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Abstract: The study of patterns of urban mobility is of utter importance for city growth projection
and development planning. In this paper, we analyze the topological aspects of the street network
of the coastal city of Cartagena de Indias employing graph theory and spatial syntax tools. We find
that the resulting network can be understood on the basis of 400 years of the city’s history and
its peripheral location that strongly influenced and shaped the growth of the city, and that the
statistical properties of the network resemble those of self-organized cities. Moreover, we study the
mobility through the network using a simple agent-based model that allows us to study the level of
street congestion depending on the agents’ knowledge of the traffic while they travel through the
network. We found that a purely shortest-path travel scheme is not an optimal strategy and that
assigning small weights to traffic avoidance schemes increases the overall performance of the agents
in terms of arrival success, occupancy of the streets, and traffic accumulation. Finally, we argue that
localized congestion can be only partially ascribed to topological properties of the network and that
it is important to consider the decision-making capability of the agents while moving through the
network to explain the emergence of traffic congestion in the system.

Keywords: network analysis; traffic analysis; agent-based modeling (ABM); urban expansion

1. Introduction

Urban mobility tends to be categorized as either daily mobility or occasional mobility,
and in terms of its spatial nature, has two aspects: one is an appropriate or resolved process
that is translated into effective or physical movement (generally expressed under the
metric of Euclidean space as a flow) and the second is a potential process (as an unrealized
virtuality, that is, as an alternative option for the agents that are mobilized). This double
cognitive assessment is a key factor in the historical process of growing human mobility
due to “the propensity to seek a significant number of places of activity, rather than to
reduce travel times” [1].

The underlying infrastructure and spatial substrate where mobility in a city occurs
is along street network, and many studies have been devoted to the analysis of these
networks in terms of spatial syntax and graph theoretical approaches [2]. The study of the
structural aspects of a road network helps in the understanding of some of the emergent
behavior that appears in this intrinsically complex system. For instance, the statistical
properties of a street network are proxies for the development history of a city ranging
from self-organized to strongly planned urban areas [3–5]. Another interesting emergent
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phenomenon arising from the interaction between vehicles in a network is the traffic
jam [6,7]. Traffic congestion can also be assessed from the graph theoretical perspective: for
example, it has been established that the centrality properties of a street network strongly
correlate with vehicular density [8,9]. The importance of identifying key structural points
in the network is therefore fundamental to the design and application of infrastructural
solutions, such as roundabouts [10–12] and overpasses [13,14], aiming to ensure a smooth
flow of vehicles.

Even when the importance of the study of the structural properties in these networks
is not in doubt, vehicular mobility in a city is a dynamic phenomenon. This requires the
use of modeling tools beyond the static picture that spatial syntax provides [15]. Different
types of models have been proposed to this end, from microscopic models that include
cellular automata and car-following models to macroscopic models studying vehicular
density through continuity equations [16–18].

Within the microscopic vehicular flow models are agent-based models, where vehicles
behave as elements with a certain degree of decision autonomy while they move through
the network [19]. This type of modeling has gained much attention in the transport commu-
nity, so much so that to date, there exist several agent-based modeling software specially
used in transport systems (see, for instance, [20–22]). Here, we make use of a simple
agent-based model that has been used in the context of communication networks [23–26]
and, more recently, for road networks [27] and we adapt it to vehicular movement along
the road network of Cartagena de Indias. The choice of the model is motivated by the
simple algorithmic implementation in contrast with other complex microsimulation tech-
niques. In this model, agents are created at a given rate, and each vehicle (agent) tries
to reach its destination based on a protocol that seeks to minimize the distance traveled
while avoiding congested streets. The model used here incorporates topological elements
(network) together with congestion perception in the agent’s choice to take an alternative
route to its destination, an aspect that is quite often underestimated. This emphasizes the
emergent aspects of self-organization arising from the agent’s decision-making capabilities
based on perception of traffic jams.

With the purpose of finding evidence for self-organization, we start studying the
morphological (graph) representation of the road network in Cartagena de Indias. We apply
spatial network metrics, and we discuss how the particular historical pathway of the city
shaped the configuration of the network. Moreover, we analyze the effect of the resulting
road structure in the displacement flows through the city using the agent-based model
at different rates of incorporation of agents into the system. The resulting correlations
allow us to check the nonlinear and counterintuitive effects related to the self-organization
of displacement flows. To this end, the paper is organized as follows: In Section 2, we
describe some generalities of Cartagena de Indias urban development. In Section 3, we
present the methodological aspects of the research, namely the network tools to be applied
and the agent-based model. In Section 4, we analyze the results that we obtain, and finally,
in Section 5, we discuss some conclusions and future work.

