs, power lines, roadside trees and light poles. It is apparent from
Table 4 that methods such as adaptive down-sampling, OptD, octree-based methods and
SpDF work efficiently with mobile, terrestrial and aerial LiDAR, while other methods are
only limited in their appropriateness to small datasets.

Table 4. Point-cloud down-sampling method.

Down-Sampling Method Test Platforms

Adaptive down-sampling ALS, TLS, MLS
Octree-based down-sampling ALS, TLS, MLS

OptD down-sampling ALS, TLS, MLS
NSS Mesh models

DNSS Mesh models

SpDF Challenging datasets for point-cloud
registration algorithm [66]
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5.2. Registration Methods

Registration of point clouds is the most crucial step to process point clouds in Scan to
BIM. Registration finds the relative position and orientation in a global coordinate frame, to
find the corresponding areas between point clouds. Several reviews have been published
on point-cloud registration methods. Some of them focused on traditional registration
methods [67,68] and some addressed deep-learning methods [69,70]. Together, these studies
outline how existing registration methods remain insufficient for large datasets. Hence,
more robust algorithms should be developed to evaluate the performance of point-cloud
registration, taking the following factors into account: outliers caused by moving objects,
varying overlaps and the operational speed.

5.2.1. Traditional Methods

According to the study [67], traditional point-cloud registration is divided into two
parts: coarse and fine. Coarse registration is used in rough estimation work to match the
correspondence of 3D features of two point clouds. It is also known as the feature-based
method and is classified into point-based, line-based and surface-based methods. Yet, this
type of method becomes complicated when using targetless and automatic algorithms [71],
providing poor results. Generally, the coarse registration method is performed initially to
roughly align the point clouds, and then fine registration is applied to transform the two
datasets using iterative approximation methods, to improve the accuracy. This process is
known as coarse-to-fine registration.

The main function of the fine registration method is to obtain the maximum overlap
between two point clouds by reducing the error function. This can be done by using iterative
closest point (ICP) algorithms, random sample consensus methods (RANSAC) [72,73] and
normal distribution transform (NDT) methods. Fine registration uses an iterative process
to transform two point clouds more precisely. By minimising the predefined error function,
the method optimises the transformation matrix, resulting in an accurate solution. Iterative
approximation is one of the most popular methods for accurate and stable registration
of 3D point-cloud data. In this method, firstly, the correspondence between two sets of
points is identified, and then the average distance between the two sets is minimised for
an optimal rigid transformation. However, a fundamental issue with the classical ICP
algorithm is that the initial value of the iteration must be specified; otherwise, the first local
minimum may occur and the results may not be appropriate for valid registration [74].

To deal with this issue, many authors have worked on improving ICP algorithms
such as point-to-line [75], point-to-plane [76,77], point-to-surface, generalised-ICP [78]
and GO-ICP [79,80]. Generalised-ICP uses the combination of ICP and point-to-plane ICP
in a single probabilistic structure. GO ICP, on the other hand, uses a branch-and-bound
(BnB) approach for global optimisation. The authors in [81] presented a comprehensive
evaluation of ICP algorithms in 3D point-cloud registration. In their study, factors such as
the angle, distance, overlap ratio and noise were evaluated and compared using point-to-
point and point-to-plane ICP on four datasets. Their study noted how different parameters
affect the performance of ICP algorithms. For example, point-to-point ICP is more resilient
to Gaussian noise in terms of validity. In contrast, point-to-plane ICP is more robust
with respect to accuracy. Furthermore, some of the improved ICP methods are based on
octree [82] or k-d tree [83]. Usually, ICP methods are combined with coarse registration
methods [84,85] to provide high-accuracy results.

Another fine registration method is RANSAC, which is widely used for pre-processing
and segmentation of point-cloud data. It randomly selects different sets of samples to
register from the point-cloud data and then fits a model efficiently in the presence of noise
and outliers. The RANSAC method has a high computing efficiency, but it fails to give a
globally optimal solution due to its randomised nature [86].

NDT is another approach to fine registration, based on the probability density function.
Point-cloud data are represented as a 3D grid and the probability distribution is applied
to each grid point for optimal fine registration. This method does not need a good initial
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position and is faster than ICP algorithms, making it more reliable and precise in real-time
applications than ICP [87,88]. However, this method requires a large number of calculations,
making it labour-intensive. Figure 7 shows the taxonomy of classical registration methods
for 3D point clouds.

