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Abstract: This study presents a rigorous approach for the extraction of the modulus of soil and un-
bound aggregate base materials for quality management using intelligent compaction (IC) technology.
The proposed approach makes use of machine-learning methods in tandem with IC technology and
modulus-based spot testing as a local calibration process to estimate the mechanical properties of
compacted geomaterials. A calibrated three-dimensional finite element (FE) model that simulates the
proof-mapping process of compacted geomaterials was used to develop a comprehensive database
of responses of a wide range of single and two-layered geosystems. The database was then used to
develop different inverse solvers using artificial neural networks for the estimation of the modulus
from the characteristics of the roller and information about the geomaterials. Several instrumented
test sites were used for the evaluation and validation of the inverse solvers. The proposed approach
was found promising for the extraction of the modulus of compacted geomaterials using IC. The
accuracy of the inverse solvers is enhanced if a local calibration process is incorporated as part of a
quality management program that includes the use of in situ measurements using modulus-based
test devices and laboratory resilient modulus testing. Moreover, compaction uniformity plays a key
role in the retrieval of the modulus of geomaterials with certainty. The proposed approach fuses
artificial intelligence with mechanistic solutions to position IC as a technology that is well suited for
the quality management of compacted materials.

Keywords: quality management; earthworks; intelligent compaction; nondestructive testing; artificial
intelligence; modulus

1. Introduction

Different research efforts have been undertaken to develop and implement modulus-
based quality management procedures to ensure that compacted pavement materials
meet the material properties used in mechanistic pavement design practices [1–7]. These
procedures involve the use of in situ modulus/deflection-based nondestructive testing
(NDT) devices that estimate the stiffness properties of compacted geomaterials. These
efforts have led to new quality management protocols that are implemented by a few state
highway agencies.

Intelligent compaction (IC) has been considered as a potential tool for the assessment
of the stiffness and uniformity of compacted materials near real time while achieving
100% coverage of the compacted area. IC is a technology that incorporates a vibratory
roller with an accelerometer-based measuring system, a high precision global positioning
system (GPS), and an onboard data acquisition system (DAQ) with a color-coded display
to improve the compaction quality [3,7,8]. The IC measurement values (ICMVs) are used
to assess the quality and uniformity of the compacted layer based on different metrics and
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various levels of correlation to the mechanical and engineering properties of compacted
geomaterials [9]. Different studies have directly or indirectly attributed the following
benefits to ICMVs: (1) improved compaction/uniformity quality; (2) reduced over/under
compaction; (3) reduced compaction time; (4) improved location of less stiff spots; and
(5) the feasibility design, construction, and performance integration [3,7,10–14]. Param-
eters that affect the correlation among the IC roller and other in situ test measurements
include the difference in the depth of influence, the state of stress due to the imparted
energy, heterogeneity in the underlying materials, moisture content variability, and intrinsic
measurement errors associated with the employed devices [15–17]. As such, ICMVs are
indicators of the composite stiffness of the geomaterials down to an effective depth, which
is called depth of influence.

Different ICMVs that are utilized in commercially available IC rollers have been
derived from either empirical solutions based on the frequency responses [3] or from
simplified mechanistic-based models that involve discrete vibration models or continuum
static models [10,18–20]. These techniques have been proposed based on the hypothesis
that the roller and the pavement form a coupled system, the response of which is influenced
by the properties of the layers during vibratory compaction. Sandström and Pettersson [21]
pointed out that the amplitude of the force imparted by the drum was proportional to
the first harmonic of the vertical acceleration of the drum. Given that the displacement
measured by the drum can be calculated by the double integration of the acceleration,
Sandström and Pettersson [21] proposed a relationship to obtain a stiffness parameter
called the cylinder deformation modulus, Ec, which is expressed as the ratio of the force
and the corresponding displacement.

Several recent studies have attempted to obtain the modulus of compacted geomateri-
als using both IC measurements and modulus-based spot testing. Mooney and Facas [22]
proposed a forward modeling and real-time inverse analysis using FE and boundary ele-
ment (BE) analyses to extract the layer elastic modulus from IC data. White et al. [23,24]
compared ICMV measurements from a roller instrumented with a proprietary intelligent
compaction system with an in situ composite resilient modulus (Mr-comp) obtained with
an automated plate load testing (APLT) device. The authors showed that their proposed
ICMV correlated well with both Mr-comp and the modulus of subgrade reaction. They
further generated geo-referenced spatial modulus maps from IC measurements. Barman
et al. [15] evaluated the Intelligent Compaction Analyzer (ICA), an IC tool developed by
the University of Oklahoma, to continuously estimate the dry density and modulus during
subgrade compaction. They trained an artificial neural network (ANN) to convert their IC
measurements to density or modulus values. A coefficient of determination (R2) of 0.63
was obtained between the estimated field and the measured laboratory-resilient moduli.

2. Objectives

The objective of this study was to use artificial intelligence techniques to expedite the
extraction of the modulus of compacted geomaterials utilizing intelligent compaction (IC)
technology. To develop such an approach, it was necessary to assemble a comprehensive
database of material responses from a wide range of geosystems, geomaterials, and roller
operating conditions. A 3-D FE model was used as a forward model to simulate geomaterial
responses under the drum simulation of one- (subgrade only) and two-layered (subgrade
and base) structures with a wide range of geomaterials during proof-rolling. Proof-rolling
(or proof-mapping) is a process that can be used to identify the uniformity and consistency
of a compacted layer by covering the area of interest with an IC roller [25]. Typically, proof-
mapping is conducted at specific and consistent operating conditions by setting the drum
vibration to low-amplitude and low-frequency operating conditions. The input parameters
along with the geomaterial responses from the forward model are incorporated into a
comprehensive database that can be utilized to develop and evaluate different inverse
solvers for the extraction of the modulus of the compacted geomaterials.
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The veracity of different inverse solvers was evaluated in several test sections. The
process followed in this study and the approach developed to extract the modulus of
compacted materials are summarized in Figure 1. Aside from the ICMV measurements,
the LWD and the corresponding moisture content of the compacted geomaterials were
determined at more than three dozen locations. Laboratory index, moisture density, and
resilient modulus tests were also conducted on the representative geomaterials sampled at
each site. The following sections summarize the strategies undertaken and the findings of
this study.
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Figure 1. Flowchart describing process for developing an approach for modulus extraction using AI during intelligent
compaction proof-mapping.

