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Abstract: For the safe and efficient operation of dams, frequent monitoring and maintenance are
required. These are usually expensive, time consuming, and cumbersome. To alleviate these issues,
we propose applying a wave-based scheme for the location and quantification of damages in dams.
To obtain high-resolution “interpretable” images of the damaged regions, we drew inspiration from
non-linear full-multigrid methods for inverse problems and applied a new cyclic multi-stage full-
waveform inversion (FWI) scheme. Our approach is less susceptible to the stability issues faced by
the standard FWI scheme when dealing with ill-posed problems. In this paper, we first selected
an optimal acquisition setup and then applied synthetic data to demonstrate the capability of our
approach in identifying a series of anomalies in dams by a mixture of reflection and transmission
tomography. The results had sufficient robustness, showing the prospects of application in the field
of non-destructive testing of dams.

Keywords: inverse analysis; damage identification; full-waveform inversion; dams; wave propagation

1. Introduction

Tomography is a well-established technique in the non-destructive testing of bodies
and structures. It is based on a technique in which signals of a particular physical domain
are sent through a system. Computer programs evaluate the measurements of the reflected
and transmitted signals and visualize the interior conditions, e.g., by the prognosis of
the material distribution inside. In the analysis of structures in civil engineering, most
tomographic methods are based on mechanical waves. This technique is well known,
e.g., in the field of geotechnical exploration via seismic tomography [1–14]. The wave
equation is the basis, and by an inversion, the layers of different densities and stiffnesses
are detected by reflection tomography. The current paper puts forward the first steps in the
adoption of this technique for the assessment of the structural condition of dams. As is well
known, dams are important structures employed for the generation of hydro-electricity,
the provision of water supply, and flood defense. However, a large number of the dams
that are in operation today were built some decades ago, and their structural condition is
not properly known. The effects of damage, aging, chemical reactions, and internal erosion
may have deteriorated the material properties. It is of the utmost importance to assess the
structural condition carefully to make further trustworthy predictions of the structure’s
reliability [15]. Unfortunately, the conventional inspection methods are generally time
consuming, expensive, and not precise enough; see, for example [16]. To tackle these
challenges, a series of methods was proposed by [17–28]. These methods were designed to
find anomalies in technical structures, mainly for coupled hydro–mechanical systems or
strongly related systems.

Using classic ultrasonic exploration methods, such as the synthetic aperture focusing
technique (SAFT) or the total focusing method (TFM), will not provide the desired penetra-
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tion depth, and only areas close to the surface might be assessed, as all the information of
the ultrasonic waves is not used. However, with the recent technological improvements in
computational capabilities and transducer technology, the usage of the FWI originating
from seismic wave probing may be extended to structures of smaller scales than those
typical in sub-surface exploration. The challenge in dealing with this is that visibly shorter
wavelengths occur, which, first of all, require efficient solvers of the wave equation itself.
Moreover, this is a critical effect using higher excitation frequencies that results in an in-
crease in the ill-posedness of the parameter identification problem (finding anomalies in
dams). A straight-forward application of FWI seems, therefore, impossible, and algorithmic
extensions need to be made, which is the main contribution of this work.

FWI, initially proposed by [29,30] and further developed in the last few decades, can
be regarded as a modern seismic imaging technique. As the subsurface properties do
influence waves, in particular, pressure and shear waves, they can be utilized to probe
heterogeneous domains. FWI is actually an inverse parameter identification problem based
on the wave equation. It may consider recorded signals as the input for a fixed time
according to some dynamic excitation. The information in the signals includes the effects
of reflection, refraction, diffusion, and amplitude. Thus, they are comparatively rich in
information to infer the mediums’ material parameters. The approach of this method,
based on the minimization of the misfit between recorded and numerically generated data
(or a regularized version of them), allows for the estimation of the parameters influencing
the propagation of the seismic body waves’ velocities and density [31]. From the wave
velocities, the Lamé parameters, defining the stress tensor, can be derived. FWI offers
unique advantages in terms of flexibility and increased resolution (e.g., compared to
linearized approaches) and is, hence, capable of imaging the arbitrarily heterogeneous
compression and shear wave velocity profiles of objects of any shape [2].

Based on the successful application of full-waveform inversion (FWI) in geotechnical
exploration and non-destructive testing (NDT) [32–35], especially with subsurface and
engineering structures, the presented method extends this with an application to dams.
In addition to this, the algorithm was formulated as a cyclic multi-frequency stage inver-
sion exploiting the potentials of FWI in a robust extraction of the complete waveform
information to produce high-resolution images.

Of course, inverting wave equations is itself computationally demanding. Embedding
FWI into a cyclic multi-frequency-stage algorithm increases the demands even more. On the
other hand, no other known inspection tool offers such a high accuracy that the increased
computational demands are justified; compare, e.g., [16,36].

In the upcoming sections of this paper, we take an in-depth look at the following:

• Materials and methods: the formulation/algorithm of the forward model and its
boundary conditions, the inverse model, and the inversion process.

• Numerical simulation: the geometry of the dam, the acquisition geometry, the wave
parameters, and the cyclic multi-stage implementation under different conditions.

• Results: FWI results for different acquisition geometries, cyclic multi-stage inversion,
and for different levels of noise.

• Conclusion: a summary of the applicability of our approach to identifying damages
in dams.

