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Abstract: Numerical modeling tools are essential in aircraft structural design, yet they face chal-
lenges in accurately reflecting real-world behavior due to factors like material properties scatter and
manufacturing-induced deviations. This article addresses the potential impact of digital twins on
overcoming these limitations and enhancing model reliability through advanced updating techniques
based on machine learning. Digital twins, which are virtual replicas of physical systems, offer a
promising solution by integrating sensor data, operational inputs, and historical records. Machine
learning techniques enable the calibration and validation of models, combining experimental inputs
with simulations through continuous updating processes that refine digital twins, improving their
accuracy in predicting structural behavior and performance throughout an aircraft’s life cycle. These
refined models enable real-time monitoring and precise damage assessment, supporting decision
making in diverse contexts. By integrating sensor data and updating techniques, digital twins con-
tribute to improved design and maintenance operations by providing valuable insights into structural
health, safety, and reliability. Ultimately, this approach leads to more efficient and safer aviation
operations, demonstrating the potential of digital twins to revolutionize aircraft structural analysis
and design. This article explores various advancements and methodologies applicable to structural
assessment, leveraging machine learning tools. These include the utilization of physics-informed
neural networks, which enable the handling of diverse uncertainties. Such approaches empower a
more informed and adaptive strategy, contributing to the assurance of structural integrity and safety
in aircraft structures throughout their operational life.

Keywords: digital twins; finite-element models; damage-tolerant design; structural design; model
updating; data-driven design

1. Introduction

Over the past few decades, fatigue and damage-tolerant designs have become widespread
in many applications, with recent trends showcasing innovative approaches applied to
airframes. Traditionally, fatigue design focuses on ensuring structural integrity under cyclic
loading conditions, but strategies now integrate the material’s behavior, structural optimiza-
tion, and sophisticated analysis tools to enhance an airframe’s resistance to fatigue [1,2].
The incorporation of life-cycle analysis of structural residual strength enables proactive
maintenance strategies and early identification of potential issues [3]. These evolving
trends collectively contribute to the development of resilient airframes that not only meet
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stringent fatigue and damage-tolerance requirements but also prioritize durability, reduced
weight, and enhanced overall performance [4].

The digital evolution in aircraft design and operation has exerted a profound influence
on critical aspects of airworthiness, particularly in the realms of damage-tolerant design
and adherence to the Limit of Validity (LOV) rule [5]. The integration of advanced digital
tools, notably sophisticated simulation and analysis techniques, has bolstered the aviation
industry’s capacity to develop and implement damage-tolerant designs. This transforma-
tive shift empowers engineers and decision makers to conduct improved assessments of
structural responses to diverse stress scenarios, enabling the creation of aircraft that can
resiliently manage potential damage while upholding stringent airworthiness standards [6].
In this context of airworthiness, the impact of the LOV rule has been substantial. Digi-
talization has ushered in a more dynamic and adaptive approach to LOV considerations,
aligning them more closely with the real-time health and integrity of essential aircraft
components. The continuous stream of data from embedded sensors within the aircraft
structure allows for ongoing monitoring, enabling precise and responsive adjustments to
LOV parameters. This real-time adaptability ensures that operational limits are not only
accurately defined but also continually refined based on the actual structural conditions of
the aircraft, thereby optimizing safety margins and contributing to sustained airworthiness
throughout the aircraft’s operational life [6].

As aircraft continue to push the boundaries of technological advancements, the need
for multi-fidelity reduced-order surrogate modeling becomes critical. The exploitation of
reduced-order models (ROMs) can offer efficient approximations for complex structural
designs. In damage-tolerant design, these models are instrumental in predicting and as-
sessing structural responses to potential damage scenarios, facilitating design decisions
and proactive mitigation strategies. Additionally, ROMs streamline the analysis of critical
parameters, aiding in the rapid assessment and optimization of aircraft structures to meet
safety standards [7]. Figure 1 illustrates an example of the application of ROMs in structural
assessment, utilizing correlation analysis and the design of experiments to evaluate a range
of material properties, including those influenced by environmental conditions. This study
generates valuable response surfaces that can seamlessly integrate into simulation models.
The integration of artificial intelligence (AI) and machine learning (ML) in these approaches
has further revolutionized aircraft design, offering capabilities ranging from automated
generative design to rapid data analysis for identifying optimization opportunities [8,9].
The use of AI tools is now pervasive in many areas. Just to give some examples in trans-
portation, deep learning—a subset of machine learning—is used in fields such as traffic
control [10] and traffic accidents [11].