Figure 7. Taxonomy of classical registration methods for 3D point clouds.

Among the aforementioned methods, ICP is the most widely used registration method
for 3D point clouds. For ICP methods, a high density is required to obtain accurate results.
ICP does not work efficiently in airborne LiDAR due to the large and noisy data [89].
Sampling large datasets with ICP may improve the performance of ALS data, but such
methods are time-consuming and the memory inefficient. Gressin et al. [90] analysed and
compared the ICP algorithms on different LiDAR platforms such as airborne, mobile and
terrestrial LiDAR. They concluded that the best results were obtained from TLS and MMS
datasets in terms of accuracy, while ALS was subpar. Until now, NDT has only been applied
to TLS datasets and is not suitable for a large, complex environment. RANSAC, meanwhile,
is applied on ALS, TLS and MLS datasets, mostly used as a pre-processing step to remove
the outliers and occlusions.

5.2.2. Deep-Learning Methods

Registration of point clouds is still an open problem due to the unordered and sparse
nature of 3D point clouds. With the success of deep learning in recent decades, the
importance of point-cloud registration has been increasing in deep neural networks. This
section presents an overview of state-of-the-art deep-learning-based registration methods.

PointNet and Graph Neural networks are the most popular geometric deep-learning
methods for 3D point clouds. Motivated by these methods, numerous deep-learning regis-
tration methods have been developed. Based on the PointNet architecture, Deng et al. [91]
introduced the Point Pair Feature Network (PPFNet), which learns globally informed 3D
local feature descriptors directly from unorganised point sets. The main drawback of this
method is that it requires a significant amount of annotation data. Furthermore, the authors
in [92] developed PPF-FoldNet, which uses unsupervised learning of 3D local descrip-
tors to eliminate the annotation-requirement constraint issue. Aoki et al. [93] developed
PointNetLK, which integrates the Lucas and Kenade algorithm with a PointNet-based
global feature descriptor and uses iterative approximation for the estimation of the relative
transformation. Another deep-learning method is PCRNet [94], which also uses PointNet
for the extraction of global features. This method utilises five multi-layered perceptrons
in a Siamese architecture, to obtain the global features. The features are then applied to
the five fully connected layers as an input, along with an output layer of the dimension of
parameterisation chosen for the pose. The PCRNet approach without iterations is faster
and more robust, but it suffers in terms of its accuracy.
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DeepVCP [95] combines PointNet++ and mini PointNet to learn the descriptors, and
then key points are extracted, estimating the correspondence from the extracted key points.
This method relies on high-quality initialisation. Inspired by DGCNN, Deep Closest
Point (DCP) [96] was proposed, which is an end-to-end learning approach for point-cloud
registration. First, the DGCCNN network is used to extract the features, and then the
correspondence between the point clouds is predicted by an attention-based module.

Most point-cloud registration based on deep learning is focused on indoor applica-
tions. Very few studies have been carried out on outdoor scenes. For example, Yew and
Lee proposed 3D FeatNet [97], which learns 3D feature detectors and descriptors from
GNSS/INS 3D point clouds in a weakly supervised manner. However, this method does
not perform well in noisy environments.

Another effective method is Fully Convolutional Geometric Features (FCGF) [98],
which extracts geometric features, computing a full convolution network. Based on the
probability distribution, DeepGPMR [99] was developed, which combines GMM registra-
tion with neural networks. This method does not require costly iterative procedures. Deep
globalisation registration [100] is a robust deep-learning method that aligns 3D scans of
the real world. First, a 6D convolutional network is used to estimate the correspondence
of the point sets, and then the weighted Procrustes method is applied to the given corre-
spondence for global optimisation. For real-time object tracking, AlignNet-3D [101] was
developed, which learns using the predicted frame-to-frame alignments for the estimation
of the relative motion between 3D point clouds.