2. Materials and Methods

The paper at hand proposes the characterization of a dam’s structural properties
by applying FWI. Therefore, both the forward and inverse model are presented in the
sequel, including some computational details and the extension of the existing theory by
introducing a cyclic multi-frequency-stage inversion scheme.

2.1. Forward Model

The wave equation belongs to the class of hyperbolic partial differential equations.
The equation is merely describing the propagation of a wave through a medium. Its
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solution gives the wavefield at given time and space. The full-waveform inversion is
mainly making use of the wave equation formulated as the acoustic wave equation or the
elastic wave equation.

The system of partial differential equations in Equation (1) is characterizing the elastic
waves propagating in a 2D isotropic linear-elastic medium. Furthermore, only non-zero
displacements in the horizontal direction and depth (x-z-plane) are described [1,37].

ρ
∂vx

∂t
=

∂σxx

∂x
+

∂σxz

∂z
= fx,

ρ
∂vz

∂t
=

∂σxz

∂x
+

∂σzz

∂z
= fz,

∂σxx

∂t
= (λ + 2µ)

∂vx

∂x
+ λ

∂vz

∂z
, (1)

∂σzz

∂t
= λ

∂vx

∂x
+ (λ + 2µ)

∂vz

∂z
,

∂σxz

∂t
= µ

(
∂vx

∂x
+

∂vz

∂z

)
with the initial conditions vi(t = 0) = 0 and

∂vi(t = 0)
∂t

= 0,

σij(t = 0) = 0 and
∂σij(t = 0)

∂t
= 0,

where i and j represent the directions x or z and perfectly matched layers are used as the
boundary conditions. vx, vz are the particles velocities, t is the time, λ, µ are the Lamé
parameters, ρ is the density, σxx, σxz, σzz are the stress tensor components and fx, fz are
the directed body force. Accordingly, the particle velocities can be calculated from the
Lamé parameters using

Vp =

√
λ + 2µ

ρ
and Vs =

√
µ

ρ
. (2)

The elastic wave equation is solved numerically for the particle velocities vx, vz,
stresses σxx, σxz, σzz, density ρ and Lamé parameters (λ, µ) using a time domain 2D finite
difference scheme. It is discretized in time and space, with each of the parameters placed
on a staggered grid [38,39]. The discretization needs to satisfy certain spatial and temporal
sampling conditions in order to avoid numerical artifacts and instabilities in the finite
difference calculation.

The grid spacing dh is chosen by the number of grid points for the smallest wavelength
λw

min in the system. This approach is undertaken to prevent grid dispersion in the simulation.
Furthermore, the Courant–Friedrichs–Lewy criterion (CFL) [40] needs to be fulfilled in
order to stabilize the simulations, and the time stepping dt needs to take less than the time
needed for the wave to travel between two neighboring grid points with distance dh. Due
to the complex free surface of the dam, we apply the Improved Vacuum Formulation (IVF),
proposed by [41] at the air-medium boundary (i.e., top) and the convolutional perfectly
matched layers (C-PML) are applied at the other boundaries to ensure stability and accuracy
of the results.

2.2. Inverse Analysis

The main part of the inverse analysis is the definition of the forward operator, also
called the parameter-to-solution mapping. In this publication, it uses the
following notations

F : X → Y (3)

m 7→ u.
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Here, X is a finite dimensional space of parameters (describing material distributions,
λ(x, y), µ(x, y) and ρ(x, y)), Y is a finite dimensional space of time-dependent measure-
ments. Furthermore, m and u are denoting the model parameters (material distributions)
and the model responses, i.e., wavefields at the sensor locations.

The main concept behind the inverse analysis is formulated through the solution of
the following nonlinear equation:

F(m) = uδ with (4)

uδ = u + εδ,

where εδ comprises measurement errors and model uncertainties. As the solution of
Equation (4) may not exist as the measured data uδ are not in the range of F, we follow
a least-square solution approach, as given in Equation (5). As a measure for the misfit
between modeled and field data, an objective function C f (m) based on the L2-norm of the
data residuals is therefore defined:

C f (m, ωl) =‖ F(m, ωl)− uδ(ωl) ‖L2 , (5)

where the excitation of the waves is achieved with frequency ωl .
We use an iterative procedure which results in a discrete gradient-type procedure

mn+1 = mn − µn H−1
n

(
∂C f (mn)

∂m

)
, (6)

where mn are the iterates at iteration n, µn is the step length,
(

∂C f (mn)

∂m

)
is the gradient

and Hn an approximation of the Hessian matrix at iteration n. An inexact parabolic
line search is employed when estimating the µn [42], while the time-domain gradients
are calculated using the adjoint-state method as presented in [43–47]. For the Hessian,
either the identity is chosen, which renders the algorithm a steepest-descent method, or
we choose an approximation according to a Broyden–Fletcher–Goldfarb–Shanno (BFGS)
updating scheme.

The gradient direction is computed by solving the stress-displacement (σ− u) elastic
wave formulation adjoint problem in Equation (7). Here, the perturbation caused by
anomaly in the data space is back propagated from the receivers into the unperturbed
medium [48]

ρ
∂2δui
∂t2 −

∂

∂xj
δσij = ∆ fi,

δσij − cijklδεkl = ∆Tij, (7)

δεkl =
1
2

(
∂δuk
∂xl

+
∂δul
∂xk

)

with the new source terms ∆ fi = −δρ
∂2ui
∂t2 and ∆Tij = δcijklεkl .