Figure 1. Virtual models from design for operational assessment.

More recently, a transformative approach has emerged in the field of life-cycle simula-
tion for aircraft structures through the integration of digital-twin technology and model
updating techniques, as highlighted by Tuegel [12]. The digital twin of a physical object is
its digital representation, which (i) accompanies its physical counterpart from conception
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to disposal; (ii) is updated in real time via sensors in the physical object; and (iii) informs
all decision-making processes concerning the physical object using analysis, simulation,
machine learning, and other AI techniques.

The origin of the notion of “digital twin” was briefly discussed by IBM [13]. A quick
search on the SCOPUS bibliographic database shows that the number of articles with
‘digital twin’ in their titles shows a strong increase in recent years, as shown in Figure 2.
Although the data shown in this figure start in 2015, there are several occurrences with
earlier dates, but they do not correspond to the current notion of digital twins.
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Figure 2. Number of papers with “digital twin” in their titles. The SCOPUS database was assessed
on 21 February 2024.

Since these digital twins are a virtual representation of a physical asset, process, or sys-
tem, they rely on real-time data integration from sensors, simulations, and other sources,
as succinctly stated by Jones et al. [14]. This groundbreaking technology, when applied
to aircraft structures, empowers engineers and decision makers to comprehensively and
continuously monitor and analyze structural behavior throughout the entire life cycle [15].
Diverse approaches have been explored to harness the data available from sensorized
structures, capitalizing on the insights they provide. Algorithms and analyses transform
these data into valuable information crucial for comprehensive structural assessment. This
integration not only facilitates real-time monitoring but also enhances the predictive capa-
bilities of the digital models, allowing for a thorough understanding of structural behavior
under varying conditions. The utilization of sensor data, therefore, becomes an integral
component in the ongoing evolution of structural assessment practices, enabling a more
informed, structural digital-twin approach to ensure the resilience, safety, and optimal
performance of critical structures, as proposed in [16]. These digital-twin concepts were
extensively discussed for the aeronautical sector in a position paper of the American In-
stitute of Aeronautics and Astronautics (AIAA) and the Aerospace Industries Association
(AIA) [17]. The essence of the digital-twin concept is elucidated in Figure 3, showcasing
diverse applications such as failure analysis, performance validation, and design optimiza-
tion. Leveraging the ability of digital twins to replicate the behavior and performance
of physical aircraft, these virtual counterparts offer a means to understand structural re-
sponses under various operational and environmental conditions, presenting significant
advancements for the aerospace sector across multiple dimensions, as noted in [18].
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Figure 3. Illustration of the life-cycle interplay between the physical (P) and virtual (V) assets. P1, P2,
and P3 represent the physical assets, whereas V1, V2, and V3 represent the corresponding instances
of the virtual assets (adapted from the AIAA and AIA position paper [17]).

In tandem with digital advancements, collaborative tools and readily accessible cloud-
based solutions have facilitated global teamwork in aircraft design and development [19].
Additionally, the application of advanced simulations, including computational fluid
dynamics (CFD) and finite-element analysis (FEA), has evolved to offer precise and compre-
hensive multi-physical assessments, covering aerodynamics, structural integrity, and ther-
mal performance. Collectively, these advances have inaugurated a new era in aircraft
design, marked by heightened efficiency, sustainability, and innovation throughout the
aerospace product life cycle [20].