The most recent works on deep-learning-based registration were PREDATOR [102],
RGM [103] and PointDSC [104]. PREDATOR handles low-overlap pairwise registration
of 3D point clouds. The method follows the encoder-decoder framework and learns to
recognise the overlap between two unregistered point clouds. RGM uses a deep graph-
matching approach to solve the problem of outliers in point-cloud registration. In this
framework, graphs are constructed from point clouds to extract the node features and then
a module is developed—namely, the AIS module—to establish a correspondence between
two graph nodes. PointDSC is an outlier rejection network for point-cloud registration that
explicitly utilises the spatial consistency generated by Euclidean transformation. Table 5
shows the characteristics of deep-learning registration methods.

Table 5. Deep-learning registration methods.

Method Year Architecture Testing Benchmarks Applications

PPFNet 2018 PointNet 3DMatch [105] Indoor

PPF Foldnet 2018 PointNet 3DMatch [105] Indoor

PointNetLK 2019 PointNet ModelNet40 [106] Indoor

PCRNet 2019 PointNet ModelNet40 [106] Indoor

3D FeatNet 2018 Siamese CNN KITTI [107], ETH [66], OxfordRobot
Car [108] Outdoor

DCP 2019 DGCNN ModelNet40 [106] Indoor

Deep VCP 2019 CNN KITTI [107], Apollo-SouthBay [109] Outdoor

FCGF 2019 ResUNet KITTI [107], 3DMatch [105] Indoor and outdoor

AlignNet-3D 2019 CanonicalNet, MLP ModelNet40 [106], KITTI [107] Outdoor

D3 FeatNet 2020 KPCONV KITTI [107], 3DMatch [105],
ETH [66] Indoor and outdoor

DeepGMR 2020 PointNet ModelNet40 [106], Augmented
ICL-NUIM [110,111] Indoor

PREDATOR 2020 GNN 3DMatch [105], DLoMatch,
ModelNet40 [106] Indoor
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Table 5. Cont.

Method Year Architecture Testing Benchmarks Applications

Deep global
registration 2020 6DConv

3DMatch [105], Augmented
ICL-NUIM [110,111], Indoor LiDAR

RGB-D [112], Stanford RGB-D,
KITTI [107]

Indoor and outdoor

RGM 2021 RGM ModelNet40 [106] Indoor

PointDSC 2021 SC-NONLOCAL, NSM 3DMatch [105], KITTI [107],
Augmented ICL-NUIM [110,111] Indoor and outdoor

Due to irregular, sparse and uneven characteristics of 3D point clouds, finding cor-
respondence between two point sets has become an open challenge. As discussed in
Section 4.2, fully automated point-cloud registration between multiple scans is difficult.
Traditional registration approaches are suitable for large-scale point clouds. However,
such methods are time-consuming and inefficient. In contrast, deep-learning methods
outperform traditional methods in terms of accuracy and efficiency and have the advan-
tage of achieving good results in real-time applications [69]. Yet, these methods are only
suitable for indoor or small-scale outdoor applications. Nevertheless, there is still room for
improvement in terms of efficiency and robustness in 3D point-cloud registration. To the
best of our knowledge, deep-learning registration methods have not been employed yet in
BIM applications.

6. Semantic Segmentation

Semantic segmentation is an essential part of the process in Scan to BIM, in which an
image or point cloud is divided into semantically significant parts and each of these parts is
semantically labelled into one of the predefined classes [113]. This section will summarise
the traditional and deep-learning methods of 3D point-cloud semantic segmentation.

6.1. Traditional Methods

Before deep-learning methods were developed, heuristic methods were traditionally
used for the segmentation of point clouds. The authors in [114] presented a comprehen-
sive review of point-cloud segmentation (PCS) and point-cloud semantic segmentation
(PCSS) methods. PCS aims to group points with similar characteristics into homogenous
regions [115] without considering semantic information and instead based on handicraft
features, while PCSS semantically classifies and labels data points into one predefined class,
based on supervised learning methods. The authors grouped point-cloud segmentation into
edge-based, region growing-based, model fitting-based and unsupervised clustering-based
methods, as shown in Table 6. Semantic segmentation, meanwhile, is based on supervised
machine-learning methods that are grouped into individual PCSS and statistical contextual
models, as shown in Table 7.