3. Finite Element Modeling

A compacted geomaterial proof-mapping simulation was conducted using a 3-D FE
model that had been developed using the commercially available multi-purpose software
package LS-DYNA®. The details of each modeling scenario are provided in Nazarian
et al. [7]. The model consisted of a drum imparting energy to a layered geosystem at
typical proof-mapping operating conditions. Different levels of sophistication for the
FE model were considered, including the linear vs. load-induced nonlinear behaviors
of the geomaterials, the static vs. vibratory operating conditions of the drum, and the
stationery vs. moving roller operations. Though the use of nonlinear material models may



Infrastructures 2021, 6, 142 4 of 24

yield more accurate responses than those obtained under linear elastic models, their use
requires iterative procedures to update the state of stress during the simulation, leading to
longer execution times. Moreover, dynamic analyses lend to even longer executions, as
the time history responses of the roller’s vibratory motion must be obtained. First, about
600 scenarios were evaluated using a baseline drum model to document the differences
among the geomaterial responses simulated under different levels of sophistication. As
documented in Nazarian et al. [7], the responses from the different sophistication levels
are strongly correlated. The stationary static nonlinear FE model was selected as the best
compromise between the execution time and the accuracy of populating a comprehensive
database. The more sophisticated models with longer execution times did not warrant
more realistic responses.

Figure 2 illustrates a 3D view of the simulated pavement structure and the drum
of the roller. The drum was simulated as a rigid body using shell elements with a 2 m
drum width and a 1.5 m diameter, dimensions that are typical of commercially available IC
rollers. A total of 75,000 elements were used to simulate the drum to better accommodate
the curvature of the drum surface. A 4 m × 4 m pavement structure with a 2.5 m depth
and non-reflective boundaries to minimize the impact of the boundaries on the pavement
responses was simulated and meshed using brick elements to accommodate one- and
two-layered systems. The mesh of the pavement structure was comprised of approximately
64,000 elements, with the smaller cubic elements near the surface having side dimensions
of 50 mm. The refined meshed extended to 0.5 m in depth from the surface and covered an
area of 0.6 m longitudinally and 1.2 m transversally from the center of the drum. To better
simulate the interaction between the drum and the soil system, an automatic single surface
contact type was considered to allow the decoupling of the drum from the soil surface,
similar to what has been observed in the field.
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Figure 2. Schematic representation of drum–soil system: (a) IC-equipped roller, (b) FE model of soil and drum, (c) soil–drum
interaction, and (d) contact model interaction.

The following material model proposed by Ooi et al. [26] was considered to account
for the load-induced nonlinear behaviors of different geomaterials:

MR = k′1Pa

(
θ

Pa
+ 1
)k′2
(

τoct

Pa
+ 1
)k′3

, (1)
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where MR is the resilient modulus, Pa is the atmospheric pressure of 100 kPa, θ is bulk
stress, τoct is the octahedral shear stress, and k′1, k′2, and k′3 are the model parameters
(determined from fitting the laboratory data to the model). The feasible ranges of the
nonlinear k′ parameters proposed by Velasquez et al. [27] for the fine- and coarse-grained
geomaterials used in this study are reported in Table 1.

Table 1. Feasible range of layer properties [27].

Pavement Properties Range of Values

k′1 100–3000
k′2 0–3.0
k′3 −4.0–0

Poisson’s Ratio, ν 0.35

The operating settings used for the simulated drums are shown in Table 2. The
imparted load by the roller drum is generated by the rotation of the eccentric masses inside
the drum. The induced excitation force, Fe, is defined as

Fe(t) = m0e0Ω2 cos(Ωt), (2)

where Ω is the rotational frequency, e0 is the eccentricity of the counter-rotating masses m0,
and t is time.

Table 2. Specifications for simulated drums.

Operating Parameter Symbol Range of Values Baseline Roller Values

Width of drum L 1.0–2.0 m 2.0 m
Diameter of drum d 0.5 m–1.5 m 1.5 m
Mass of drum md 750–9000 kg 6000 kg
Weight of drum mdg 7500–88,000 N 58,840 N
Mass-eccentricity m0e0 1.0–5.6 kg·m 5.36 kg·m
Centrifugal force Fev 15–170 kN 170 kN
Frequency f 20–60 Hz 28 Hz
Rotational Frequency Ω 125–380 rad/s 176 rad/s
Operating speed v 0.9 m/s 0.9 m/s

Single-layer (subgrade only) and two-layer systems with the top layer (base) having
thicknesses ranging from 150 mm to 300 mm with an increment of 25 mm on top of the
subgrade were simulated using the FE model. More than 2200 FE cases for single-layer
and more than 5500 FE scenarios for two-layer geosystems were initially selected using
the randomly generated, uniformly distributed, nonlinear parameters as inputs to the
model within the feasible range of values shown in Table 1. In addition, roller dimensions
and operating parameters were selected and used as the loading conditions using the
parameters within the feasible ranges shown in Table 2. The surface displacements on
top of the subgrade and base obtained from the simulated mapping process, and the
representative modulus of each layer was used to build the inverse solvers.