Capitalizing on the diverse artificial intelligence tools that have emerged in the last
decade, including machine learning, presents numerous opportunities to enhance the fields
of CFD and FEA. In CFD, the integration of ML algorithms improves the accuracy and
speed of fluid dynamics simulations, enabling more precise modeling of complex flow
phenomena [21]. Similarly, in FEA, AI tools, particularly machine learning algorithms, offer
the potential to greatly improve prediction accuracy by capturing complex relationships
between input parameters and structural responses. These techniques prove invaluable for
surrogate modeling, calibration, and updating of finite-element models [22,23], enhancing
precision in predicting complex non-linearities or uncertainties. Furthermore, machine
learning’s capability to identify and extract patterns from empirical data allows for in-
formed adjustments to model parameters, resulting in refined models that closely align
with real-world behaviors. The application of machine learning is particularly promising in
addressing challenges related to intricate geometries and varied material properties arising
from the complexity and stochasticity of manufacturing and assembly processes.

Taking into account the need to improve aging aircraft management and ensure the
safety of older aircraft while optimizing operational costs, this article primarily aims to
discuss the potential benefits of integrating digital twins with model updating techniques
within the context of aircraft structure life-cycle simulation. Such integration holds the
disruptive potential to improve current design philosophies in the civil aircraft sector, con-
tributing to the expanding body of knowledge in aircraft structural simulation. By inspiring
further exploration and adoption of digital twin technologies in aerospace engineering, this
approach becomes a tool for addressing challenges in simulating and defining the life cycle
of aircraft structures and maintenance intervals. The synergy of information from design
models and sensor data presents high-impact potential, significantly improving design,
analysis, and maintenance processes. This, in turn, enhances overall safety, performance,
and cost-effectiveness in aircraft operations, contributing to greener aviation [24].

The main objective of this article is to present new approaches that can bring together
digital twins and model updating techniques based on AI tools to take advantage of aircraft
structure simulations and sensor data. Model updating refers to refining computer models
with actual performance data. This article will highlight how this combination can improve
the way aircraft are designed, predict maintenance needs from a structural point of view,
and manage an aircraft’s lifespan for optimal performance. Finally, the goal is to present
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innovative frameworks for digital-twin employment, considering the latest advances in
AI tools.

2. Model Updating Techniques

In contemporary engineering design practices, finite-element analysis stands out
as a widely employed computational technique for structural design and predicting re-
sponses under diverse loading conditions [25]. However, discrepancies between computed
outcomes and experimental measurements can limit the model’s suitability for precise
assessments of structural behavior. Various strategies for model calibration have been
developed across different fields, such as those proposed in [26] for composite fuselages
and those discussed in [27] for wings.

Model updating techniques involve numerical procedures aimed at incrementally
refining a simulation model, often a finite-element model, by adjusting inherent parameters
and assumptions. This refinement results in a gradual convergence of the model’s behavior,
including static and dynamic structural responses, to that of the current physical structure
under analysis [28]. In several areas of engineering, model updating has found application,
e.g., trains [29], bridges [30], and power transformers [31], among others. In the context
of structural damage assessment, methodologies for updating numerical models entail
minimizing residuals across relevant structural characteristics by comparing predictions
from the numerical model with observed responses from the real structure. This process is
treated as an optimization problem, where the objective function quantifies the disparity
between the finite-element model and observed measurements. The optimization focus is
on refining parameters intrinsic to the numerical model, concurrently serving as designated
design variables. Numerous optimization strategies for numerical model updating have
been extensively studied for diverse applications [28,32–34].

As outlined in [35], model updating methodologies fall into two main categories:
(i) direct methods (typically non-iterative); and (ii) indirect methods (iterative). Iterative
methods are more commonly utilized due to their capacity to offer a broader spectrum of
parameters for updating. Additionally, they possess the ability to overcome the limitations
encountered by direct methods [36].