The initial conditions are ui(x, t = 0) = 0,
∂ui
∂t

(x, t = 0) = 0 and

the final conditions are δσij(x, t = T) = 0 and
δ

δxj
δσij(x, t = T) = 0.

The full-waveform inversion procedure is implemented in the DENISE (subwavelength
DEtail resolving Nonlinear Iterative SEismic inversion) 2D time domain C-based code [49] and
shown by the flow chart in Figure 1.
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Calculation of residuals

Cyclic-multi-stage algorithm with increase and 
decrease in the excitation frequency (see Figure 2)

Solving theDefinition of initial model
with parameters 

Calculationg gradient of the 
objective function

STOP

> treshold

< treshold

Backpropagation
of residuals

Updating material parameters Estimation of optimal
step length

wave equation

Figure 1. Flow chart of full-waveform inversion procedure.

Inherent to all inverse problems in engineering are the “ill-posedness” and the non-
linearity of the problem, which need to be attenuated. In the case of FWI, the first step is to
formulate a good starting model, where the model properties are close to a global minimum.
Therefore, the parts of the long wavelengths from the “true” model should be represented
by the starting model as satisfactorily as possible. Additionally, pre-conditioning or regu-
larization should be applied. A reliable tool was found when carrying out the inversion
at different stages, i.e., for different excitation frequencies, to cope with the non-linearity
and ill-posedness of the problem. Each stage is carried out with a certain frequency, and
according to [50], the low frequencies are more linearly related to the model perturbations
compared to high frequencies. Thus, the inversion stages start with lower frequencies and
increase to higher-frequency components of the data. The inversion output of each stage is
used as the input for the next stage; thus, regions of high and low particle velocities are
being captured. As mentioned, higher stages have the advantage of providing a better
resolution; however, stability of the inversion deteriorates even with careful and early
stopping. We observe divergence at many positions in the domain, which finally would
lead to incorrect interpretations. To mitigate this and to further regularize, the process
is repeated by going back to lower frequencies and then increasing again. This results
in a cyclic multi-stage algorithm, which embraces the updating of the model parameters
by setting borders in the frequency range; described here as cycles. A graphical sketch
of the idea of this algorithm is given in Figure 2. As shown, on each intersection with a
horizontal line, a FWI is run with a different excitation frequency. Frequencies increase
and then decrease in one cycle. Repeating this provides chances to obtain high-resolution
identification and keeps the effects of noise and resulting artifacts in the images low. Thus,
the initially strongly ill-posed problem could be regularized sufficiently so that it might
be applied in practice. In particular, for the first cycle(s), it is recommended not to probe
with the highest excitation frequencies. The last cycle should be followed by an increase
towards the maximal frequency.

Figure 2. Scheme of a cyclic multi-stage full-waveform inversion with three full cycles (F 1st cycle,
• 2nd cycle, � 3rd cycle).
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3. Numerical Simulation Example

For the numerical simulation, a dam model (true model) is used, and the material
properties are defined as seismic velocities and densities that are summarized in Table 1
and the true, the initial and the residual model are depicted in Figure 3. The distribution of
the model parameters is given here, where the defects which ought to be detected are not
contained in the initial model. The residual model is giving the difference between the true
and the initial model.

Table 1. Dam material properties for true model.

Material Vp [m/s] Vs [m/s] ρ [kg/m3]

Dam body 3500 2200 2000
Dam tunnel 0 0 1.25

Dam foundation 4500 2700 2550
Water 1500 0 1000

Air/Vacuum 0 0 1.25

(a) True model (b) Initial model (c) Residual model
Figure 3. Distribution of seismic velocities and density in the air, water, foundation and dam
structure: (A) Vp distribution, (B) Vs distribution (note shear waves only travel through solids) and
(C) ρ distribution.

The wave source and sensor/receiver setups are shown in Figure 4. They are used
to collect the required waveform data to perform the inversion. Hence, changes in source
wave properties due to reflection, refraction, diffraction, etc., are detected by the sensors.
Three different acquisition setups are considered (Figure 4) for the FWI.

Setup 1 consists of 28 excitation sources 65 m away from the dam surface and a total of
165 sensors/receivers on the dam and the reservoir bed/foundation. Receivers are placed
at an interval of 0.5 m on the dam and 1 m on the foundation. Setup 2 is similar to setup 1,
in the way that the same number of excitation sources is employed; however, in total,
135 sensors are used. The receivers on the dam foundation are placed within 35 m of the
dam’s face. Lastly, the same numbers of sources and receivers in setup 2 are applied to
setup 3; the difference here is the distance of the excitation sources from the dam’s face.
The excitation sources are closer to the dam’s face (i.e., 35 m away) than in the other setups.

