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Abstract: This work aims to evaluate the current state of research on the use of artificial intelligence,
deep learning, digitalization, and Data Mining in product development, mainly in the mechanical
and mechatronic domain. These methods, collectively referred to as “digital engineering”, have the
potential to disrupt the way products are developed and improve the efficiency of the product
development process. However, their integration into current product development processes is
not yet widespread. This work presents a novel consolidated view of the current state of research
on digital engineering in product development by a literature review. This includes discussing the
methods of digital engineering, introducing a product development process, and presenting results
classified by their individual area of application. The work concludes with an evaluation of the
literature analysis results and a discussion of future research potentials.

Keywords: digital engineering; product development; data mining; machine learning; data-driven
methods; system design; system integration; implementation; validation

1. Introduction

The terms artificial intelligence, deep learning, digitalization and Data Mining are
widely used when talking about the next disruptive technologies, changing our lives as
well as the way we work or develop new products. In the area of product development, the
consistent evaluation and use of existing data applying these methods is subsumed under
the term digital engineering [1]. Nevertheless, the integration of those methods in currently
established product development processes in small- and medium-sized enterprises is not
widely spread [2]. Even though there are already some use-cases in industry and science,
those contributions are rather isolated and a consolidated overall view of the current state
of research is missing. The ontology AI4PD provides a framework to store and search
use-cases for product development [3]. Unfortunately, AI4PD only provides a framework
for use-case coverage but gives no overview of available solutions. Therefore, the aim
of this work is to evaluate the current research state and summarise those applications
for product development processes. Overall, the following research question is answered
using the literature study:

• Which use-cases of digital engineering methods are currently available for the
application in product development?

In order to reflect potentials of digital engineering applications, the required basic
knowledge is given in the next section. There, the major methods of digital engineering
such as Machine Learning and Data Mining are discussed. Additionally, a wide-spread
methodical product development process is introduced. Afterwards, the methodology of
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the literature review with its search strings is discussed. In the fourth chapter, the results are
presented, classified by their individual area of application during the presented product
development process. A result evaluation and discussion of future research potentials
completes the contribution.

2. Materials and Methods

In order to be able to analyze and discuss the methods of digital engineering in the
context of product development practice, the widely used methodical product development
process VDI 2206 is first presented. Afterwards, fundamentals of digital engineering
methods are explained.

2.1. Product Development Process According to VDI 2206

Product development in engineering practice must reflect the increasing interactions
between mechanics, electronics and software [4]. Therefore, VDI 2206 provides a suitable
methodological method framework, see Figure 1.

Figure 1. V-Model for development of mechatronic systems according to [4].

In the left branch, requirements engineering and the building of the basic system
architecture is conducted. Afterwards, the domain-specific implementation is carried
out in the bottom of the V. Lastly, as shown on the right branch, the system integration
and validation are conducted. Between the two branches of the V, the properties are
continuously verified and validated. Within recent years, the usage of digital engineering
in product development has become increasingly important [3].

2.2. Digital Engineering

In digital engineering, a consistent knowledge and information extraction from design,
testing or operation data is conducted with the help of data-driven methods. The insights
are used during the whole engineering process. Based on this, products are optimised and
knowledge is used in earlier phases of product development. Since the difference to the
established virtual engineering is not directly clear, a short distinction according to the
derivation from a previous publication [2] is given.
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Virtual engineering, also known as virtual product development, is a term used to
describe the process of creating physical objects in virtual environments. Over the years,
it has gained prominence as a means of computer-aided modelling. The main objective
of virtual engineering is to digitally represent a product and its characteristics, as stated
by Pahl et al. [5]. However, Vajna et al. [6] have extended this definition to include the
prediction or determination of all relevant product properties during the development
phase, without the need for the physical existence of the product or its components. This
extension emphasises the evolving nature of virtual product development. Virtual product
development typically starts with a computer-aided design (CAD) model, which is then
analysed using computer-aided engineering (CAE). Validation of virtual products often
starts with the CAD model. It is important to distinguish virtual product development
from digital engineering, and the following definitions provide clarity on this distinction.
Schumann et al. [7] were among the first to define digital engineering as the continuous
use of digital methods and tools throughout the product development and manufacturing
process. This approach aims to improve product quality and process control throughout
the lifecycle. Extending the definition of Schumann et al. [7], Künzel et al. [8] incorporate
essential requirements into the concept of digital engineering. A crucial aspect is the trace-
ability of all data, especially with regard to change and variant management. In addition,
data are used for the optimisation and further development of products. This requires the
systematic transfer of knowledge from later phases of the product lifecycle to earlier phases,
a key element of future engineering. Duigou et al. [9] also place digital engineering within
the framework of a comprehensive view of existing data across the entire product develop-
ment process. Drawing on the characteristics of both virtual and digital engineering, the
authors argue that digital product development can be seen as a logical progression from
virtual product development, as Schumann et al. [7] have previously stated. However,
the authors see digital engineering as being completed at the end of process planning and
the start of production, as this is where the term “digital production” becomes applicable.
In particular, the consistent evaluation and use of existing data from design, testing and
real-world operation are novel features of digital engineering compared to virtual product
development. In summary, the transition from virtual product development to digital engi-
neering occurs when knowledge and information are consistently extracted from data and
applied to the product development process. This shift represents the evolution of virtual
engineering into a broader and more advanced discipline that leverages data throughout a
product’s lifecycle.