Among the examples of model updating techniques presented in Figure 4 and pro-
posed by Alkayem et al. [35], computational “intelligence” techniques have been extensively
explored in recent years. This group of techniques includes the Nelder–Mead simplex
method; the sequential quadratic programming technique; fuzzy sets; simulated annealing;
evolutionary computation/algorithms; machine learning techniques; and hybrid opti-
mization methods [32,37,38]. Evolutionary algorithms constitute a class of computational
techniques inspired by the principles of biological evolution and natural selection. Rooted
in the field of optimization, these algorithms replicate the iterative processes of selection,
reproduction, and mutation observed in the natural world to solve or optimize complex
problems across diverse domains. By representing potential solutions as individuals within
a population and evaluating their fitness based on a defined objective function, evolutionary
algorithms iteratively guide the population toward improved solutions over generations.
Through the recombination of genetic information and the introduction of random varia-
tions, these algorithms explore solution spaces comprehensively, searching for optimal or
near-optimal configurations [39].
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Figure 4. Examples of model updating techniques applicable to finite-element models (adapted
from [35]).

Among the computational “intelligence” techniques, machine learning techniques
have emerged as very promising tools. These techniques offer novel avenues for enhancing
the accuracy and efficiency of this process. Machine learning techniques are typically
subdivided into three main groups: (i) supervised learning; (ii) unsupervised learning; and
(iii) reinforcement learning. The main difference between supervised and unsupervised
learning is whether the model knows what the outputs will be. In reinforced learning
the model learns how to respond through rewards or punishments (positive or negative
reinforcements) [40].

Harnessing the power of machine learning algorithms, such as convolutional neural
networks (CNNs), graph neural networks (GNNs), recurrent neural networks (RNNs), and
physics-informed neural networks (PINNs), among others, enables the identification of
intricate complex relationships between the numerical model and measured data. This
enables the identification of patterns, correlations, and complex dependencies that might
be challenging to discern using traditional methods. These machine learning approaches
facilitate the development of data-driven surrogate models capable of approximating
the mapping between input parameters and structural responses. The surrogates can
significantly expedite the iterative optimization process inherent in model updating by
replacing computationally expensive finite-element simulations with rapid predictions
from the trained machine learning models, as proposed by Ribeiro et al. [41]. Consequently,
the fusion of machine learning techniques with finite-element model updating has a high
potential impact, not only elevating the accuracy of predictions but also introducing an
element of computational efficiency that is indispensable for real-world and complex
engineering applications.

Ribeiro et al. [42] introduced an application of GNNs for investigating structural
problems. GNNs are a class of neural networks designed to perform inference on data that
are structured as graphs. They are particularly well suited to problems where the data are
inherently graphical, such as social networks, molecular structures, and communication
networks. GNNs operate by applying neural network transformations to the features
associated with the nodes and edges of a graph, with the goal of learning a representation
that captures the structural information of the input graph. In the seminal work in [43],
a flexible framework for building graph networks (GNs) was introduced. This extended
the previous work on GNNs by incorporating the global attributes of graphs, denoted as u,
into the input. These global features allow the GN to capture properties that are not limited
to local node or edge characteristics. The model processes input data that include these
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global features u, along with node features X and edge features E. During the forward
pass through the network, the GNN performs a series of computations that update the
features of edges and nodes and aggregate information across the graph. These updates
and aggregations are governed by update functions (φ) and aggregation functions (ρ),
respectively. This refinement aggregates the data across the graph to produce new global
attributes u′, along with updated node and edge attributes, X′ and E′, respectively. These
updated features encapsulate the relational information inherent in the graph’s structure.
This was illustrated in the authors’ GN block diagram, which is shown in Figure 5.

u u’

X X’

E E’

� x→ u

edge block node block global block

� e→ u

� u

� e

� e→ x

� x

Figure 5. Graph network block diagram. u—global features; X—node features; E—edge features; φ—
update functions; ρ—aggregation functions; u′—update global features; X′—update node features;
and E′—update edge features.