2. Case of Study: Cartagena de Indias

Cartagena de Indias (Colombia) is a coastal city with an area of 559 km2 and a
population of approximately one million residents (1,028,736 in 2020) according to the last
national census in 2018. It has an influx of tourists (nonresident foreigners) and visitors
who totaled 530,177 (2019) people per year, before the outbreak of COVID-19. These visitors
moved through an urban area (which, in 2019, was just under 82 km2 of the 559 km2 of
the city’s total area) that comprises the historic city center and other relevant places [28].
Due to the diversity of economic activities in the city that includes industry, port logistics,
commerce, and cultural promotion, the city is recognized as a well-known productive and
economic hub of the country. The infrastructure of urban mobility has evolved towards a
road network with a total length of 1359 km (Authors’ calculation based on GIS Data of
Open Street Map (OSM)), with only 321 km (23.6% of the total) of these constituting main
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roads or avenues capable of supporting public transport vehicles of different dimensions.
This road network was developed despite the physiography of the city of Cartagena, which
is characterized by an extensive network of wetlands, canals, and lagoons, in addition
to the 198 km of coastline and an important insular system (see Figure 1). Altogether,
Cartagena’s urban mobility network is composed of a complex mix of convergent flows
linked to import/export cargo, the supply and distribution of goods and merchandise,
as well as the itineraries of residents and visitors from neighboring municipalities.

Figure 1. Geographical location of Cartagena. The map was generated based on information from
the following sources: Instituto Geográfico Agustin Codazzi (IGAC), Secretaria de Planeación del
distrito de Cartagena, and World Topography map ESRI.

Figure 2 illustrates the types of enclaves that are related to the principal daily flows
of traffic within the urban zone. As can be seen from the figure, the main artery of the
city is the Pedro de Heredia Avenue, which is the only main road artery of the city. This
condition is even more critical when one considers that, at the intersections of this main
artery, there is not a single overpass along its route between the Industrial Zone, Ternera,
and the Historic City Center. This means that influxes are concentrated at the intersections
and organized primarily via roundabouts and traffic lights. A detailed explanation of the
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historical context of the urban configuration can be found in Appendix A. Briefly speaking,
three main types of vehicle flows are found in the City of Cartagena:

• Most daily trips are made to/from the historic city center, since it is the locus of
many institutions and enterprises. Moreover, in the city, we find a convergence of
touristic circuits coming from the airport, the harbor, and the bus terminal. The influx
of vehicles comes via the Pedro de Heredia Avenue.

• Another important flux in the network is formed by industrial workers traveling to
the Mamonal Industrial Zone. It should be noted that it is in this area that cargo
operation logistics are concentrated and large vehicles (cargo trucks) are therefore
mixed with regular vehicles.

• The third type of flux is composed of interurban vehicles transporting workers from
nearby municipalities (see Figure 1) including insular and rural areas.

In summary, mobility in Cartagena can be roughly summarized as two gravity zones
acting as sinks for the vehicular flow (city center and Mamonal Industrial zone) and the
different peripheral areas acting as sources.

Figure 2. Illustrative map of Cartagena’s enclaves.

3. Mathematical Methods
3.1. Network Analysis

In order to study the road network of the city of Cartagena, we made use of the ArcGIS
software to obtain the so-called primal representation [29] of the graph where intersections
are represented by nodes and roads are represented by links in the graph. The data was



Infrastructures 2021, 6, 85 5 of 18

adapted from the GIS Data of Open Street Map (OSM) that included the length of streets
and the coordinates of the intersections. Only main streets were considered, and these
were chosen as the streets used by the Public Urban Transportation System. With this
information, we can represent the mobility network of Cartagena de Indias in the form of
a graph G with roads represented as links and intersections as nodes. Each link (street)
connecting intersections i and j is assigned a weight lij equivalent to the length of the
connecting street. Only intersections of more than two streets were considered, since a
two-road intersection can be merged in a single link with total distance equal to the sum of
individual distances. Although this coarse grain approach can overlook dynamic processes
such as the existence of pedestrian signals, we consider these to be a second-order effect in
our analysis.

With the aim of assessing the topological features of the graph related to the emergence
of traffic congestion, we quantified several topological indicators to try to establish critical
nodes for mobility in the Cartagena mobility network map. First, we calculated the
characteristic path length of the network defined as the average distance L across the
network, namely:

L =
1

N(N − 1) ∑
i 6=j

Dij, (1)

where Dij is the distance matrix defined as the shortest path between nodes i and j, consid-
ering the actual lengths of the streets, and N is the number of nodes across the network.