The acquisition geometry can be set up in practice by placing ocean bottom cables
(OBC) on the reservoir floor using boats or remotely operated vehicles (ROV). These
four-component receivers consist of 3-axial geophones to measure the wave speeds and
a hydrophone for the pressure wavefield. In addition to these, an array of geophones
can also be installed on the downstream part of the dam. Similarly, the wave sources
are placed by boats/ROV and can be changed after every shot or to adapt to different
acquisition geometries. The OBCs are preferred for this setup, since the effect of noise from
surrounding activities or water waves are minimized this way.
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(a) (b)

(c)
Figure 4. Acquisition setup showing distribution of sources (F) and sensors/receivers (•) in the
domain. Sensors are placed at the bottom of the reservoir to pick up reflections resulting from
anomalies in the foundation. (a) Setup 1 (b) Setup 2 (c) Setup 3.

The true model of the dam contains anomalies both in the structure of the dam
and in the foundation. The anomalies represent weaknesses in different regions and of
different sizes. In the dam structure, the top anomaly represents a 20% reduction in the
parameter values Vp, Vs and ρ, the second weakening has a 10% reduction and the third
one (i.e., crack zone) possesses a 30% reduction. All the anomalies in the foundation are
reduced by 70% in the material parameter values. The entire simulation domain has a
height of 48 m and a length of 128 m. This includes the dam structure with 28 m height,
the crest of the dam is 4.5 m wide and it measures 19 m at the bottom. The water reservoir
has a size of 30 m times 80 m, the foundation is modeled with 10 m of depth and the
surrounding air is also considered, but there is no change in the air parameters included
in the inversion process (they are fixed). A 2D finite difference scheme on a staggered
grid is used to solve the elastic wave equation. The computational domain is replaced by
a 2.5 m (equal to 10 grid points) thick border with convolutional PML (C-PML) on both
sides and at the bottom of the domain. Owing to the high number of the systems’ global
degrees of freedom (i.e., identifying three parameters for each node in a domain with
512 × 192 = 98,304 nodes), the only meaningful strategy for retrieving a solution is via an
adjoint state method embedded into a Quasi-Newton method. Here, the quasi-Newton
limited memory Broyden–Fletcher–Goldfarb–Shanno (l-BFGS) method is used [42,51,52].

Since the FWI, based on local optimization, is sensitive to the initial model, an initial
model containing the long-wave part of the model to be resolved is required to enable
convergence to the global minimum. In contrast with geophysical exploration, which
requires a series of field experiments to obtain information for the initial model, a priori
information on the parameters of the dam material can often be obtained, since most of
these structures are man-made. Therefore, the material properties can be used as the upper
limit during construction, as in this case. A closer look at Figure 3 shows that the true model
in Figure 3a and the initial model in Figure 3b differ only in the inclusion of regions with
deteriorated material properties in the true model (see Figure 3c). Therefore, the “as-built”
material properties of the dam are taken as the initial model. To study the dam material,
spike wavelets are emitted successively from each of the sources (e.g., airguns). A series of
low-pass filtered spikes are used here, as shown in Figure 4. For each excitation, the source
wavelet as shown in Figure 5 propagates for a duration of 0.1 s, and the time interval (dt)
used for the analysis is 3× 10−5 s, which satisfies the Courant–Friedrichs–Lewy criterion
for stability.



Infrastructures 2022, 7, 161 8 of 19

0 2 4 6 8 10
−0.01

0

0.01

0.02

0.03

0.035

Time [ms]
0 500 1000 1500 2000 2500 3000

0

1

2

3

4

5

6
x 10

−4

Frequency [Hz]

Figure 5. Source wavelet signal: wavelet in time domain (left) and direct Fourier transform of the
wavelet showing the 1000 Hz upper corner frequency (right).

The signals recorded by the 2D receivers as a result of the wave propagating in the
medium are shown in a Figure 6. This seismogram corresponds to the acquisition setup 1
(cf. Figure 4a). Similar seismograms can be recorded for setups 2 and 3, where the number
of traces is reduced, because the number of sensors is decreased. These synthetically
generated seismograms are used as field data for the inverse analysis (i.e., FWI).
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Figure 6. Sensor response due to propagated waves in medium. (Left): Seismogram of all 165
sensor response (i.e., trace) in x-direction as a result of wave propagation from source 14. Trace
100–165 corresponds to sensors on the reservoir bottom; thus, it picks up the waves first. (Right):
Response of trace 53 located on the dam slope.

4. Results

The FWI is carried out in multiple frequency stages, starting from lower frequencies to
higher frequencies (i.e., 0.4 kHz to 1 kHz) to alleviate the non-linearity and the ill-posedness
of the problem. The result of the previous inversion with lower frequency is used as the
starting model for the following inversion, where a higher frequency is applied. Therefore,
with an increasing number of inversions (i.e., increase in frequency per stage), the loca-
tion and boundaries between different particle velocity regions are delineating, and thus,
the quality of the inversion output is enhanced.



Infrastructures 2022, 7, 161 9 of 19

Additionally, the cyclic multi-frequency approach introduced in Section 4.3 is improv-
ing the inversion results as the cyclic increase and decrease in the frequency band dampens
unwanted artifacts.

4.1. Optimal Acquisition Geometry Selection

The different acquisition geometries used are shown in Figure 4. The effects of the
acquisition setups on the inversion quality shall be investigated and, therefore, the inversion
results for the final stage of each setup are shown in Figure 7 for each of the model
parameters. Additionally, the residuals between the inversion results and the true model
are given in Figure 8. Overall, the damage in the dam structure can be easily identified on
visual inspection. Anomalies in the foundation of the dam were not correctly identified.
The best way to identify the anomalies/damage in the dam structure and foundation is to
use the parameter Vs instead of using one of the other two material parameters Vp or ρ.