An example of a structural situation in the aerospace industry is shown in Figure 6,
which illustrates a comparison of ground truth (FEM results) and prediction (GNN results)
for von Mises stress using the developed dataset. The results are shown through ground
truth, prediction, absolute difference fields, and prediction vs. ground truth with coefficient
of determination (R2) analysis, considering the deviations of all nodes of the FEM mesh.
The R2 value provided illustrates the capability and quality of the methodology developed.
Details of the development of the methodology can be found in [42,44] and are not re-
peated here for conciseness. This model demonstrates the method’s precision in structural
applications of aerospace interest. This innovative approach facilitates the instantaneous
estimation of stress–strain fields, reducing the necessity for domain discretization and
the solving of differential equations. As a result, it offers a notably low computational
burden relative to traditional methods, demonstrating its potential for significantly re-
ducing computational costs and streamlining the analysis and optimization of complex
structural systems.

Model updating techniques are increasingly becoming a cornerstone in the aerospace
industry, demonstrating their versatility and critical applicability across a wide array of
projects. For example, Patelli et al. [45] explored and implemented two of the most rec-
ognized stochastic model updating techniques—sensitivity-based updating and Bayesian
model updating—specifically focusing on the DLR AIRcraft MODel (AIRMOD) structure.
This highlights not only the practical application of these methodologies but also their
relevance in refining and enhancing aerospace structures for improved performance and
reliability. Similarly, Zhao et al. [46] applied model updating techniques to a flying-wing air-
craft, underscoring the broad utility of these methods in addressing the unique challenges
presented by different aerospace projects. Furthermore, Goller et al. [47] extended the
application of these techniques through two illustrative examples: an antenna reflector and
a full-scale satellite model. These examples highlight the adaptability of model updating
procedures in tackling the complexities inherent in aerospace engineering.
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Figure 6. Comparison of ground truth (FEM results) and prediction (GNN results) for von Mises
stress. The results are shown through ground truth, prediction, and absolute difference fields, as well
as a ground truth vs. prediction plot, with an R2 value provided. (a) von Mises stress field—ground
truth (FEM results); (b) von Mises stress field—prediction (GNN results); (c) absolute difference field;
(d) prediction vs. ground truth R2 analysis.

3. Machine Learning Capabilities in Structural Design

Traditional structural design approaches have long relied on established engineering
principles, analytical methods, and empirical data to develop, analyze, and design struc-
tures that meet performance and safety requirements. These models and simulations are
employed to predict the behavior of materials and structures under various conditions,
with a focus on ensuring stability, strength, and durability. In contrast, machine learning
approaches represent a paradigm shift by leveraging data-driven techniques to extract
patterns, learn from experiences, and make predictions without explicit programming.
Looking at structural design, machine learning algorithms can analyze vast amounts of
data, including material properties, environmental factors, and historical performance,
to identify complex relationships and patterns that may not be apparent through con-
ventional methods. This allows for more nuanced insights, optimization opportunities,
and the potential to discover innovative design solutions. While traditional approaches
offer well-established methodologies based on physical principles, machine learning intro-
duces a complementary path based on the ability to uncover intricate patterns within large
datasets, fostering a more adaptive and data-centric approach to structural design. Figure 7
illustrates the main difference between these two approaches, as proposed by Málaga-
Chuquitaype [48]. The traditional design approach involves the careful consideration of
all options. It uses transparent code with predictable output but eventually presents a
limited scope. In contrast, the AI approach may be opaque and present unexpected outputs
but handles complex multi-dimensional problems with adaptability.
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Tradicional Approach Input =Rules Output+

Input =Output+AI Based Approach Rules

Figure 7. Traditional approach vs. machine learning approach (adapted from Málaga-Chuquitaype [48]).