Due to the nonlinear behavior of unbound geomaterials, the modulus of a layer
varies spatially and with the depth. To gauge the quality of the pavement, the use of a
representative modulus for the layer is desirable. The modulus at the half-depth of the
base and 300 mm into the subgrade were considered as the representative moduli. An
example of a modulus profile of a two-layer geosystem comprised of a coarse-grained
unbound base material on top of a clayey subgrade under a static stationary roller is shown
in Figure 3. In the case shown, the base modulus is at about 250 MPa when close to the
surface, but it then decreases with depth to a magnitude of 120 MPa when reaching the
bottom of the base layer. The higher modulus near the surface is due to the hardening
behavior of the unbound aggregate base material when subjected to the large concentration
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of stress that occurs near the drum–soil interface. As the stress dissipates with depth, the
modulus decreases with depth as well. Similar behavior is seen within the top 200 mm of
the subgrade, where the modulus also decreases significantly with depth. Then, afterward,
the modulus stabilizes at a magnitude of about 35 MPa and remains nearly constant at
deeper depths.
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For this study, the surface displacements on top of the subgrade (simulating the
pre-mapping process conducted before placing the base layer) and on top of the base
materials (simulating the mapping process after completion of compaction) accompanied
by the representative moduli of single- and two-layer geosystems were extracted for all
of the analyzed FE scenarios. This database was then used along with the nonlinear
material properties for the construction of various inverse solvers, as discussed in the
following sections.

4. Development and Evaluation of Inverse Solver

To develop inverse models for the backcalculation of the moduli of the subgrade and
base layers, a set of machine learning techniques (including genetic programming, random
forests, artificial neural networks, etc.) were implemented. The evaluation of the alternative
algorithms is reported in Nazarian et al. [7]. Since the artificial neural network (ANN) was
found to be the most optimized algorithm, only the process that was followed to develop
the ANN inverse solvers is discussed here. A multi-layer perceptron (MLP) feed-forward
neural network model with the Levenberg–Marquardt algorithm [28–30] was deployed. To
arrive at the optimal predictive inverse solver using an ANN, the nonlinear k′ parameters
of the subgrade k′is, and the surface displacement, d1, measured on top of the subgrade
were considered as input parameters. In addition to those parameters, the base nonlinear
parameters k′ib and layer thickness, h, and the surface displacements, d2, recorded on top
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of the base layer were used. The general form of the predictive functions considered for
the moduli of the subgrade and base, respectively, are in the following form:

ESUBG = f
(
k′si , d1

)
, and (3)

EBASE = f
(

k′si , k′bi , h, d1, d2

)
, (4)

where ESUBG and EBASE are representative of the subgrade and base moduli, respectively.
An example of the ANN architecture constructed at the most complex level, i.e., the

nonlinear k′ parameters of the base and subgrade, base thickness h, and surface displace-
ments d1 and d2 corresponding to the top of subgrade and base layer, respectively, is
shown in Figure 4. The architecture of the constructed ANN inverse solvers comprised of
three layers including (1) an input layer containing predictor variables, (2) an intermedi-
ate hidden layer containing neurons—computational units that are interconnected with
several weighted links, and (3) an output layer containing the representative modulus of
compacted layered soil systems as a target.

Infrastructures 2021, 6, x FOR PEER REVIEW 7 of 25 
 

d2, recorded on top of the base layer were used. The general form of the predictive func-
tions considered for the moduli of the subgrade and base, respectively, are in the follow-
ing form: 

( )1,sSUBG iE f k d′= , and (3) 

( )1 2, , , ,s b
BASE i iE f k k h d d′ ′= , (4) 

where ESUBG and EBASE are representative of the subgrade and base moduli, respectively. 
An example of the ANN architecture constructed at the most complex level, i.e., the 

nonlinear k′ parameters of the base and subgrade, base thickness h, and surface displace-
ments d1 and d2 corresponding to the top of subgrade and base layer, respectively, is 
shown in Figure 4. The architecture of the constructed ANN inverse solvers comprised of 
three layers including (1) an input layer containing predictor variables, (2) an intermediate 
hidden layer containing neurons—computational units that are interconnected with sev-
eral weighted links, and (3) an output layer containing the representative modulus of 
compacted layered soil systems as a target. 

 
Figure 4. Architecture of a multi-layer perceptron ANN model used for backcalculation of base 
modulus. 

The contents of the database were divided into two groups, where 80% of the data-
base was used for training the algorithm. The remaining 20% of the randomly chosen 
population was used to evaluate the predictive accuracy of the fitted model. Specific pro-
cesses such as forward feeding the initial solutions, backpropagating the errors through-
out the entire network, and adjusting the connection weights can assist the network in 
finding the best solution. The standard error of estimate (SEE) was used to evaluate the 
evolution of the network toward the best solution using the following equation: 𝑆𝐸𝐸 =  ∑ , (5) 

Figure 4. Architecture of a multi-layer perceptron ANN model used for backcalculation of base
modulus.

The contents of the database were divided into two groups, where 80% of the database
was used for training the algorithm. The remaining 20% of the randomly chosen population
was used to evaluate the predictive accuracy of the fitted model. Specific processes such
as forward feeding the initial solutions, backpropagating the errors throughout the entire
network, and adjusting the connection weights can assist the network in finding the best
solution. The standard error of estimate (SEE) was used to evaluate the evolution of the
network toward the best solution using the following equation:

SEE =

√
∑n

i=1
(
Y′i −Yi

)2

n
, (5)
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where Y′i is the estimated modulus of the layered soil obtained from the predictive function
of the fitted trend, and Yi is the actual values for the modulus of the compacted layered
material from the FE simulation. Parameter n is the total number of points.