We also analyzed the topology of the street network in terms of the angular distribution
of the intersections, namely the angle made between two streets that meet in a common
node. The angle between two incident links i and j can be calculated as:

θij =
cos−1(Vi ·Vj)

||Vi|| · ||Vj||
, (2)

where Vi (Vj) are the vectors formed by the points defining the initial and end coordinates
of the street i (j) [30].

Additionally, two measures of centrality were calculated, namely closeness centrality
ci and betweenness centrality bi for each node, defined as:

ci =

(
Ai

N − 1

)2 1
Di

(3)

bi = ∑
s,t 6=i

nst(i)
Nst

(4)

In Equation (3), Ai is the number of reachable nodes from i excluding itself and Di is
the sum of distances from node i to all reachable nodes. In Equation (4), nst is the number
of shortest paths from nodes s and t that passes through i and Nst is the total number
shortest paths from s to t .

3.2. Dynamics of Traffic Flow

Once we have described the topological features of the street network, we proceed to
use this network to simulate traffic flow on it through an agent-based model and describe
different scenarios arising from different agents’ behavior. To do so, we made use of the
traffic flow model first proposed in [23] used in the context of communication networks.
This model considers at each time step a set of R agents with predefined departure and
destination nodes. The number of agents R reflects an element traveling across the network.
The most straightforward interpretation is that agents are equivalent to single automobiles,
but they could also include motorcycles, bikes, and massive transport systems. At each
step, one node can transfer only one agent to a neighboring node i following a strategy that
amounts to reducing the “effective distance” to the agent’s destination. Notice that, since
each node can only transfer one agent at each simulation step, it is possible that a queue of
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agents is formed in certain nodes, especially those with high betweenness-centrality [31].
An agent in a node will then travel to the neighboring node i with the smallest effective
distance defined as:

di = hD̂ij + (1− h)qi (5)

where qi is the occupation of the neighboring node, h ∈ [0, 1] is a parameter that tunes the
degree of importance that the agent gives to the traffic knowledge, and D̂ij = Dij/ < l >,
i.e., the distance from neighboring node i and destination j is properly normalized by the
average length of the streets in the map. Given that the agents only move to an adjacent
node at each time step, this time step represents roughly a time scale of tens-of-seconds,
which is usually the time required to travel between intersections. In Figure 3, we show
a prototype example of the agent’s calculation at each time step. An agent at the current
node n0 is seeking to reach destination n f . In the schematic example, two possible routes
to follow are given to the agent r1 and r2 depicted in red. In r1, only one intersection (circle)
is found with a total distance of 200 m, and the occupation (queue) of that intersection is
given by the number of points in the node. Conversely, route r2 has two intersections with
a total distance of 250 m and two intersections. Notice that the agent in node n0 only sees
the occupation of the nearest intersection. The decision of taking r1 or r2 will depend on
the calculation of the effective distance along each route dr1 and dr2 , namely:

dr1 = h
(

200
〈l〉

)
+ (1− h)4 (6)

dr2 = h
(

250
〈l〉

)
+ (1− h)2 (7)

Normalization of the distance is made in such a way that the two terms being com-
pared in the effective distance vary in a similar order of magnitude, preventing one
variable from becoming excessively larger than the other. It is easy to verify that, assuming
〈l〉 = 100 m, the same agent picks r2 if h < 0.8 and r1 otherwise. Of course, a value of h = 1
is a strategy which always follows the shortest path, while h = 0 is equivalent to a random
walk through the less-congested nodes until reaching the destination. Once an agent has
reached its destination, it is removed from the network and the number of iterations it took
to reach it (arrival time T) is stored for further analysis. A way of determining the level of
congestion in the network is through the so-called order parameter. This indicates whether
the number of agents in the network tends to increase in time, or whether it reaches a
steady value. The order parameter can be defined as:

ρ = lim
t→∞

Nag(t + τ)− Nag(t)
τR

. (8)

In Equation (8), Nag(t) is the number of agents in the network at time t and τ is an
observation time that is selected after a transient that guarantees that the system is in a
steady operation. The order parameter ρ ∈ [0, 1], with ρ = 0 describing a road network
with no congestion, while ρ > 0 indicates a transition to a congested one.