(a) Setup 1 (b) Setup 2 (c) Setup 3
Figure 7. FWI model for acquisition setups with (A) Vp distribution (B) Vs distribution (note that
shear waves only travel through solids) and (C) ρ distribution.

(a) Setup 1 (b) Setup 2 (c) Setup 3
Figure 8. FWI residuals for acquisition setups as comparison with the true model for (A) Vp, (B) Vs

and (C) ρ, respectively.

The comparison of the cost function value for each of the setups after 40 iteration steps
in Figure 9 shows that acquisition setup 3 provides the best quality on the inversion results.
One inversion cycle stops and proceeds to the next inversion stage when the relative misfit
change between the last two iterations is below a predefined value, which is set to 0.01
in this case. As seen in Figure 9, the transition to the new frequency level may cause an
increase in the cost function value at the first iterations of the new stage. The superiority
of setup 3 is also confirmed by examining the cross-sectional profile cuts through the
regions of damage/anomalies in the dam (see Figure 10). Damage areas saturated with
water can be identified by superposition of the models Vp and Vs. Such zones are made
visible by looking at the properties of Vp, which are capable of traveling through water (at
slower speeds) and Vs which do not travel through fluids but produce better resolution for
damaged zones.
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Figure 10. Profile cut through the dam regions of reconstructed anomalies for acquisition setups 1 to
3 showing a comparison between the true model (—), FWI models (dashed lines: - - setup 1, - - setup
2, - - setup 3) and the initial model (· · ·).

4.2. Influence of Noise (Disturbance in Obtained Data) on the Reconstruction Quality/Error

To test the robustness of the proposed FWI method for dams, the effects of random
noise on the (synthetically generated) measurement data are studied. This investigation
is also necessary, as it tends to factor in some of the uncertainties which may result from
the model quality, equipment reliability in data recording, data handling and other factors
on the field, such as vibrations resulting from the dams operation and other unknown
sources. These can be captured in practice by calibrating/tuning the sensors/receivers
(especially on the downstream of the dam) to these “ambient” vibrations and filtering
them out during analysis. The synthetically generated field data are corrupted by different
levels of Gaussian noise before carrying out the inversion. For each of the sensors used
in the acquisition setup, the recorded data are corrupted by 1%, 2%, 5% and 10% noise.
A comparison of the cost function after each iteration for different noise levels, and also a
comparison of the final cost function values for the noise levels are obtained in Figure 11.
As for the comparison of the different setups, the relative misfit change is set to 0.01 before
the inversion proceeds to the next inversion stage or is aborted for the last and final stage.
Observations in Figure 11a show that the cost function trend for higher noise levels is
shorter compared to lower noise levels. This behavior results from noise-induced velocity
values, which are above the threshold set to ensure the CFL stability criterion; hence, the
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early convergence to a local minimum. Furthermore, in Figure 11b, the cost function values
for each noise level at the end of each simulation, and at the end of the shortest inversion,
are compared.
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Figure 11. Cost function comparison for different noise levels: (a) Cost function trend showing
shorter trend for higher noise levels. (b) Influence of noise on final cost function at the end of the
simulation for each noise level, and also at end of the shortest simulation (13 iterations).

The shortest inversion was for the highest noise level (10%) and had 13 iterations.
Comparison of both plots in Figure 11 gives an idea of the quality improvement between
the 13th iteration and the last iteration for each noise level. Thus, for higher noise levels,
the inversion quality shows little improvement with an increasing number of iterations.
The anomaly identification (inverse analysis) results for the noise levels of 1%, 5% and 10%
for setup 3 are depicted in Figure 12.

(a) (b) (c)
Figure 12. FWI results for anomaly identification, (a) 1% noise (b) 5% noise (c) 10% noise.

A visual inspection of the FWI results in Figure 12 shows that for each increasing level
of noise in the measurement data, there is a corresponding deterioration in the inversion
quality, especially in the dam foundation. This behavior is also visible when looking at the
cut profiles for the model parameter Vs in Figure 13, because the anomaly identification
in the foundation part becomes worse as the noise level increases. However, due to
the sensor/receiver arrangement on the dam slope, informative wavefields transmitted
through the structure enable better identification of anomalies (in the Vs model) in the
dam structure.
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(a) (b) (c) (d) (e)

Figure 13. Profile cut for Vs through the dam in regions of reconstructed anomalies for different noise
levels showing a comparison between the true model (—), FWI model (- -) and the initial model (· · ·).
(a) 0% noise (b) 1% noise (c) 2% noise (d) 5% noise (e) 10% noise.

Considering the results obtained in Figures 11–15, it can be deduced that, depending
on the noise level in the measured data, an increase in the number of iterations does
not necessarily yield better results in relation to the required additional computational
effort. The required computation effort (in terms of time) for 13 FWI iterations considering
different noise levels is presented in Table 2, which also lists the required iterations for each
of the frequency stages depending on the noise level. The analysis is computed on the
VEGAS computer cluster at the Digital Bauhaus Lab. A total of 16 processors are used, with
8 processing elements along the x-direction of the finite-difference grid and 2 processing
elements along the z-direction of the numerical domain.