As shown in Table 3, several scenarios with different complexity levels were consid-
ered for training the inverse solvers. As seen in Table 3, the more sophisticated inverse
solvers would require additional laboratory efforts. For instance, Scenario 4 would require
the modulus of subgrade ESUBG to be known, while Scenario 5 would require the modulus
of the subgrade to be obtained, which would be calculated using the representative state of
stress recommended by NCHRP Project 1-28A (i.e., θ = 85.5 kPa and τoct = 20.9 kPa) and
the nonlinear k parameters as determined from the resilient modulus test as per AASHTO
T-307.

Table 3. Feasible backcalculation scenarios based on available IC field/lab data.

Geosystem Scenario Input Parameters
Coefficient of

Determination,
R2

Standard Error
of the Estimate,

SEE (ksi)

Recommendation for
Implementation 1 Target

One layer
1 h, k′1s, k′2s, k′3s, d1 0.99 5.0 High Subgrade

Modulus,
ESUBG

2 h, k′1s, k′2s, k′3s, d1,
MRSUBG-Rep

0.99 4.6 Moderate

Two-layer

3 h, k′2b, k′3b, d2, d1 0.77 29.4 Low

Base Modulus,
EBASE

4 h, k′2b, k′3b, d2, ESUBG 0.70 31.6 Low

5 h, k′2b, k′3b, d2,
MRSUBG-Rep

0.76 29.5 Low

6 h, k′1b, k′2b, k′3b, d2, d1 0.99 8.4 High

7 h, k′1s, k′2s, k′3s, k′1b,
k′2b, k′3b, d2, d1

0.99 6.7 Moderate

1 Recommendation based on the level of laboratory efforts as well as their prediction power.

Based on the available input parameters from IC field operations and laboratory test
results, two backcalculation scenarios for predicting ESUBG and five scenarios for EBASE
were proposed.

Figure 5 shows the results obtained from the ANN trained to backcalculate the sub-
grade modulus for the proposed Scenarios 1 and 2 in Table 3. Both scenarios can predict the
subgrade modulus quite accurately. In this case, Scenario 1 is recommended because of its
simplicity. In contrast to the single-layer systems, the backcalculation of the modulus of the
base layer requires additional input parameters. The ANN models trained for Scenarios 3
through 5 for the two-layer systems were not as promising as Scenarios 6 and 7 were. The
predictive powers of Scenarios 6 and 7 are shown in Figure 6. For the two-layer geosystems,
Scenario 6 is preferred again because of its simplicity and the less laboratory effort.
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Base  
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7 h, k′1s, k′2s, k′3s, k′1b, k′2b, k′3b, d2, 
d1 
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1 Recommendation based on the level of laboratory efforts as well as their prediction power. 
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Figure 5. ANN predicted vs. FE simulated subgrade modulus using ANN with different input scenarios.
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Figure 6. ANN predicted vs. FE simulated base modulus using ANN with different input scenarios.

5. Evaluation of Developed Models

Fathi et al. [31] proposed different strategies to calibrate numerical models simulat-
ing the proof-mapping process by developing adjustment factors to accommodate the
differences between the field measurements and the numerical responses obtained from
both linear and nonlinear 3-D finite element (FE) models. They incorporated a site-specific
calibration process using LWD spot testing to adjust the stiffness conditions of the materials
that were evaluated. The process that was followed to adapt the calibration process for the
evaluation of the inverse models is discussed in this section.

5.1. Site Instrumentation and Data Collection

Four nominally 70-m long test sections constructed at the Minnesota Road Research
Facility (MnROAD) were instrumented with embedded geophones, mapped using an IC
roller, and evaluated using additional modulus and density-based testing. The material
characteristics and properties of the layers at each test section are presented in Table 4.
The test sections consisted of different subgrade and unbound aggregate base materials.
Data collection for a single layer was conducted on top of the subgrade. Once the base
was constructed on top of the subgrade, data were collected in order to consider the
two-layered systems.

Table 4. Pavement structure and material properties of test sections.

Test Section Layer USCS
Classification

Optimum Moisture
Content, OMC 1 (%)

Maximum Dry
Density (MDD)

(kg/m3)

Resilient Modulus
at OMC (MPa)

1
Sand subgrade (existing) SP-SM 6.5 1342 77.9

300 mm coarse Class 5Q aggregate
base coarse recycled concrete GW 10.5 1962 128.7

2
Sand subgrade (existing) SP-SM 6.5 1342 77.9

300 mm fine Class 5 aggregate base
fine recycled concrete SP 10.9 1922 126.2

3
Clay loam (A-6) prepared subgrade CL 14.4 1897 59.3

300 mm Class 6 aggregate base
limestone GW 6.6 2284 97.9

4
Clay loam (A-6) prepared subgrade CL 14.4 1897 59.3

300 mm Class 6 aggregate base
recycled concrete and asphalt GP 10.5 1969 117.2

1 Optimum moisture contents and maximum dry unit weights obtained as per standard Proctor tests (AASHTO T99) for the subgrade and
as per modified Proctor tests (AASHTO T180) for unbound aggregate base materials. Resilient moduli were obtained as per AASHTO
T 307.
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An IC roller with the operational characteristics shown in Table 5 was retrofitted with
a data acquisition (DAQ) system to directly acquire the acceleration of the drum during
the mapping of the compacted soil (see Figure 7). The DAQ system also incorporated a
high-precision GPS unit and antenna to monitor the position of the roller’s accelerometers
as the roller mapped the test section. LWD testing was conducted as per ASTM E2583 with
a plate with a diameter of 200 mm in equally spaced spots along the length and width of
the test section soon after the final coverage. In-place density and moisture content at each
test point were also measured using a nuclear density gauge (NDG) as per ASTM D6938.
The geomaterial sampled at each test point was tested as per ASTM D2216 to verify the
moisture content obtained with the NDG.

Table 5. Operating features and settings of IC roller used in field experiments.