Depending on the assignation of the departure and destination node, we will distin-
guish between two different scenarios:

• Scenario #1: Both departure and destination nodes are assigned randomly.
• Scenario #2: Departure and destination nodes are defined following a preferential

assignment rule, seeking to emulate realistic commuting patterns:

(i) 80% of the R agents created at each step are assigned a destination node within
the historic city center and the Mamonal Industrial Zone, the main centers of
gravity as described in Section 2. The other 20% are assigned randomly across
the nongravity nodes.

(ii) Similarly, 80% of the R agents created at each step are assigned a departure node
in the peripheral area, namely nodes from the northern, eastern, and southern-
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most areas. The remaining 20% of departure nodes are assigned randomly across
the nonperipheral nodes.

n0
n f

100m 100m

100m

50m

100m
r2

r1

Figure 3. Schematic representation of the algorithm for a given agent. Agent’s current position n0 is shown in the node with
triangular shape and destination n f with rectangular shape. Two possible choices r1 and r2 toward the destination node are
depicted in red with different intersections along the route (circles). The road length is shown next to each link and the
occupation of the node q is shown with the number of points at the intersection.

Simulations of the agent-based model and statistical analysis were performed using
custom-made scripts written in Matlab 2018b. Scripts and related files can be accessed
through the web page reported in the Data Availability section.

4. Results
4.1. Network Analysis

We first performed the topological analysis described in Section 3.1. The coarse grained
network of the city of Cartagena is composed by N = 693 intersections and k = 1208 roads.
The road length distribution is shown in Figure 4. From this distribution, it is possible
to deduce a median length of med(l) = 170 m, and a standard deviation σ = 734 m.
A large σ value, with respect to the median, is the fingerprint of long-tailed distributions.
The nature of the distribution of the road length is of course highly dependent on the
scale of the street map that is being analyzed. A smaller dispersion of the street’s length
data is to be expected if we were to consider specific geographically localized areas in the
map. However, as we are interested in the large scale analysis, few long streets connecting
distant suburban areas of the city may appear, giving rise to the exponential decay of the
distribution (see inset Figure 4A). From an urbanistic perspective, this type of distribution
with a pronounced peak at short routes is an indicator of few urban interventions of
long-distance road infrastructure that allow high travel speeds and substantially modify
spatial accessibility.
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Figure 4. Distributions in Cartagena’s road network. (A) Streets’ length: Main figure shows the distribution in linear
scale truncated to roads smaller than 1 km. Inset: Same as main figure in log-lin scale, revealing an exponential decay
of the distribution. (B) Distribution of distances in Cartagena’s road map (blue) and the characteristic path length (red).
Inset: Same as in main figure in log-lin scale showing the exponential decay of the distance distribution. (C) Angles
between intersections.

This type of distribution has been reported already in [3] in cities with self-organized
development in contrast to cities with strongly planned growth. This is consistent with
the historical growth of Cartagena described in Appendix A, and the lack of monitoring
and evaluation of the management of urban planning of the city conceived in the territo-
rial planning of Cartagena [32]. The phenomena of self-organization expresses complex
interactions in the flow of activities and urban traffic of the XXI century on the rugged
physiography of the coastline and the wetlands, and a fortified enclave with military design
prior to 1830. These interactions are expressed simultaneously in various places through
the fabric of the urban network in the form of congestion and can be due to multiple factors:
behaviors and daily itineraries of social groups, mobility restrictions due to housing and
public space conditions, patterns of commerce and work, and the adaptations and the
behaviors of the agents who move. Short roads indicate numerous intersections with road
geometry that limits visual depth and makes turning radii unsuitable for public transporta-
tion vehicles. Next, the distribution of the distances in the network is shown in Figure 4B,
where a characteristic path length (depicted as a red dashed line) L ≈ 7 km, was found.
Comparing this result with those reported in panel A of the same Figure, one can deduce
that a trip between two randomly chosen points of the network requires the crossing of
approximately 40 intersections constituting sources of conflicting flows. Conflict between
flows can be increased when crossings meet at sharp angles. To examine this, we calculated
the distribution of the angles between intersections according to Equation (2), which is
shown in Figure 4C, and we found that, for the city of Cartagena, there is an expected
peak in the angular distribution around 90° and integer multiples (see second peak at 180°),
which is due to the gridlike structure of cities. This peak is more and more pronounced in
top-down planned cities [33]. However, in the case of Cartagena, such top-down planning
has been lacking for many years due to poor long term policies, and more importantly due
to its topographical location that has conditioned its growth.