From the aforementioned methods, support vector machine (SVM), Hough-transform,
conditional random field and RANSAC are widely used for semantic segmentation. For
example, Koo et al. [116] exploited SVM for the classification of BIM elements for IFC.
ZHU and Brilikas [117] explored Hough transforms and edge-detection to classify the
concrete elements of a building. Vo et al. [118] used an octree-based region-growing
approach and conditional random field for BIM reconstruction. Tarsha Kurdi et al. [119]
automatically detected 3D roof planes from LiDAR data using Hough-transform and
RANSAC. Traditional methods have shown immense potential in dealing with large point
clouds. However, these require manual labelling, which is quite time-consuming for
processing large-volume point clouds.



Infrastructures 2022, 7, 49 15 of 29

Table 6. 3D point-cloud segmentation methods.

Type Methods

Edge-based [120]

Region growing Seeded Region [121], Unseeded Region [122]

Model fitting Hough-Transform, RANSAC [73]

Unsupervised clustering methods K-Means Clustering [123], Fuzzy Clustering
[124], Mean Shift [125], Graph-Based [126]

Table 7. 3D point-cloud semantic segmentation methods.

Type Methods

Individual point cloud semantic segmentation

Gaussian Mixture Models [127], Support Vector
Machines [128], AdaBoost [129], Cascade

Binary Classifiers [129], Random Forests [130],
Bayesian Discriminant Classifiers [131]

Statistical contextual models

Associative and Non-Associative Markov
Networks [132,133], Simplified Markov

Random Fields [134], Conditional Random
Fields [135]

6.2. Deep-Learning Methods

Recently, deep-learning algorithms have played an important role in the semantic
segmentation of 3D point clouds, enhancing the performance of applications such as
automotive driving, 3D reconstruction, BIM, etc. A significant number of papers have
presented comprehensive reviews of deep-learning-based semantic segmentation [136–138].
This section outlines the state-of-the-art deep-learning methods. In addition, methods
applied to buildings and infrastructure are also discussed. From the existing reviews, it
can be noted that due to the small amount of training data, it becomes critical to apply
deep-learning algorithms to real-world applications. Moreover, LiDAR datasets are sparse
and dense, which makes it difficult to train the data. Thus, pre-processing techniques are
required to remove unnecessary data. During this process, some of the information is lost,
giving poor segmentation results.

Deep-learning methods for semantic segmentation of 3D point clouds are grouped
as multiview-based, voxel-based and point-based, as shown in Table 8. Multiview-based
methods transform 3D data into 2D multiview images, which are further processed us-
ing 2D CNN. These methods are sensitive to occlusions, resulting in information loss.
Multiview-based methods are characterised as DeePr3SS [139], SnapNet [140] and Tangent-
Conv [141]. Voxel-based methods convert 3D point-cloud data into voxel grids and it is
then processed by 3D CNN. These methods require a high resolution to avoid data loss,
which may further result in high computation and memory consumption. Certain types
of voxel-based methods are SEGCloud [142], SparseConvNet [143], MinKowskiNet [144]
and VVNet [145]. A point-based method applies the deep-learning architecture directly
to unstructured point clouds. These methods have provided good results in small point
clouds, but due to model’s computational complexity, they are less useful in large envi-
ronments. Point-based methods are further classified as pointwise MLP (PointNet [146],
PointNet++ [147], PointSift [148], Engelmann [149], 3DContextNet [150], A-SCN [151],
PointWeb [152], PAT [153], RandLA-Net [154], ShellNet [155] and LSANeT [156]), point
convolution (PointCNN [157], DCNN [158], A-CNN [159], ConvPoint [160], KPCONV [161],
DPC [162] and InterpCNN [163]), RNN-based (RSNET [164], G+RCU [165] and 3D-RNN [166])
and graph-based (DGCNN [167], SPG [168], SSP+SPG [169], GACNet [170], PAG [171],
HDGCN [172], HPEIN [173], SPH3D-GCN [174] and DPAM [175]).
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Some of the latest research on deep learning is Deep FusionNet [176], AMVNET [177]
and LGENet [178]. Deep FusionNet uses a mini PointNet and a fusion module for feature
aggregation in large-scale LiDAR point clouds. This method shows a better performance
with a low requirement for memory and low computational costs. AMVNet is a multiview
fusion for LiDAR point-cloud semantic segmentation, which uses late fusion for feature
aggregation. Meanwhile, AMVNet achieved promising results, but some uncertainties
were detected between two object classes, for instance, a sidewalk and parking, terrain and
vegetation. LGENet is a semantic segmentation method for ALS point clouds, leveraging
the Local and Global Encoder Network.