PINNs represent a powerful fusion of traditional design approaches and machine
learning methodologies [49]. These networks embed physical principles and governing
equations into their architectures, allowing them to assimilate domain-specific knowledge
and constraints. In the context of structural design, PINNs enable the integration of funda-
mental engineering principles, such as the laws of physics and material behavior, into the
learning process. By incorporating these physics-based constraints, PINNs offer a unique
advantage over conventional machine learning approaches. They provide a framework
for seamlessly combining knowledge derived from traditional design methods with the
capacity of neural networks to learn complex patterns and relationships from data. The ap-
plication of PINNs in structural design allows us to take advantage of both traditional and
machine learning approaches. Traditional design methods contribute foundational prin-
ciples, boundary conditions, and known relationships, ensuring that the learned models
align with established engineering standards. Simultaneously, the neural network compo-
nent of PINNs harnesses the capacity to adapt and uncover intricate patterns within large
datasets, offering a data-driven perspective to complement traditional design intuition.
In this way, it is possible to reduce the gap between numerical predictions and experimental
observations, enabling the estimation of missing physics and uncertainties [50]. This hybrid
approach facilitates more accurate predictions, efficient optimization, and the exploration
of innovative design solutions. Figure 8 schematically represents the potential between the
traditional design and the adaptability and pattern recognition capabilities of data analyses,
providing a promising avenue for advancing structural design processes.

High Data 
Volume

High-order     
Physics

Low-order 
Physics

Low Data 
Volume

High Fidelity

Low Fidelity

Figure 8. Potential of large data analyses combined with high-order physics.



Designs 2024, 8, 29 10 of 16

Nowadays, different tools are available to create physics-informed neural networks, in-
cluding NVIDIA Modulus (previously SimNet) [51], DeepXDE [52], IDRLnet [53], NeuroD-
iffEq [54], and finite basis physics-informed neural networks (FBPINNs) [55], among others.
The current state of the art in physics-informed machine learning was assessed in [56], par-
ticularly its application to digital twins, prognostics, and health management. The authors
highlighted that the majority of applications are associated with 1D and 2D partial differen-
tial equations, revealing challenges in dealing with complex structures. This underscores
the necessity for additional research and development in this field.

4. Damage-Tolerant Design

Damage-tolerant design is a critical design philosophy in aircraft engineering aimed
at ensuring the continued structural integrity and safe operation of an aircraft even in
the presence of defects, cracks, or unexpected events that instigate structural damage [4].
This approach acknowledges that despite rigorous maintenance and operational practices,
aircraft components may still experience wear, tear, or unforeseen incidents. To address this,
damage-tolerant design involves the consideration of factors such as material properties,
structural configuration, and load distribution to minimize the likelihood of catastrophic
failure resulting from localized damage. By employing redundancy, load redistribution
mechanisms, and fracture-resistant materials, damage-tolerant design enhances the ability
of aircraft structures to withstand and accommodate various forms of damage, thereby
extending the service life of aircraft while maintaining safety standards. This approach
holds particular significance in the civil aviation industry, where safety and reliability are
paramount, ensuring that even under challenging circumstances, aircraft can continue to
operate safely until scheduled maintenance interventions can be executed.

The integration of digital-twin technologies and model updating techniques holds
the potential to revolutionize the traditional approach to damage-tolerant design in the
aerospace industry. Digital twins can provide dynamic and real-time information about an
aircraft’s structural health, continuously monitoring and analyzing its condition throughout
its service. This data feedback enables engineers and decision makers to accurately assess
the impact of various forms of damage on the aircraft’s structural integrity and performance.
By incorporating real-world data into simulations, model updating techniques can refine
predictive models to better reflect the actual behavior of the aircraft under different damage
scenarios. This iterative process leads to enhanced accuracy in predicting how damage will
propagate and affect an aircraft’s load distribution, ultimately influencing design decisions
and maintenance strategies [57].