In Figure 5, we show the resulting centralities in Cartagena’s street network, which,
for the sake of visualization, have been normalized to their respective z-score (number of
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standard deviations that a given value deviates from the mean) mapped to the color code.
Figure 5A depicts ci where it is possible to observe that the most central nodes according to
this indicator are located at the geographical center of the urban area, following precisely
the path of Pedro de Heredia Avenue. As previously mentioned, this avenue constitutes
the backbone of urban expansion from the old city center. In previous studies and mobility
interventions, the condition Pedro de Heredia avenue as the main artery has been ratified.
It has the highest hierarchy amongst urban roads in Cartagena, and for the same reason, it
is highly vulnerable to collapse or interruption [34] along its critical nodes (depicted in red).
This suggests that Cartagena’s mobility network is highly vulnerable to contingencies in
those critical nodes, such as seasonal congestion, road accidents, or street blockage during
social protests, that may lead to the emergence of traffic congestion that rapidly spreads to
the rest of the network.

Meanwhile, the spatial distribution of bi (depicted in Figure 5B) highlights the impor-
tance of a few critical intersections, which are mainly located in the geographical center,
but it may also extend to several nodes in the southern area of the city where the industrial
complex enclave is located. The assessment of the spatial distribution of betweenness cen-
trality is crucial to identifying critical nodes for commutation and/or change of flows. It is
widely accepted that, by means of centrality measures, it is possible to predict where traffic
congestion will emerge, and to prioritize the construction or adaptation of specialized
equipment (bridges, roundabouts, and overpasses, among others) to prevent and buffer
traffic jams.

Figure 5. Cont.



Infrastructures 2021, 6, 85 10 of 18

Figure 5. Spatial distribution of centrality measures in Cartagena’s street network: (A) Closeness centrality and (B) Be-
tweenness centrality. The values in the color map correspond to the z-score of each indicator.

Finally, it is also worth noticing that the distributions of ci and bi are remarkably dif-
ferent (see Figure 6). Whereas the cumulative distribution function (CDF) of ci follows the
trend of a unimodal distribution with relatively small dispersion, bi presents an exponential
decay. This is consistent with results reported in Figure 5, where the spatial distribution
of bi showed few nodes in the network with large betweenness centrality while the vast
majority had small values.

4.2. Dynamics of Traffic Flow

In Figure 7, we show three different situations arising along Cartagena’s street network
considering three different values of h, according to the model described in Section 3.2
under scenario #1. For the simulations considered here, we have computed 1500 iterations
at a fixed rate of agent’s creation of R = 5. This amounts to the mobilization of around
7500 “vehicles” in a time period of roughly 4 h, a reasonable number in a medium-sized
city such as Cartagena. It is interesting to observe that, assigning a large weight to traffic
knowledge (small h) produces largely extended congestion in the network, as testified by
the largest value of the order parameter with respect to the other values of h, but also by
the larger values of the arrival times T and a distribution of node occupation that largely
deviates from 0. Decreasing the weight given by agents to knowledge of traffic congestion
decreases both the arrival time and the spatial extension of congested nodes (see middle
panel h = 0.9). However, in the extreme case in which h = 1, the agents in the network
only follow the shortest path strategy and congestion rapidly arise in a few nodes, creating
long queues which effectively increase the order parameter. Even though the arrival times
seem to be smaller on average for h = 1, it should be taken into account that arrival times
are only calculated among agents who have reached their destinations; this means that for
h = 1, these agents who managed to arrive have done so in a relatively short time, but the
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agents in the long queue of the high betweenness centrality nodes will need to wait a much
larger time, which is not yet evident in the distribution of T.

Figure 6. Cumulative distributions of centrality measures. CDF for (A) closeness centrality and (B) betweenness centrality.

Figure 7. Different congestion cases with varying agent’s behavior under scenario #1. Left panels: Distribution of arrival time.
Middle panel: Histogram of the occupation in the network. Right panels: Spatial occupation of the network. In this figure,
the panel (A) refers to h = 0.5, panel (B) h = 0.9, and panel (C) h = 1. For this simulation, R = 5 was fixed and the system
was simulated through 1500 iterations, discarding the first 500 iterations, which were considered as transient behavior.

We performed the same experiment using the preferential assignment of origin and
destination, i.e., scenario #2 described in Section 3.2. As can be seen from Figure 8, this
scenario, which seeks to reproduce a realistic commuting pattern for the local population,
shows a similar distribution of occupation as in the completely random case. The only
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difference that seems to emerge is that occupation tends to move slightly towards the
eastern and northeastern areas due to the fact that these correspond to preferential origin
areas whose fluxes meet in the most occupied region of the map. Once again, there appears
to be an intermediate value of h that minimizes the order parameter and therefore the
occupation of the network.