Vendor/Manufacturer Model Drum Mass (kg) Operating
Amplitude (mm)

Operating
Frequency (Hz)

Centrifugal Force
(kN)

Caterpillar CS74B 5153 0.99 28.3 160Infrastructures 2021, 6, x FOR PEER REVIEW 11 of 25 
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Figure 8 shows the displacement along a line roller pass as obtained during the proof-
mapping of sand subgrade material at one of the test sections. The omega arithmetic
(OA) method [32] was implemented to obtain the roller-induced displacements from the
accelerometer-based measurements. This method requires the transformation of the time-
based accelerometer measurements,

..
x(t), into the frequency domain using a fast Fourier

transform (FFT) algorithm. Using the OA method, the displacement in the frequency
domain can be found using:

X( f ) =

..
X( f )

(jω)2 =

..
X( f )
−ω2 , (6)

where
..
X( f ) is the acceleration signal in the frequency domain, j =

√
−1, and ω is the

angular frequency in rad/s. The displacement time signal, x(t), was obtained by using an
inverse Fourier transform.
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Figure 8. Displacement under drum measured during proof-mapping of sandy subgrade.

The measured ICMV data were then apportioned into virtual sublots with a width
equal to the width of the roller and with a length equal to 7.5 m, as schematically depicted
in Figure 7a. This approach can accommodate the inherent uncertainties related to the
accuracy of the GPS devices and the precise position of the moving roller straightforwardly
and transparently.

Table 6 contains the average in situ LWD modulus of each test section. As it is the
state of the practice, the effective LWD modulus, ELWD, was obtained from the following
equation, which is based on Boussinesq’s solution for a static load applied through a rigid
circular plate on an elastic half-space:

ELWD =

(
1− υ2)aσ0

d
· f , (7)

where ν = Poisson’s ratio, a = the radius of the plate, σ0 = the applied stress under the plate
(210 kPa), the shape factor is f = π/2 for rigid plates, and d is the maximum displacement.
The modulus of the unbound aggregate base layer was backcalculated through an iterative
process. For that purpose, the LWD measurements on top of the base were conducted at
precisely the same locations where the LWD measurements were conducted on top of the
subgrade. The two LWD measurements along with the base layer thickness were used as
inputs in the backcalculation algorithm.
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Table 6. Information extracted from resilient modulus tests and in situ LWD tests.

Test Section Layer
Resilient

Modulus at
OMC 1 (MPa)

Extracted Nonlinear Parameters from
Resilient Modulus Tests

Average LWD
Modulus, ELWD

2

(MPa)k′1 k′2 k′3

1
Sand subgrade (existing) 77.9 335 1.6 −0.6 29
300 mm coarse Class 5Q

aggregate base coarse recycled
concrete

128.7 512 0.8 −0.1 117

2
Sand subgrade (existing) 77.9 335 1.6 −0.6 36

300 mm fine Class 5 aggregate
base fine recycled concrete 126.2 484 0.9 −0.1 193

3
Clay loam (A-6) prepared

subgrade 59.3 649 0.6 −2.6 43

300 mm Class 6 aggregate base
limestone 97.9 500 0.6 −0.1 138

4
Clay loam (A-6) prepared

subgrade 59.3 649 0.6 −2.6 26.3

300 mm Class 6 aggregate base
recycled concrete and asphalt 117.2 408 0.9 −0.1 134

1 Resilient modulus obtained as per AASHTO T 307; 2 Base modulus backcalculated using LWD moduli measured on top of base layer and
subgrade surface.

Table 6 also contains the resilient modulus test results of the sampled material collected
at the construction sites, which were performed as per AASHTO T307, at five moisture
contents, including the optimum moisture content (OMC), OMC ± 1%, and OMC ± 2%,
using a servo-dynamic MTS® load unit system.

5.2. Evaluation of Inverse Solvers

In addition to the average drum displacements from the mapping of the subgrade,
d1, and base, d2, the inputs to the inverse solvers were the information from the resilient
modulus tests and base layer thicknesses (as shown in Table 3). Figure 9 illustrates the
variations in the nonlinear parameters k′2 and k′3 with the moisture content for the clayey
subgrade at Sections 3 and 4 along with the measured and the estimated values for each
sublot. The last parameter to be incorporated into the inverse model was the nonlinear
parameter k′1 (associated with stiffness). Mazari et al. [33] showed that although the non-
linear parameters k′2 and k′3 can be deployed in a numerical simulation to appropriately
quantify the load-induced stress hardening and strain-softening behaviors of the geomateri-
als, parameter k′1 must be adjusted to accommodate the differences between the laboratory
and field conditions. In this study the adjusted k′1, k′1-adj, was obtained using the following
equation, which is a rearrangement of Equation (1):

k′1−adj =
ELWD

Pa

(
θ

Pa
+ 1
)−k′2

(
τoct

Pa
+ 1
)−k′3

, (8)

The k′1-adj parameter not only incorporates the state of compaction corresponding
to the field conditions, it also, to some extent incorporates, the impact of the variation in
moisture content observed in the field into the analysis.