Deep-learning algorithms have garnered great interest in semantic segmentation due
to their fast speed. Many studies have utilised deep-learning methods such as PointNet,
PointNet++, CNN, KPCONV and DGCCN in building models and civil infrastructure
applications. For example, Babacan et al. [179] employed a convolution neural network for
semantic segmentation in indoor mapping. Yet, this approach is limited to labelling basic
components such as windows, walls, chairs, etc. Malinverni et al. [180] used PointNet++
for semantic segmentation of a cultural heritage building using TLS point clouds. The
authors applied the DGCNN architecture for the semantic segmentation of a historical
building. Balado et al. [181] used PointNet to segment the main features of a road, such as
the road surface, guardrails, embankments, ditches and borders, using mobile laser-scanner
(MLS) point clouds. The author proposed that heuristic methods for segmenting small
elements work effectively without incurring a high training cost. PointNet must be used
when segmenting the parts of a whole scene. Inspired by the latter study, Soilán et al. [182]
applied PointNet and KPCONV architectures to evaluate the semantic segmentation of
railway tunnels and classified them as ground, lining, wiring and rail. Both learning models
performed well, but the method requires heuristic post-processing. Synthetic-based data
have also received a lot of attention in semantic segmentation. For example, the authors
in [183] combined PointNet with a dynamic graph convolutional neural network (DGCNN)
to generate semantic segmentation point clouds of building interiors, using synthetic data
generated from as-built BIM. Yet, this study undertook a manual process of splitting 3D
models at the object scale, which could lead to a high cost of generating synthetic data.
Additionally, variations occurred in both the surface and volumetric information, causing
uncertainty when acquiring information on the same object.

Beyond this, deep-learning algorithms, together with unsupervised clustering meth-
ods, are also implemented in the Scan to BIM framework for segmentation. Recently, Ma
and Leite [184] proposed a framework that uses density-based spatial clustering of applica-
tions with noise (HDBSCAN) as a clustering tool to generate segments from point clouds,
which are then classified using deep-learning methods such as PointNet and DGCNN. This
study had limitations, however, such as time complexity since the point-cloud data were
massive and random sampling was required.

From the aforementioned methods, it can be observed that deep-learning semantic
segmentation methods for point clouds are still a challenge due to the sparsity and varying
densities of point clouds. Nevertheless, they have provided promising results with 2D
images and 3D indoor point clouds. Some methods such as FusionNet and AMVNET have
shown robust results, with reduced computational complexity and memory consumption.
Meanwhile, data hunger is still a major problem faced by deep-learning algorithms, limiting
the performance of the model due to insufficient training data in terms of size and diversity.
The authors in [138] addressed the data hunger issues in 3D semantic segmentation and
how they affect the performance of deep-learning models on different datasets. They
concluded that existing datasets are not sufficient to solve the data hunger issue. More
training of the data is required to improve the accuracy of the point clouds, which is quite
labour-intensive. Although deep-learning algorithms have realised the full potential of
semantic segmentation for 3D point clouds, issues such as complex computation, memory
consumption and loss of information are still the main concerns. Moreover, the complicated
geometry and varying surface textures involved in the civil infrastructure model make
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the segmentation process quite challenging [185]. This is because point clouds obtained
in different scenarios have unique characteristics. It is important to highlight that there
is a huge difference between outdoor and indoor scenes. The algorithms developed for
indoors might not work in outdoor environments, and vice versa. There is a need for
a standardised approach, adequate not only for specific objects or classes but also for
real-world applications. Hence, efficient algorithms should be developed in the future,
which could be implemented in large civil infrastructure applications for BIM.

Table 8. Deep-learning semantic segmentation methods.