Figure 8. Different congestion cases with varying agent’s behavior under scenario #2. Left panels: Distribution of arrival
time. Middle panel: Histogram of the occupation in the network. Right panels: Spatial occupation of the network. In this
figure, the panel (A) refers to h = 0.5, panel (B) h = 0.9, and panel (C) h = 1. For this simulation, R = 5 was fixed and the
system was simulated through 1500 iterations discarding the first 500 iterations considered transient behavior

These results are of course intuitive: following a shortest path strategy is by no
means an optimal one, and avoiding congested nodes leads to less congested scenarios.
The average statistics of several indicators point to the same conclusion as shown in
Figure 9. For instance, panels A–D show, respectively, average arrival time, average
occupation of congested nodes (those with at least one agent), the fraction of the total
agents that have not reached destination (RNit/ ∑i qi), and the order parameter as a
function of h for two different values of R, namely R = 5 and R = 10 under scenario #1.
Panels B–D show a monotonic trend up to h ≈ 0.95 indicating a better performance of the
network for increasing h. However, at h = 1, all the indicators change trend indicating a
worsening of the performance. The only exception appears to be 〈T〉, which monotonically
decreases for increasing h. This exception can be justified with the same arguments made in
the previous paragraph, namely that we are not considering agents who did not arrived at
their destinations for this calculation. The same trend seems to be followed under scenario
#2, which can be seen in the insets of the corresponding figure for both values of R. Notice
that, in contrast to scenario #1 that shows a smooth trend in all the considered indicators,
simulations of scenario #2 required averaging across different realizations, producing the
error bars in the insets.
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Figure 9. Average statistics as a function of h: (A) Arrival time. (B) Occupation larger than 0. (C) Fraction of nonarrived
agents (D) Order parameter. In all panels, insets refer to the corresponding indicator under scenario #2 averaged across
15 realizations. Error bars denote one standard deviation.

Finally, with the aim of understanding the topological features underlying the emer-
gence of traffic congestion, we correlated the values of centrality of each node to its
occupation number qi under scenario #1 (see main panels in Figure 10). Not surprisingly,
for h = 1, the highest correlation between bi and qi is achieved due to the fact that h = 1 is
precisely the shortest-path strategy, and nodes with high bi indicate intersections where
several shortest-paths pass through. Meanwhile, for the same value of h, closeness central-
ity is barely correlated with qi. The most striking feature is that even slight decreases in h
dramatically change the scenario, namely correlations between ci and qi start being signifi-
cant and betweenness ceases to correlate significantly. Interestingly, when considering the
correlations with scenario #2 (see insets of Figure 10), the correlation of the occupation and
closeness centrality dramatically decreases and it seems to be maintained below 0.5 (on av-
erage) for all the considered values of h and for both values of R. This can be ascribed to the
fact that one of the gravity areas in the network, namely the southern Mamonal Industrial
Zone and all the peripheral areas acting as preferential sources, do not correspond to nodes
with high closeness centrality and therefore much of the dynamics occur at these nodes.
In contrast, in the purely random scenario, there is a much higher chance that either origin
or destination belong to high closeness centrality nodes simply because there is a larger
density of nodes in that area. Betweenness centrality in this commuting pattern scenario
is again barely correlated with occupation. More surprisingly, even at R = 10 and h = 1,
where maximum correlation at around 0.6 was achieved in the random scenario, for the
real commuting pattern, this value barely reaches 0.4, a considerably lower correlation.
The results shown here show a lack of a clear correlation between topology of the network
and the dynamic processes occurring within it it specially under realistic scenarios of
origin/destination. These results suggest that measures of centrality play only a partial
role in the onset of traffic congestion and they cannot fully explain the spatial occupation
of the agents. This highlights the importance of considering decision-making in rational
agents who actually move through the networks when thinking about the designing of
future infrastructure.
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Figure 10. Correlation between occupation and (A) closeness centrality and (B) betweenness centrality at each node for
scenario #1. In both panels, insets refer to the corresponding indicator under scenario #2 with R = 5, averaged across
15 realizations. Error bars denote one standard deviation.

5. Conclusions
5.1. Summary and Discussion

In this paper, we have described the emergence of traffic congestion in the road
network of Cartagena de Indias using an agent-based model in which we could tune
the agents’ behavior from traffic avoidance mobility scheme to a shortest-path scheme.
Our work complements recent studies of mobility in the city of Cartagena. For instance,
in ref. [35] authors used a multicriteria approach for planning and designing pedestrian
routes. Also, in ref. [36] authors proposed an ex-post evaluation of the primary goals of
transit regulations using BRT (bus rapid transit) with econometric techniques. While these
works might have arrived at important conclusions that help in the understanding of the
mobility of the population, they do not consider the time-evolving nature of mobility along
a road network.