In practice, noise interference during data acquisition cannot be totally eliminated.
Thus, it becomes necessary to obtain an optimum number of iterations, which leads to
acceptable inversion results, prevents ‘over-fitting’ and, at the same time, reduces the
computational costs. The following estimate for the reconstruction error in Equation (8)
motivates the use of a discrepancy principle that establishes a trade-off between the two
terms on the right-hand side of

‖ m∗ −mn,δ ‖≤ ‖ m∗ −mn ‖︸ ︷︷ ︸
→0, as n→∞

+ ‖ mn,δ
i −mn

i ‖︸ ︷︷ ︸
→∞, as n→∞

, (8)

where m denotes the model parameter, ()∗ represents the true model, ()n is the iteration
number, δ is the noise level being considered and ()δ denote quantities effected by noise.
Therefore, an attempt is made to efficiently calculate the optimal number of iterations that
is required to identify the anomalies in the structure, especially for noisy measurement data.
This is realized by stopping it for the first time ‖ F(m)− uδ ‖≤ δ, where δ ≥ 1 and δ is a
measure of the noise level in the (synthetically) collected data. Therefore, the reconstruction
errors of the model parameters Vp and Vs are plotted over the number of iterations in
Figure 14. Here, it can be observed that the model Vp has its minimum at iteration number
k = 10, except for the noise level of 10 % that stops earlier. In contrast, the minimal
reconstruction error of the model Vs lies at k = 6. Although the Vs model provided
better inversion results than Vp, a comparison between the FWI results after k = 6 and 28
iterations, which is the final one, is shown in Figure 15. The comparison also intends to
check whether the models with the least reconstruction error provide the best results.
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Figure 14. Reconstruction error considering 0%, 1%, 2%, 5% and 10% noise in the data.
(a) Vp reconstruction error (b) Vs reconstruction error.

(a) (b)
Figure 15. FWI results at iteration stages 6 and 28 considering a noise level of 2%. (b) shows better
anomaly identification despite having a higher reconstruction error. (a) Reconstruction at 6th iteration
(b) Reconstruction at 28th iteration (final).

Table 2. FWI computational time after 13 iterations and number of iterations per frequency stage
number both for consideration of noise in data.

Noise Level [%] Computation Time [h] Number of Iterations of
after 13 Iterations Stage 1 Stage 2 Stage 3 Stage 4

0 0.68 14 6 6 6
1 0.85 7 15 6 5
2 0.83 7 15 6 6
5 0.75 5 7 5 5

10 0.78 4 3 3 3

The results achieved in Figure 15 differ significantly from what was expected looking
at Figure 14. Although the 28th iteration has a higher reconstruction error, it gives the
best results according to the visual assessment (i.e., identification of the most damaged
regions) at the expense of increased artifacts. A closer look at the FWI results for higher
iteration numbers (k = 28) shows that, though the inversion quality is better, there exist
more artifacts, indicating damages in regions that are undamaged. Thus, these artifacts
result in a higher reconstruction error, as seen in Figure 14.
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4.3. Cyclic Multi-Frequency Stage Inversion

To reduce the effect of these artifacts at higher iterations and stabilize the inversion,
cyclic multi-frequency analysis with time damping is applied. Here, for each time frame
(tlim [s]), the inversion is carried out in different stages, starting from lower to higher
frequencies (i.e., from 0.4 kHz to 1 kHz) to alleviate the non-linearity and the ill-posedness
of the problem and returning again to lower frequencies. Amplitudes of the acquired signal
lying outside of tlim are damped to 0. The output of each time frame is used as an initial
model for the next, starting the inversion again, from low to high frequency and back again,
as sketched in Figure 2. One cycle is generally completed at the end of each time frame
(i.e., when the inversion reverts to a lower frequency after completing a higher-frequency
stage). In order to ensure a good resolution of small anomalies, it is necessary to finish
with a high frequency. Therefore, it is recommended to increase the frequencies in the last
stages towards the maximum used frequency, as also shown in Figure 2. Information on
the frequency bands and time frames in each cycle is obtained in Table 3, i.e., the cyclic
multi-frequency approach is implemented with ω = 200 Hz, and three cycles are realized.
A low-pass frequency filter is applied. The corner frequencies and the window considered
are indicated in Table 3. Each time window has an origin of 0 s.

Table 3. Cyclic frequency bands and time frames.

Cycle 1 Cycle 2 Cycle 3
Frequency [Hz] tlim [s] Frequency [Hz] tlim [s] Frequency [Hz] tlim [s]

0.4 0.03 0.4 0.06 0.6 0.1
0.6 0.03 0.6 0.06 0.8 0.1
0.4 0.03 0.8 0.06 1.0 0.1

0.6 0.06 0.8 0.1
0.4 0.06 0.6 0.1

0.8 0.1
1.0 0.1

4.3.1. Influence of Noise (Disturbance in Obtained Data) on the Reconstruction Quality for
Cyclic Multi-Frequency Stage Inversion

In opposition to the results gained without the cyclic multi-frequency stages, using
these frequency cycles leads to similar identifications of the model parameters which do
not strongly depend on the noise level. The results of the cyclic multi-frequency inversion
approach are given in Figure 16 under the consideration of different noise levels. When
comparing Figures 12 and 16, the identification of the two areal anomalies above the tunnel
of the dam has become much clearer regarding all three model parameters, but they are
especially visible for the parameter Vs. One drawback of the cyclic multi-frequency stage
analysis is the less accurate identification of the crack at the lower dam area. Nevertheless,
the crack is visible, yet not as precise as in Figure 14. In total, using cyclic stages for
multiple frequencies is reducing artifacts, which is particularly noticeable in the foundation.
A second effect is that both model parameters, the density and the primary wave velocity,
became more informative than for the multi-frequency inversion approach, as the anomalies
can also be identified when looking at these parameters, even though the identification by
Vs is still recommended in comparison.