Currently, the real-world data of aircraft structures have been enhanced through the in-
tegration of advanced structural health monitoring (SHM) technologies [58]. SHM systems
employ an array of sensors, including strain gauges, accelerometers, and thermocouples,
among others, to continuously monitor the structural integrity of critical components.
The real-time data collected from these sensors offer insights into stress distributions, load
variations, and potential defects, enabling operators to promptly detect and assess the
extent of damage. This proactive approach to damage detection aligns seamlessly with
the damage-tolerant design philosophy and digital-twin developments, allowing timely
interventions and maintenance to mitigate the progression of flaws, reduce maintenance
costs, and extend the operational lifespan of civil aircraft.

Figure 9 schematically presents a typical curve of damage as a function of time,
from a structural point of view. The reduction of the probability of failure is linked to
maintenance operations, which restore the residual strength of the structure by repairing
all damage detected in the structure. For normal conditions, maintenance operations are
pre-programmed with time intervals ∆t based on the design assumptions and fatigue
characteristics of the materials. Modeling the fatigue process may be carried out at different
levels of fidelity and for random multiaxial loadings, which has been discussed in detail,
e.g., by Zhou and Tao [59], where the interplay between the dynamic response of the
structure and high cycle fatigue behavior was considered in detail. Specifically, for fatigue
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crack growth (FCG), approaches based on an equivalent stress-intensity factor range,
using the Paris law or more advanced FCG laws, can be used together with crack path
sensing in physical structures so as to predict crack growth and take corrective measures
as required. An example of this approach was given in [60] concerning the propagation
of fatigue cracks in aluminum alloy fuselages, where cycles correspond to pressurization
in flight and depressurization when taxiing. Khalid et al. [61] gave a thorough review
of sensing and structural health monitoring of aeronautical structures. Using digital
twins, proactive maintenance planning can be used by detecting and predicting potential
structural issues before they escalate, aligning well with the principles of damage-tolerant
design by allowing timely interventions to mitigate further damage. These time intervals
can be adjusted for each aircraft and considering the specific service conditions (∆t1, ∆t2,
∆t3, ..., ∆tn), improving the operational time without compromising the structural integrity
of the aircraft.
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Figure 9. Example of possible impact of digital twins and model updating techniques on dam-
age assessment (continuous line—assumed behaviour, conventional approach; dashed line—digital
twin approach).

With structural health monitoring systems, the integration of data from various sen-
sors and sources requires the development of robust data fusion techniques that can
handle different types of data streams, such as strain measurements, temperature readings,
and vibration patterns. Once the data are pre-processed and integrated, advanced analytic
techniques, including machine learning and artificial intelligence algorithms, can be ap-
plied to extract meaningful insights, identify patterns, and detect anomalies based on the
numerical models and the respective updates. These insights can be used to update and
refine digital-twin models, making them more representative of real-world conditions and
enabling more accurate predictive simulations. Ultimately, by effectively managing the
abundance of data from SHM systems, the accuracy and reliability of structural numerical
models and digital twins can be substantially improved, leading to safer and more efficient
aircraft operations [62]. The combination of digital twins and model updating techniques
can enable more efficient utilization of resources in the damage-tolerant design process [63].
Traditional methods often involve conservative assumptions to account for uncertainties in
structural behavior under damage conditions, leading to over-engineered components and
increased weight. By leveraging real-time data and accurate simulations, digital twins can
provide a deeper understanding of actual loading conditions and stress distributions within
damaged structures. This information can guide the refinement of finite-element models
and allow for more accurate predictions of residual strength and fatigue life. Consequently,
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aircraft manufacturers can optimize component designs and maintenance operations to
restore the aircraft’s residual strength, achieving a balance between safety and weight
savings. This optimized approach aligns with the philosophy of damage-tolerant design,
aiming to maximize the structural lifespan while minimizing unnecessary material, fuel
consumption, and maintenance costs.