The results of our analyses in the context of the city’s history indicate patterns of
self-organization that, to date, have important consequences in the way in which vehicular
flow evolves in the city. The historical trajectory of urban development up to the 1990’s was
carried out without an explicit long-term urban planning strategy, and consequently, lacked
any coherence between the plans for the expansion of public services and those for road
infrastructure. Despite the fact that a first urban plan was adopted just after the year 2000
in the form of the Territorial Planning of Cartagena–POT 2000–2012, by 2010, it was clear
that it had little impact on mobility problems despite some changes in road infrastructure.
This calls for the need to design a disruptive strategy using the city’s canals and bodies of
water as a mobility alternative, an option that has been successfully implemented in other
peripheral cities around the world.

Our analysis of the agent-based model simulations and the relationship with the
topological features of the network yielded some interesting conclusions. It was shown that
only considering some intuitive structural properties of the road network (betweenness
centrality) is insufficient to predict the emergence of traffic congestion. We showed that the
mobility scheme used by agents (encompassed in the parameter h) has a strong effect on
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the way in which the traffic is spread throughout the network. This result emphasizes the
importance of linking the static picture and the dynamic one.

An important feature of the agent-based model used here is that it is purely determin-
istic, in contrast with the more usual approach of using probabilistic models [37], especially
those which make use of discrete choice theory [38]. The probabilistic approach has been
indeed successfully used to explain, for instance, the value of travel times [39] and the
impact of transport solutions [40]. We believe that the deterministic approach can be also
useful in decision-making, as long as the time series of traffic flow are available, allowing
the fitting of the model’s parameters.

This approach to urban mobility in Cartagena provides an inductive heuristic, which
will later allow mobility phenomena to be related to other current urban problems and chal-
lenges with nonlinear behaviors. Examples of these challenges are the effects of sociospatial
segregation of transport systems, the performance of urban logistics, the intrinsic conflict
between freight and people transit, the effects on urban mobility of the type and location of
equipment, and implementation of intermodal transport systems (highway–sea–river).

5.2. Limitations and Future Research

The agent-based model used here has involved a series of simplifications aimed
at understanding the emergent phenomenon of traffic congestion, its relation with the
topological aspects of the road network, and the explanation of network characteristics
in terms of the infrastructural development of the city. While we do not discard the
possibility of applying this tandem methodology using well-known traffic simulation
software, we have used custom-made software that allowed us to easily extract relevant
statistical information about the mobility process and to connect the space syntax tools
with the dynamic phenomena in the network. The most important simplification is the
constant rate of agent creation at each time step. Of course, this hypothetical steady state
of a constant flow of agents into the network is incompatible with the dynamic nature of
human activity that includes peak hours of vehicular motion. It also does not consider
the variability of the dynamics of different vehicles. To introduce these variables, it would
be necessary to incorporate the real data of vehicular flow according to the typology and
such data is not publicly available in the city. Despite the fact that we proposed a scenario
which emulated the existence of gravity regions in the city, this approximation was rough
and aimed only to understand whether the phenomenology found in the purely random
origin/destination was consistent in this scenario. Gravity regions should be calculated
in a more refined way considering, for instance, housing density and economic hubs
of the city. Additional limitations of the study presented here include the fact that our
analyses only considered the streets that comprise the main arteries of the city, streets were
considered to be bidirectional, the flow capacity of the roads were disregarded, and the
presence of control elements such as traffic lights were not contemplated either. We believe
that these simplifications do not demean the importance of our contribution, through
which we sought to recognize the topological elements of a road network underlying the
emergent phenomenon of traffic congestion and its relationship to agent behavior and the
infrastructural development of the city of Cartagena. On the contrary, we are confident that
these limitations indicate a path of interesting research that could include time-dependent
commutation patterns, more detailed road characteristics, the effect of boundary nodes,
and the model validation with historical data. Despite all of this, our results could be
used as a tool for ex ante policy evaluations in conditions of a poor traffic data monitoring
system seeking to understand the effect of the informed decision of agents about the state
of upcoming congestion. With this the capacity or level of service of any new infrastructure
can be analyzed beyond its in situ effect, something that is relevant and reproducible to
other cities with similar characteristics.