In addition to the above, the stability of this regularized method compared to the multi-
frequency stage inversion can be seen in the reconstruction error plots in Figure 17. For the
Vs plot (Figure 17b), it can be observed that, as the noise increases, the reconstruction
plot is decreasing step-wise at lower iteration numbers, but also, it is stabilizing with
higher iteration numbers. The total number of iterations is more or less the same for the
noise levels of 1%, 2% and 5%, but it is increasing for 10% noise and also for the case of
no noise (0%). In total, there are more iterations required for the cyclic multi-frequency
approach than for the multi-frequency stage inversion, as there are more frequency bands
used during the inversion process, but nevertheless, there are fewer artifacts present in
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the material parameter results and the quality of reconstruction is increased. This trend
is barely noticeable in the Vp plot, but there is some enhancement in the reconstruction
error of Vp after the FWI compared to the initial model. This is because most of the
damages/anomalies are identified best by the S-waves (Vs).
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Figure 16. FWI results for cyclic multi-frequency inversion anomaly identification. (a) 1% noise;
(b) 5% noise (c); 10% noise.
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Figure 17. Reconstruction error for a cyclic multi-frequency stage inversion considering different
noise levels in the data. (a) Vp reconstruction error (b) Vs reconstruction error.

4.3.2. Influence of Noise (Disturbance in Obtained Data) and Uncertainty in the Starting
Model on the Reconstruction Quality for Cyclic-Multi-Frequency Stage Inversion

In addition to the noise in the data, an important role is played by the starting model
in identifying the material parameters correctly. This circumstance is displayed in Figure 18,
where the FWI results for −10%, +2% and +10% differences in the material parameters of
the starting model from the ones of the dam’s as-built parameters (see Figure 4b) are shown.
When the error in the starting model is rather small (e.g., +2%) the results from the FWI are
comparable to the ones when there is no deviation in the starting model. Comparing the
usage of −10% (Figure 18a) and +10% (Figure 18c) difference of the material parameters
in the initial model, it becomes obvious that the reconstruction of the anomalies performs
better in terms of underestimating the real material properties. In that case, all but the
middle anomaly can still be detected using the cyclic multi-frequency approach. As the
reduction in the material properties of the second anomaly is exactly 10%, it is incorporated
by the whole dam. Therefore, it can be stated that anomalies which deviate less or equally
from the real model than the starting model cannot be determined by the FWI. Overall,
the crack in the lower part of the dam is detected for all displayed differences in the starting
model. Small changes in the starting model do not worsen the identification of the real
material parameters. Additionally, it is recommended to stay on the safe side with the
initial model when underestimating the material properties. From a practical point of
view, uncertainties about the true condition in the undamaged state of more than 10%
seem unrealistic.
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(a) (b) (c)
Figure 18. Cyclic multi-frequency inversion anomaly identification considering certain difference
in dam as-built material properties in the starting model having additionally 2% noise in the data.
(a) −10% difference in starting model (b) +2% difference in starting model (c) +10% difference in
starting model.

5. Conclusions

Our findings in this research paper show the applicability of Full Waveform Inversion
(FWI) in the non-destructive testing (NDT) of superstructures as a viable option for the cur-
rent difficulties and inefficiencies faced in dam monitoring. To overcome the shortcomings
of the standard FWI, we apply our cyclic multi-stage approach as discussed in Section 4.3.
The robustness of our approach is shown by the high-resolution reconstruction of the dam-
aged regions, considering the varying intensity of noise used to corrupt the data. Further
findings from our research to be considered are as follows:

1. The proposed FWI formulation is capable of effectively identifying and quantifying regions
of weaknesses (i.e., heterogeneity) in both the dam structure and its foundation.

2. The dam’s as-built material properties are used as a starting model for the inversion.
This information is, in most cases, readily available, or can be easily estimated. If the
material properties are completely unknown, it is recommended to underestimate
and not to overestimate them.

3. The efficiency of this method is influenced by the data acquisition geometry. Thus,
we propose an acquisition setup which encloses regions in which critical damage
is expected.

4. The damaged regions are generally of lower velocities and smaller scale; thus, the
Vs model, with its shorter wavelength, resolves the anomalies better than the Vp and
ρ models.

5. The multi-cyclic-stage inversion prevents the reconstruction error of the Vs parameter
from increasing with a higher number of iterations (see Figure 4b vs. Figure 17b).

6. A superimposition of the Vp and Vs models to identify damaged regions saturated
with water increases the robustness of the method by leveraging the advantages of
both models.

7. The identified damages in the dam body had a better quality than the ones in the
dam foundation for data corrupted with high noise levels. Thus, we propose, where
possible, an acquisition setup which favors the recording of transmitted waves.

An outlook for future work would consider excitation sources placed within the dam
structure, especially with regard to the reconstruction of better Vp and ρ models.