Strategy Methods

Multiview-based DeePr3SS [139], SnapNet [140], TangentConv [141]

Voxel-based SEGCloud [142], SparseConvNet [143], MinKowskiNet [144],
VVNet [145]

Pointwise MLP
PointNet [146], PointNet++ [147], PointSift [148], Engelmann [149],

3DContextNet [150], A-SCN [151], PointWeb [152], PAT [153],
RandLA-Net [154], ShellNet [155], LSANeT [156]

Point convolution PointCNN [157], DCNN [158], A-CNN [159], ConvPoint [160],
KPCONV [161], DPC [162], InterpCNN [163]

RNN-based RSNET [164], G+RCU [165], 3D-RNN [166]

Graph-based
DGCNN [167], SPG [168], SSP+SPG [169], GACNet [170], PAG [171],

HDGCN [172], HPEIN [173], SPH3D-GCN [174], DPAM [175],
MBBOS-GCN [186]

Other methods Deep FusionNet [176], AMVNET [177], LGENet [178]

7. Standardisation and Interoperability of BIM

To satisfy the needs of various planning states, a segmented model obtained with
LiDAR must be translated to a compatible building information model. BIM is not a single
software, but rather a process that involves multiple software, operators, vendors, etc.
Different organisations are involved in the construction process, and they use different
software and may need different types of information [187]. Projects based on construction
are complicated; data loss and communication issues are more likely to occur, resulting in
poor project efficiency. This is due to the heterogeneous data that make the interoperability
of software applications critical. The term interoperability is defined as the ability to
exchange and use information across different technologies. To adequately address the
interoperability issues, there is a need for a standardised exchangeable data format that
allows information to be stored and exchanged among various parties with minimal data
loss. This is where BIM standards come into play.

BIM standards involve a variety of organisations using exchange protocols and prin-
ciples to develop a common framework. The Open Geospatial Consortium (OGC) and
buildingSMART have developed various open BIM standards such as IFC, MVD, IDM,
gbXML and LandXML. An existing review of open BIM standards was presented in [188].
The authors described different open BIM standards and software tools for interoperability.
However, the survey did not focus on standards such as gbXML and LandInfra. To fill
the research gap, this section will briefly explain all the standards that are related to Scan
to BIM.

The International Organization for Standardization (ISO) published the first global
standard, IS0 19650, which aims to assist with the management of information during an
asset’s lifecycle in BIM. These standards are based on the UK 1192 series, namely, BS 1192
and PAS 1192. Table 9 depicts four parts of the IS0 19650 standards.
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Table 9. BIM 1SO 19650 standards (information retrieved from [189]).

IS0 19650 Standards Description

BS EN ISO 19650-1 Information management using building information modelling:
Concepts and principles

BS EN ISO 19650-2 Information management using building information modelling:
Delivery phase of the assets.

BS EN ISO 19650-3 Information management using building information modelling:
Operational phase of the assets

BS EN ISO 19650-5 Information management using building information modelling:
Security-minded approach to information management

7.1. Industry Foundation Classes (IFCs)

IFCs are the well-known and worldwide accepted, neutral and open data format for
BIM models, used for exchanging and sharing information on construction data between
heterogeneous software applications. It is registered with international standard ISO
16739-1:2018 and managed by buildingSMART. This principle uses the ISO-STEP EXPRESS
language to describe its model. The first version of the IFCs, IFC 1.0, was developed in
1996 by the International Alliance for Interoperability (IAI), and later it was changed into
the International Alliance for Interoperability (buildingSMART). Since then, it has been
updated in various versions. The current version of the IFCs is IFC 4.2. Another version,
IFC5, is expected to be introduced in the coming years and will include extensive support
for infrastructure applications (e.g., IFC Bridge, IFC Rail, IFC Road, IFC Tunnel, etc.). This
extension will allow for effective and digital planning of construction projects. IFCs can
be encoded in various formats based on their readability, scalability and software support,
namely .ifc, .ifcXML, .ifcZIP, .ttl and .rdf.

The IFCs involve numerous tasks that address building information, for instance,
assessment of the geometry of the building, analysis and simulation, operation and mainte-
nance, planning, etc. In addition, the IFCs have the advantage of providing several levels
of detail based on the same data standard [190]. While the IFCs are powerful and can
describe building models effectively, they pose some challenges such as a lack of geometric
representation and loss of information, especially in transport infrastructures.

7.2. Model View Definition and Information Delivery Manual

Due to the huge variety of object types included in the IFCs and their complex structure,
it becomes complicated to integrate these into software applications. To overcome this
problem, BuildingSMART developed the Model View Definition (MVD) framework. It
is a subset of the IFC schema, which describes the information exchange for a particular
use. An MVD instructs the software developer, specifying which IFC elements to use, how
to execute them and what results to expect [191]. Further information about the MVD
database is provided in [192].