The modulus for each sublot as obtained from the inverse solver is compared with
their corresponding sublot’s LWD modulus, ELWD, in Figure 10 for Sections 1 through 4.
Figure 10a shows the results corresponding to the sandy and clayey subgrade. The inverse
solver can predict the modulus of the subgrade with reasonable accuracy. Similar to the
subgrade, the nonlinear parameters in conjunction with the roller surface displacements
on top of the subgrade and base layers were used as inputs to the inverse solver to extract
the base modulus. The extracted base moduli compared well with the corresponding LWD
base moduli, as shown in Figure 10b, as judged by the number of cases that fall within the
±25% uncertainty bounds.
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Figure 9. Adjustment of parameters k′2 and k′3 using moisture correction for clay subgrade.
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6. Validation of Developed Models

Four additional construction sites were visited to collect field and laboratory data to
validate the practicality of the developed inverse algorithms. The characteristics of the test
sites, the material properties of the layers, and the type of roller that was used are shown
in Table 7. The operating settings of the rollers used in this phase are shown in Table 8. The



Infrastructures 2021, 6, 142 14 of 24

results from the evaluation of the two ANN inverse solvers that were considered optimal
(i.e., from Scenario 1 for subgrade materials and Scenario 6 for two-layer geosystems) are
presented here. At each construction site, a strip about 70 m in length and that was 8 m
wide was reserved as a test section where the compacted geomaterials were proof-mapped
using instrumented IC rollers. The LWD tests were conducted along the test section after
proof-mapping following the approach described in the previous section. At each sublot,
the geomaterial was sampled to measure the in situ moisture content through oven-drying
in the laboratory.

Table 7. Construction sites and roller characteristics.

Site Length
(m) Layer USCS

Classification

Optimum
Moisture

Content 1 (%)

Maximum Dry
Density,
(kg/m3)

Roller
Vendor/Model

5 66
Embankment CL 13.8 1853

Hamm H11ix300 mm subgrade CL 17.1 1802

6 75
Subgrade SP 7.1 2142 Caterpillar

CS74B300 mm subbase SP 7.1 2142

7 75
Cement-treated subgrade

(4% cement) - - -
Caterpillar

CS74B150 mm unbound
aggregate base course GW 6.5 2289

8 66
Embankment CL 13.8 1899

Volvo SD75300 mm subgrade CL 13.8 1899
1 Optimum moisture contents and maximum dry unit weights obtained as per standard Proctor tests (AASHTO T99) for the subgrade and
as per modified Proctor tests (AASHTO T180) for unbound aggregate base materials.

Table 8. Specifications of IC rollers utilized for validation phase.

Vendor/Manufacturer Caterpillar Hamm/Wirtgen Volvo

Model
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SD75
Drum Width (m) 2.1 2.1 1.7
Drum Mass (kg) 5153 5890 3610

Operating Amplitude (mm) 0.99 0.84 1.20
Operating Frequency (Hz) 28.3 30 30

Centrifugal Force (kN) 160 136 121

Similar to the testing plan conducted at the MnROAD facility to calibrate the models,
virtual sublots with widths equal to the width of the roller and lengths of 7 m, which are
schematically depicted in Figure 7a, were allocated along the test section. Inputs to the
inverse solvers and their output are schematically represented in Figure 11. The inputs
consisted of the nonlinear parameters obtained from the resilient modulus test, the surface
deflection measurements of the drum for each sublot obtained during the mapping process,
the top layer thickness (for Scenario 6 in two-layered systems), and the adjusted k′1-adj
using the LWD modulus.
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Table 9 contains the average LWD modulus and surface displacements for each test
section. The information extracted from the resilient modulus tests at OMC for each
geomaterial retrieved from each test section is also summarized in Table 9. The comparison
of the moduli measured and estimated from the ANN inverse solver for each sublot
obtained on top of the subgrade for test sections 5 through 8 is shown in Figure 12a.
The inverse solver was able to estimate the modulus of the single-layered geosystems
within a margin of error of 25% or less, a level deemed acceptable given the variability
in the properties and compaction of earthwork in each sublot. Figure 12b compares the
LWD moduli of the top layers with those estimated from the ANN solver. In this case, in
addition to the nonlinear parameters obtained from the resilient modulus tests conducted
in the laboratory, the surface displacements measured on top of both the single- and
two-layer systems of each sublot were used as inputs. The inverse model was able to
extract the modulus with less accuracy than the single-layer inverse model, but most values
still fell within the ±25% error bands. At some of the test sections, the bottom layers
were stiffer than the top layers, as suggested by the resilient modulus and backcalculated
LWD tests, which may contribute to the additional variability in the outcome of the
model. Nevertheless, the results prove that the proposed approach and inverse models can
achieve modulus prediction using IC in combination with the resilient modulus and in situ
modulus-based testing.

Table 9. Geomaterial properties of test sections used for validation of inverse models.

Test
Section

Resilient
Modulus at

OMC 1 (MPa)

Nonlinear Parameters from
Resilient Modulus Model 2

Average in situ
LWD Modulus,

ELWD (MPa)

Adjusted
Nonlinear
Parameter

k′1-adj
3

Surface Displacement
(mm)

k′2 k′3 Layer 1 d1 Layer 2 d2

Single Layer Systems
5 40 1.57 −2.04 39 217 1.07 -
6 115 1.69 −2.16 130 598 1.26 -
7 230 0.61 −0.05 231 1581 1.08 -
8 37 1.76 −2.60 40 213 1.07 -

Two-Layer Systems
5 39 1.24 −3.00 40 313 1.07 1.11
6 51 1.69 −2.16 58 267 1.26 1.52
7 103 0.57 −0.05 91 329 1.08 1.05
8 37 1.76 −2.60 29 214 1.07 1.11
1 Resilient modulus obtained as per AASHTO T 307; 2 Nonlinear parameters as per Ooi et al. (2004) model; 3 k′1-adj calculated as per
Equation (8).
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Figure 12. Comparison of LWD and extracted moduli for test sections 5–8 for (a) single- and (b) two-layered geosystem.

7. Implementation of Models

Since an extensive testing program is impractical in day-to-day operations, the mini-
mum number of spot tests that can be completed with LWD and its impact on the outcome
of the model were also assessed by considering the inevitable inherent variability of the
compacted geomaterial.