Author Contributions: J.A.-L.: Conceptualization; formal analysis; funding acquisition; investiga-
tion; methodology; resources; validation; roles/writing—original draft. D.A.-G.: Conceptualiza-
tion; formal analysis; investigation; methodology; resources; software; validation; visualization;



Infrastructures 2021, 6, 85 16 of 18

roles/writing—original draft; writing—review and editing. J.V.-A.: Data curation; formal analysis;
investigation; software; roles/writing—original draft; writing—review and editing. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by Vicerrectoría de Investigaciones, Universidad de Cartagena
[grant number 00335-2018] and [grant number 038-2019].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data and scripts used for the study presented here can be found in
https://github.com/dangulogUC/Traffic_Flow_Cartagena.git (accessed on 3 June 2021).

Acknowledgments: We would like to thank Roberto Carlos Arrieta Montalvo for helping in the data
curation. We also thank Philip Wright for proofreading the final version of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Evolution of the Urban Configuration of Cartagena

Urban mobility in the city is carried out through the street network infrastructure that
was built based on the natural physiography of the city. This physiography historically
conditioned the use of the city as a port and as a fortification during the conquest, the colony,
and the republican period for more than 400 years. Even today, it serves as a foreign trade
port with more than 36 docks and enclave-type facilities (see Figure 2).

The fact that many of these enclaves are waterfronts has set the trend for various
initiatives (mostly private) under a public concession scheme. These have managed in less
than 30 years to occupy the 198 km of the coastline, affecting the spatial accessibility to the
sea for citizens [41].

The process of expansion of the urban area has inertially followed the trajectory of
the old railroad track where Pedro de Heredia Avenue was traced more than 60 years
ago, serving as the backbone of the street network of the city. This road network supports
displacement flows of a locally registered automotive fleet of more than 106.605 vehicles,
plus those external flows of various types including cargo and passenger transport.

Cartagena de Indias urban development can be understood based on the physiography
of the coastline, where the first settlement grew from its foundation as a fortified port
and commercial locus during the colony and the Republican period (XVII–XIX century).
The urban expansion outside the walls of the historic center is related to three historical
milestones: (1) The construction (1958–1958) of the Gambote bridge that allowed from
Cartagena, Turbana and Arjona the terrestrial crossing through the Canal del Dique towards
the interior of the country. (2) The installation south of the city of the Exxon Refinery in
1957, as a part of a fuel refining complex. (3) The removal of the Chambacú neighborhood
in 1967, as a mechanism to extend the Pedro de Heredia Avenue along the route of the
old train track. Three loci are specially distinguished from the enclaves mentioned in the
previous subsection, created and developed at diverse historical moments that are linked
to the urban development and the configuration of connectivity and its characteristics:

• The first and the oldest is the so-called historic center (see the orange region in
Figure 2), established as a UNESCO World Heritage Site in 1988. It is the original
outpost of the conquest and the colonial viceroyalty, between the XVI and XVIII
centuries. It also served as the port of extraction of resources from New Granada, and
the slave trade. This “old city” is segregated from the rest of the later urban expansion
due to its walled defense architecture surrounded by the sea, lagoon bodies, and water
pipes, which allowed its defense during the colony. Later, after the independence
in the 19th century, the old city was linked to the interior of the country through a
railroad. On this route, once the railway system was dismantled in 1930, the main
road was built between 1969–1971, called Pedro de Heredia Avenue, until today the
main and most congested road in the urban area [42].

https://github.com/dangulogUC/Traffic_Flow_Cartagena.git
https://github.com/dangulogUC/Traffic_Flow_Cartagena.git
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• The second enclave is the Mamonal Industrial Complex born with the construction
of the oil refinery in 1957 (light-violet region in Figure 2). The increasing number of
facilities and docks (more than 36) evolved toward the consolidation of the “cargo
corridor” absorbing some already consolidated urban routes to favor heavy cargo
traffic that dangerously mixes with urban logistics.

• The third enclave is the touristic hotel area (yellow region in Figure 2), which, starting
from the historic center, creates narrow strip of land with a peninsula. Since 1990,
the tourism of the city grew toward the group of neighboring islands (Los Corales
Natural Park) and more recently towards the north, following the coastal strip. It is
appropriate to say that the aforementioned enclaves have occupied most of the coastal
strip and low tide, and therefore access to the sea and inland water bodies.

Considering the historical period 1950–2000, the three enclaves mentioned above
were consolidated thanks to private investment capital with a great interest to occupy the
low-tide areas of the coast, favored by regulatory processes aimed at promoting openness
to international trade [43]. Altogether, the historic shaping of the street network of the city
has a strong impact on the mobility dynamics as shown in the main text.
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