The Information Delivery Manual (IDM) is another buildingSMART standard that is
specified within ISO 29481-1:2010. The IDM aims to capture the process and define the
workflow during the lifecycle of the building. There is a close relationship between the
MVD and IDM, which provides a new way to define and view the information needed
during the design, build and operation phases, as has been discussed in various BIM
research projects. The IDM/MVD framework concerns which information should be sent
by whom, when and to which destination [193].

7.3. gbXML

BIM is not only gaining attention in building design but also making a significant
contribution to building energy models. To support the interoperability between BIM
and building energy analysis, Green Building XML (gbXML), architecture-engineering-
construction XML (aecXML) and ifcXML are playing important roles in the construction
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and building industry [194]. Among them, the most commonly used data format for
sharing building information is gbXML. GbXML is a structured XML schema or language,
used to store data, particularly for energy building models. It has over 500 elements
and attributes that can be utilised to describe all the characteristics of the building [195].
Due to its XML structure, it is faster and more flexible, and it links easily with BIM
software. However, gbXML does not include all the information on building elements for
environmental analysis. For example, gbXML represents only the rectangular geometry of
the building [195,196].

7.4. Other Open Standards

The current version of the IFCs does not contain schemas for infrastructure objects
such as roads, bridges, tunnels and railways. Another open standard is LandXML, which is
based on XML and is used specifically for civil engineering design and survey measurement
data. It is not officially standardised by international standards, such as those of the ISO or
OGC. To make LandXML comply with the OGC, a new open standard LandINFRA [197]
was introduced as a subset of LandXML, supported by the UML conceptual model and
implemented with InfraGML. Kavisha et al. [197] compared LandINFRA with CityGML
and IFC and concluded that LandINFRA may serve as a bridge between GIS and BIM;
however, this standard is still new and has not yet reached maturity.

CityGML [198] is the international standard implemented by the OGC, which uses the
Geography Markup Language (GML) [199] to structure and exchange 3D city models. It
defines the geometry, semantics, topology and representation of the urban 3D city models
with five levels of detail (LODs) [200]. The CityGML model has been completely updated
to reflect the growing demand for enhanced interoperability with other related standards
such as the IFC. The relationship between BIM and CityGML has been a hot topic in recent
years.

Table 10 illustrates the summary of open standards. It is important to note that
LandXML, LandINFRA and CityGML are commonly used to exchange information be-
tween GIS and BIM. The Open Geospatial Consortium and buildingSMART initiated the
Integrated Digital Built Environment (IDBE) joint working group. In their article [201],
they discussed the challenges and opportunities that are involved in the integration of IFC,
CityGML and LandINFRA.

Table 10. Summary of open standards.

Open Standards Body User Focus

IFC buildingSMART AEC, BIM Exchange of data

MVD buildingSMART AEC, BIM
Specifies which
information to

be shared

gbXML Green Building Studio AEC, BIM, energy
modelers

Exchange of data
between building
design and energy

model analysis

LandXML Open Geospatial
Consortium (OGC)

BIM, surveying
engineers

Represents civil
engineering and survey

measurement data

LandINFRA Open Geospatial
Consortium (OGC)

BIM, surveying
engineers

Defines land and civil
engineering

infrastructure

CityGML Open Geospatial
Consortium (OGC) 3D city modelers

Represents and
exchanges 3D
city models
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In summary, the IFC is a good option for BIM and operational aspects, whereas
CityGML is more focused on 3D city models but lacks detailed building information.
LandINFRA includes information on the land and civil engineering infrastructure; however,
it is still a conceptual model. When working on energy-efficient buildings for BIM, gbXML
may be a reasonable choice. To date, open standards for the BIM infrastructure have certain
complexities in terms of the limited availability of libraries for infrastructure objects due
to their complex geometric characteristics [202]. The open standards mentioned above do
not work efficiently with all types of BIM applications, especially when it comes to large
infrastructure such as railways, roads, tunnels and bridges. More efficient standards should
be developed to minimise the costs and time required throughout the project lifecycle.