By combining the data analysis of SHM systems with GNNs, ANNs, or PINNs,
it is possible to develop new disruptive approaches. GNNs and ANNs can estimate
stress/strain fields using numerical models, as illustrated in Figure 6. These models can
then be calibrated and updated with data from structural sensing technologies, enabling fast
evaluations and multi-fidelity structural assessments. Examples of approaches using PINNs
related to damage-tolerant design were presented in [64] for recurrent neural networks and
in [65] for hybrid PINNs. The approach based on hybrid PINNs is presented schematically
in Figure 10. This last model is an enhanced version of the cumulative damage model
based on physics-informed recurrent neural networks [64], also used for fatigue crack
growth assessment with a smaller amount of data. This innovative model endeavors to
establish a predictive analysis framework for forecasting fatigue crack growth in aircraft
window panels. Based on historical flight records and limited inspection observations,
the model (i.e., ‘digital twin’) is designed to enhance prognosis and residual strength
assessment. Distinct from traditional data-driven models, this approach differs by the
utilization of significant training data. Instead, the model’s loss functions are enriched with
linear elasticity laws, and the necessary second-order derivatives are computed through
automatic differentiation. This approach, from traditional training data methodologies,
underscores a reliance on fundamental physical principles, illustrating a more physics-
informed approach to predictive modeling, particularly in the context of fatigue crack
growth prognosis for critical aircraft components. One of the primary advantages of these
models is their ability to compensate for model-form uncertainty in damage estimation
and to address incomplete knowledge regarding various unknown factors in the models,
as discussed in [66].

KSimNet

FCG
law

a a
updated

ai cell

flight
conditions

at t=1

af

MLP

cell

flight
conditions

at t=2

cell

flight
conditions

at t=N

Figure 10. Example of the application of a hybrid physics-informed neural network in fatigue
assessment. a—damage (crack length); FCG—fatigue crack growth; K—stress-intensity factor; MLP—
multilayer perceptron; SimNet—an AI-accelerated multi-physics simulation framework (NVIDIA);
t—time (adapted from Viana et al. [65]).

The model proposed in [65] is based on the NVIDIA framework SimNetTM, short for
Simulation Network, which is a simulation-based engineering framework that leverages
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artificial intelligence and machine learning techniques. This framework is able to integrate
various simulation tools and datasets and operates on the principle of collaborative learn-
ing, where multiple simulation models interact and learn from each other’s experiences,
continuously improving their predictive capabilities [51].

5. Conclusions

The integration of digital-twin technology and model updating techniques is enabling
a transformative era in aircraft design and the broader aerospace industry. These ad-
vancements represent a shift from traditional design paradigms to dynamically updated,
data-driven processes. The current capability to continuously monitor aircraft and seam-
lessly update simulation models ensures that aircraft structures are built to withstand
real-world conditions, leading to improved safety, reliability, and sustainability.

Considering damage-tolerant design, these technologies offer a new level of insights
into the structural health of aircraft, allowing engineers to accurately assess the effects of
damage and develop more accurate predictive models, individualized for each aircraft.
By leveraging data to inform maintenance and repair decisions and optimize designs,
digital twins and model updating contribute to longer-lasting, safer, and more cost-effective
aircraft structures.

Taking into account the fast evolution of diverse machine learning tools applied
to diverse engineering simulation problems, disruptive approaches can be developed
to support these digital twins. These machine learning tools can handle complex and
large-scale data, which can be obtained from structural instrumentation, and integrate
these data to update numerical models. These approaches not only accelerate design
iterations but also optimize the accuracy of simulations, resulting in more reliable insights
into aircraft performance, structural integrity, and maintenance needs. However, these
applications require large datasets with significant and reliable data representative of the
critical phenomena. In addition, full-field sensors for structural assessment are not available,
and real-time sensor data from aircraft in operation present technological challenges due to
communication and signal-processing limitations.

Future developments in this field may address these limitations by exploring more
streamlined data integration strategies, optimizing computational processes for digital-
twin management, and further developing sensor technologies designed for structural
assessment and for the harsh environments of aircraft operation.

In essence, the integration of digital twins and model updating techniques based on
machine learning offers a paradigm shift in the damage-tolerant design philosophy, en-
abling more informed, adaptive, and resource-efficient strategies for ensuring the structural
integrity and safety of aircraft throughout their operational life.
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