Based on substantial field data from several construction projects, Tirado et al. [6]
concluded that a 25% COV in the properties of the compacted geomaterials should be
anticipated even under the best practices followed by construction crews. As such, they
indicated that the sublots with COV of ICMVs of up to 35% might be anticipated under the
state of the practice. However, the sublots with high COVs should be reprocessed for a
more uniform foundation layer. Based on that observation, they proposed a process for
quality management that not only considers the average ICMV of each sublot but also its
coefficient of variation (COV).

Figure 13a shows a color-coded map of the average ICMV of each sublot obtained
after proof rolling the subgrade of Section 5. This study made use of CMV, a common
ICMV defined as [21]:

CMV = 300
A2Ω

AΩ
, (9)



Infrastructures 2021, 6, 142 17 of 24

where A2Ω is the second harmonic of the vertical drum acceleration amplitude, and AΩ is
the operating frequency of the vertical drum acceleration amplitude. A three-color scheme
was used to represent the results, where red corresponds to the sublots with less stiff
properties (signified by average CMVs that are less than 75% of the average CMV of the
entire lot). It is important to note that less stiff does not mean that a layer is unacceptably
weak/loose, rather it means that those sublots exhibit lower CMV than the others. In
addition to the CMV map, as depicted in Figure 13b, the degree of compaction uniformity
in each sublot is also assessed by developing a color-coded companion map of COV of
the ICMVs within each sublot. Sublots with a COV of CMV exceeding 35% (shown in
red) signify a less uniform final product. Based on the laws of statistics, one may need to
conduct a large number of LWD tests to obtain the representative moduli of the sublots
with high nonuniformity (COV) or to conduct local calibration on a limited number of
sublots that are more uniform.
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the subgrade from test Section 5.

Figure 14 compares the subgrade moduli that were estimated by the solver to their
corresponding LWD moduli per sublot for Sections 5 through 8 when 25% of the sublots
(11 sublots) are used for the local calibration of the IC data. The markers in the figure
indicating the LWD modulus per station represent the averaged LWD modulus of the
four sublots across the station, and the error bars represent their ±1 standard deviation.
Similarly, the averaged estimated moduli across each station are shown with their corre-
sponding ±1 standard deviation. The figure shows that the averaged LWD modulus and
estimated moduli exhibit similar trends along the length of the test lot for all four sites.

From the figure, it can also be discerned that the estimated moduli across the four
sublots have less variability than the LWD moduli because each modulus along each station
was estimated using an average surface displacement of the sublot as the solver’s input d1.
The average displacement d1 is determined from the surface displacement measurements
collected within the sublot (i.e., about 50 points when the roller moves at a speed of 5 km/h).
Moreover, a single adjusted k′1-adj is assigned to be representative of all of the sublots across
each station and is used as an input to the solver. Because only 11 sublots were selected
for the local calibration, the adjusted k′1-adj was calculated using the LWD modulus, ELWD,
at the selected representative sublot. These sublots were randomly chosen at each station
among those having acceptable uniformity (i.e., COV of CMVs ≤ 35%). The representative
k′1-adj is used as an input for the representative sublot and the adjacent neighboring sublots
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along each station using Equation (8). Using this approach, the solver accurately estimated
moduli, with a performance that was comparable to the LWD moduli measured in the field.
However, the consequence of not excluding and selecting sublots with high nonuniformity
as representative sublots for local calibration led to low-accuracy results.
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Figure 14. Relationship between LWD-measured and -extracted moduli per station for single-layer systems in sites 5–8.

Similarly, for the two-layered systems, the backcalculated LWD moduli, and the
modulus estimated by the solver of the top layer using the inverse solver exhibited similar
trends for all sites, as shown in Figure 15. However, for the particular case of the lot
in Site 7 (Figure 15c), a greater difference in magnitude between the LWD moduli and
the solver-estimated moduli is observed. Though the trend appears to be similar, the
estimated moduli were not accurate. This can be attributed to an atypical combination of
layer stiffnesses present in this site: a much stiffer cement-treated subgrade (as denoted by
LWD moduli in Figure 14c) lies underneath a less stiff base course (as evidenced by the
backcalculated base moduli in Figure 15c).

To assess the impact of the number of spot tests using the LWD modulus to adjust
the k′1 parameters to obtain k′1-adj on the outcome of the inverse model, two levels of
the testing program were evaluated based on the number of spot test measurements. A
scenario using 25% of the sublots (11 sublots) was compared to a scenario using 10% of
sublots (5 sublots). Once again, randomly selected sublots with a COV of CMV ≤ 35%
were taken as representative sublots for the local calibration of the IC data.
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Figure 15. Relationship between averaged rectangular buffered areas of measured and extracted moduli for the top layer in
two-layered systems in Sites 5–8.

Figure 16 shows the percent difference between the solver estimated base layer moduli
and the backcalculated LWD moduli per site. A mean percent error (MPE) of 10% exists
between the LWD moduli and the estimated moduli when conducting LWD testing on
25% of the sublots. Reducing the number of LWD tests to 10% of the sublots resulted in an
increase in the MPE to 23%. Thus, using five spot tests still allows the solver to estimate
the moduli with 25% accuracy, which is still within the inherent soil variability. The error
increased considerably for Site 7 where, as mentioned before, the condition of a much
stiffer subgrade than the base course needed to be accounted for.
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Figure 16. Comparison of variability of inverse solver-extracted modulus with respect to LWD modulus for all sites and
(a) single- and (b) two-layer systems.
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The proposed approach can be utilized for earthwork quality management and to
serve as the basis of a modulus-based specification. For its implementation, highway
agencies should be prepared to conduct laboratory testing upfront and to institute more
rigorous process control during the compaction process. The proposed approach requires
the lot to be partitioned into virtual sublots, each of them with dimensions equal to the
width of the roller and the length equal to the minimum length of the compacted section
that is practical to rework, as set at the discretion of the engineer. The mapping of the
compacted layer is performed using an IC roller. The vibration parameters, in terms
of frequency, amplitude, roller speed, and roller direction should be identified for the
mapping process. A color-coded map of ICMV variability is then generated to identify
compaction uniformity within sublots. This approach is proposed to accommodate the
inherent uncertainties related to the accuracy of the GPS devices and the precise position of
the moving roller. This approach facilitates the identification of areas that lack uniformity.
At the discretion of the engineer, these areas should be reworked or be excluded from the
procedure to estimate modulus using the inverse solver.