8. Conclusions and Future Directions

Despite the growing interest in BIM in the architecture, engineering and construction
(AEC) industries, certain issues are associated with Scan to BIM. Laser scanners have been
the key technology in BIM, which generate data usually in the form of large, unstructured
point clouds, making data-processing challenging in practice. As technology advances,
researchers have developed automatic approaches for BIM reconstruction. However, the
current studies demonstrate the poor performance of these in identifying complex structural
elements; these approaches still require manual verification to increase their efficiency in
a complex environment. Thus, a fully automated process for the extraction of semantics
from the raw data in BIM remains a challenge.

Currently, point-cloud processing based on deep learning is still in its infancy. Numer-
ous algorithms such as PointNet, PointNet++, KPCONV and DGCNN have been success-
fully exploited in the classification and segmentation of point clouds. Yet, registration of the
point clouds is still an open challenge. As discussed in Section 5.2.2, deep-learning-based
registration methods have not been explored in a large, complex environment. They have
only been used in basic features such as lamps, cars, etc., or for indoor scenes or small-scale
outdoor scenes. With an increasing demand for machine learning and deep neural net-
works, registration methods can be improved. Future work should focus on developing
efficient and fast learning algorithms in large environments such as roads, bridges, tunnels,
buildings, etc.

Furthermore, the multisource fusion of LiDAR data should also be taken into con-
sideration in BIM. As discussed in Section 4.2, point-cloud data obtained from various
sources are heterogeneous in terms of the scanning view, resolution, ranges, density and
accuracy, which make their integration critical. Future studies must aim to develop effi-
cient algorithms to combine airborne, terrestrial and mobile lasers, which will increase the
automation level of 3D reconstruction in BIM.

Due to the massive number of points, data storage and data transmission become
critical. In this regard, point-cloud compression methods have been used in practice to
reduce the sizes of point clouds. However, such an approach has not yet been utilised in
BIM reconstruction. Thus, it is recommended that we develop effective 3D point-cloud
compression methods, which can be implemented in Scan to BIM applications.

Even with the growing popularity of open BIM standards, interoperability remains an
open issue. As discussed in Section 7, the IFC is the most popular data-exchange format
used in Scan to BIM applications, but it poses certain challenges since many BIM software
tools do not support IFC features. Moreover, transport infrastructure projects are typically
more complex than architectural projects; using BIM tools to design and manage them could
be extremely beneficial. However, the IFC still lacks support for data exchange in transport
infrastructure. Another alternative is LandINFRA, a conceptual model standard, which
has not been widely used yet. Researchers are still trying to investigate, to see if it could
serve as a connection between BIM and GIS. Thus, the potential standards and formats for
interoperability should be addressed in the future. In public-sector infrastructure projects,
however, there remains a lack of digital competence and BIM capacity within the market.
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Integrating emerging technologies and BIM into a single framework has become a hot
research subject in recent years. Moreover, the integration of advanced technologies such
as the Internet of Things (IoT), laser scanners, virtual reality (VR) and cloud computing
could be promising for automation in BIM. However, integrating these technologies is
complicated and the existing solutions may not be efficient. To support future solutions
and promote practical implementation, a complete architecture needs to be implemented
to link scanning technologies, BIM, virtual reality 3D printing, the Internet of Things and
even artificial intelligence. This will allow the entire BIM process to become automatic and
will improve the efficiency and productivity across the project lifecycle.

BIM is one of the revolutionising technologies in the construction industry that uses
standard measuring methodologies to optimise and automate the process. To construct
an efficient digital representation of BIM, it is necessary to examine and comprehend the
complete chain that leads from the acquisition of 3D point clouds from various scanning
technologies to well-structured and semantically enriched digital 3D models. During any
phase of the BIM lifecycle, this information must be shared between several applications or
disciplines. This is where standardisation and interoperability come to the fore. This review
paper has explained the Scan to BIM methodology in detail, from scanning technologies and
3D point-cloud processing methods to the interoperability standards of BIM. Furthermore,
limitations and future trends have been discussed to propose beneficial solutions that
will aid scholars in computer science and the construction industry, by offering insights
into these valuable data and instructions on how to obtain them. In future studies, the
authors will investigate the deep learning approach, which can be applied to develop an
increasingly efficient management of transport infrastructure assets within the Scan to BIM
framework.
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