Author Contributions: Conceptualization, M.A. and I.R.; methodology, M.A.; software, D.K.; vali-
dation, M.A. and I.R.; formal analysis, M.A. and I.R.; investigation, M.A.; data curation, M.A. and
I.R.; writing—original draft preparation, M.A. and I.R.; writing—review and editing, I.R. and T.L.;
visualization, M.A. and I.R.; supervision, T.L.; project administration, T.L.; funding acquisition, T.L.
and F.W. All authors have read and agreed to the published version of the manuscript.

Funding: The authors gratefully acknowledge the financial support of the German Research Foun-
dation (DFG) under the grant LA—2869/10-1, and that of the DFG research training group 1462



Infrastructures 2022, 7, 161 17 of 19

“Evaluation of Coupled Numerical and Experimental Partial Models in Structural Engineering”.
Further, parts of the research are supported by BMWi-ZIM/AiF within the project “Hochfrequentes
seismisches Betonprüfverfahren zur hochaufgelösten zerstörungsfreien Prüfung von großvolumigen
Betonbauwerken am Anwendungsfall einer Talsperre”. We acknowledge support from the Ger-
man Research Foundation (DFG) and Bauhaus-Universität Weimar within the program of Open
Access Publishing.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Please contact the corresponding author.

Acknowledgments: This research was supported in part through computational resources provided
on the VEGAS cluster at the Digital Bauhaus Lab in Bauhaus-Universität Weimar, Germany.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Dokter, E.; Köhn, D.; Wilken, D.; Nil, D.; Rabbel, W. Full-waveform inversion of SH-and Love-wave data in near-surface

prospecting. Geophys. Prospect. 2017, 65 , 216–236. [CrossRef]
2. Fichtner, A.; Kennett, B.L.; Igel, H.; Bunge, H.P. Full waveform tomography for radially anisotropic structure: New insights into

present and past states of the Australasian upper mantle. Earth Planet. Sci. Lett. 2010, 290, 270–280. [CrossRef]
3. Köhn, D.; De Nil, D.; al Hagrey, S.; Rabbel, W.; Khaledi, K.; König, D.; Schanz, T. Monitoring elastic parameter changes in

the vicinity of salt caverns due to cyclic loading by seismic waveform inversion. In Proceedings of the Energy Geotechnics:
Proceedings of the 1st International Conference on Energy Geotechnics, ICEGT 2016, Kiel, Germany, 29–31 August 2016; CRC
Press: Boca Raton, FL, USA, 2016; p. 45.

4. Nguyen-Tuan, L.; Lahmer, T.; Datcheva, M.; Stoimenova, E.; Schanz, T. A novel parameter identification approach for buffer
elements involving complex coupled thermo-hydro-mechanical analyses. Comput. Geotech. 2016, 76, 23–32. [CrossRef]

5. Operto, S.; Virieux, J.; Dessa, J.X.; Pascal, G. Crustal seismic imaging from multifold ocean bottom seismometer data by frequency
domain full-waveform tomography: Application to the eastern Nankai trough. J. Geophys. Res. Solid Earth 2006, 111, B09306.
[CrossRef]

6. Operto, S.; Miniussi, A.; Brossier, R.; Combe, L.; Métivier, L.; Monteiller, V.; Ribodetti, A.; Virieux, J. Efficient 3-D frequency-
domain mono-parameter full-waveform inversion of ocean-bottom cable data: Application to Valhall in the visco-acoustic vertical
transverse isotropic approximation. Geophys. J. Int. 2015, 202, 1362–1391. [CrossRef]

7. Peter, D.; Komatitsch, D.; Luo, Y.; Martin, R.; Le Goff, N.; Casarotti, E.; Le Loher, P.; Magnoni, F.; Liu, Q.; Blitz, C.; et al. Forward
and adjoint simulations of seismic wave propagation on fully unstructured hexahedral meshes. Geophys. J. Int. 2011, 186, 721–739.
[CrossRef]

8. Plessix, R.E.; Perkins, C. Thematic Set: Full waveform inversion of a deep water ocean bottom seismometer dataset. First Break
2010, 28, 71–78. [CrossRef]

9. Sirgue, L.; Barkved, O.; Dellinger, J.; Etgen, J.; Albertin, U.; Kommedal, J. Thematic set: Full waveform inversion: The next leap
forward in imaging at Valhall. First Break 2010, 28, 65–70. [CrossRef]

10. Tape, C.; Liu, Q.; Maggi, A.; Tromp, J. Seismic tomography of the southern California crust based on spectral-element and adjoint
methods. Geophys. J. Int. 2010, 180, 433–462. [CrossRef]

11. Tran, K.T.; Luke, B. Full waveform tomography to resolve desert alluvium. Soil Dyn. Earthq. Eng. 2017, 99, 1–8. [CrossRef]
12. Tran, K.T.; McVay, M. Site characterization using Gauss–Newton inversion of 2-D full seismic waveform in the time domain. Soil

Dyn. Earthq. Eng. 2012, 43, 16–24. [CrossRef]
13. Vigh, D.; Jiao, K.; Watts, D.; Sun, D. Elastic full-waveform inversion application using multicomponent measurements of seismic

data collection. Geophysics 2014, 79, R63–R77. [CrossRef]
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