To make use of the inverse solver, more uniform sublots in terms of the COV of
ICMV were identified to conduct additional LWD testing. Testing 10% of the sublots
would yield moduli estimated by the solver within a 25% error, an acceptable value in
practice; however, a more rigorous testing program would yield more accurate estimates.
LWD measurements at the selected sublots were then used to calculate k′1-adj, and these
values were then used as the representative adjustment factor to be used as input to the
inverse solver to locally calibrate the IC measurements. A new color-coded map was then
generated using the estimated moduli provided by the inverse solver models 1 and 6 for
the subgrade and base layer, respectively. Figure 17a compares the mapping between a
single layer system obtained from the described approach. Sublots with a COV of ICMV
greater than 35% have been excluded and are shown in white in the map showing the
inverse solver-estimated moduli.
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In two-layered systems, one should be able to extract the layer-specific backcalculated
LWD modulus of the last layer using an iterative process using a multi-layer program.
Moreover, for the implementation of an inverse solver for two layers (i.e., solver model 6),
the roller displacement measurements obtained from pre-mapping (mapping of the previ-
ous layer) and mapping of the last layer are necessary as the inputs d1 and d2, respectively.
Figure 17b is obtained after following the same approach to obtain a color-coded map with
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the estimated moduli of the base layer. Once again, sublots with a COV of ICMV greater
than 35% were excluded.

The inputs used to feed the models strongly affect the level of accuracy of the selected
inverse models. The use of more robust inverse algorithms to extract the layer properties
would require additional modulus/stiffness-based nondestructive spot tests. The models
evaluated in this study provide a compromise between a reasonable effort of conducting
additional modulus-based nondestructive testing to provide an estimation of the moduli
that is satisfactorily accurate. The proposed approach can improve our ability to construct
roadways that are more reliable, resilient, and that have longer lifespans.

8. Summary and Conclusions

This study presented a methodology for the quality management of compacted earth-
work by making use of intelligent compaction technology in conjunction with artificial
intelligence. The effectiveness of the proposed approach was studied using different steps
and strategies that were undertaken as follows:

1. Three-dimensional FE models simulating the proof-mapping process of an IC-roller
on compacted materials were developed and utilized to develop a database with
a wide range of pavement materials and structures. The FE models incorporated
a nonlinear constitutive model to simulate the behavior of geomaterials under the
imposed drum loads and a contact model to simulate the drum decoupling from the
soil surface, which is similar to what is observed in the field.

2. A comprehensive database of pavement responses under the imposed drum loads
for one- and two-layered systems was assembled and used to develop various in-
verse solvers using artificial neural networks for the prediction of the moduli of the
subgrade and the base layered materials.

3. In addition to the developed forward and inverse models, eight test sites, including
single- (subgrade only) and two-layer (subgrade and base course layer) geosystems,
were instrumented using in-ground sensors to measure the ground vibrations induced
by the roller during the mapping process. Four test sites were used for the calibration
of the forward models and inverse solvers. The other four construction sites were
utilized for the further evaluation and validation of the proposed approach.

4. Rollers were instrumented using drum-mounted accelerometers to measure the pave-
ment response, and omega arithmetic was employed to measure displacement during
mapping, which was used as one of the inputs to the inverse models.

5. Along with an IC testing program at the constructed sites, modulus-based testing
with LWD and the measurement of the moisture at the time of compaction with NDG
and oven testing were implemented on the compacted geomaterials.

6. Laboratory tests including index tests as well as resilient modulus tests were also con-
ducted on sampled materials collected from the test sites to ensure that comprehensive
information existed for the development and assessment of the proposed approach.

The following observations were made on the developed quality management ap-
proach based on the field measurements and numerical analyses:

1. The constructed inverse solvers were capable of extracting moduli in single- and two-
layered systems. For t two-layer systems in particular, the modulus of the top layer
can be extracted when the layer underneath, is pre-mapped and when the thickness
information for the top layer is available.

2. More accurate moduli are obtained from the inverse solvers when modulus-based
field measurements using LWD and resilient modulus testing are incorporated as part
of the quality management program.

3. The proposed approach was found to be favorable for the estimation of the moduli of
compacted soils when modulus-based testing was conducted in sublots exhibiting
moderate nonuniformity, i.e., COV of ICMV≤ 35%. The compaction uniformity plays
a key role in the retrieval of the moduli of geomaterials with certainty.
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4. When compaction uniformity is not achieved, an LWD spot test cannot appropriately
represent the compaction quality for a sublot with an approximate size of 45 m2. The
impact of not excluding sublots with high non-uniformity leads the solver to estimate
the moduli with poor accuracy.

5. The selection of 10% of the available sublots can yield modulus estimations within a
25% error, a value that is still within the variability of the properties of compacted
geomaterials observed under the best construction practices.

6. Modulus-based maps can be generated utilizing the proposed approach, and the
accelerometer-based measurements collected during the mapping of the lot using
various line passes to cover 100% of the lot.

In summary, this study proves that intelligent compaction technology can be used
at another level for the robust quality management of compacted earthworks to estimate
the modulus of compacted materials by taking advantage of artificial intelligence and by
incorporating locally calibrated material properties as inputs. The proposed approach can
help state highway agencies and contractors construct long-lasting roadways.
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