A data-driven method enables autonomous decisions based on data and corresponding
models [10]. Data-driven methods are divided into Data Mining and Machine Learning (ML),
which will be further evaluated in the next paragraphs.

The term Data Mining emerged in the early 1990s from the broader topic of Knowledge
Discovery in Databases (KDD) and today describes the application of special algorithms for
extracting patterns from data as a sub-step of the KDD process [11]. Data mining is highly
relevant because the accumulating data in most companies can no longer be meaningfully
processed without computer support and a large part of implicit knowledge within the data
remains unused in existing database systems, although it is readily available. According to
Tan et al. [12], there are three main steps in a KDD process: preprocessing, processing, and
postprocessing. In preprocessing, the step of data preparation, the input data are unified,
cleaned and, if necessary, also normalised, so that structured data are available. In the
second step, processing, these structured data are processed by Data Mining methods and
used to generate predictive models or metamodels. In the final step, post-processing, the
predictions from the models are evaluated and interpreted. In addition to the KDD process
described by Tan et al. [12] for the use of Data Mining, two other processes have become
established in the meantime. These are the KDD process according to Fayyad et al. [11] and
the Cross-Industry Standard Process for Data Mining (CRISP-DM) [13]. The KDD process
according to Fayyad et al. [11] consists of nine steps, whereas the CRISP-DM is divided
into six phases. In the steps six and seven (Select Data Mining method & Data Mining)
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according to Fayyad et al. [11] and phase four according to CRISP-DM (Implementation),
the actual Data Mining methods are used. In recent years, the programming language
Python and other software tools such as Weka [14] have been used for the operational
implementation of Data Mining.

An important distinction to the field of Data Mining is that in Machine Learning (ML),
the algorithm learns itself and does not just build on existing data sets trying to find
patterns. In addition, Data Mining often uses statistical methods. In ML, the system learns
until a termination criterion or a certain prediction quality is reached based on existing
data [15]. ML methods can be divided into three groups. These are unsupervised learning,
supervised learning, and reinforcement learning [15]. For further use of ML in the context
of digital engineering, supervised learning methods are most suitable, as these methods can
be used to generate predictive models that are capable of forecasting [6]. Algorithms such
as linear or polynomial regression, decision trees, or artificial neural networks are usually
used. In supervised ML there exist mainly two tasks which can be addressed: regression
and classification. In regression, the task is to predict a previously unknown value from
a new parameter configuration based on an initial dataset often created via a parameter
study, e.g., predicting the maximum forming force during the manufacturing of a part [16].
In classification, the aim is to classify a new datapoint with respect to given classes of
datapoints, also based on an initial dataset. For example, requirements for a given product
can be classified into different classes, e.g., organisation, function, technology, as well
as overarching boundary conditions [17]. One problem of the application of supervised
learning methods is that the trained model learns only the training data by role and thus
learns the pure data points rather than the correlations in data. As a result, the model can
no longer react adequately to new datapoints. To put it in short, the model is not able to
generalise or handle new data. This phenomenon is called overfitting and must be avoided
by choosing appropriate training parameters [15].

3. Literature Review

Several use-cases and methods of data-driven methods and their application in prod-
uct development exist. However, as presented in the introduction, no overview covering
the whole development process according to VDI 2206 is available and only studies con-
cerning small parts of the whole process exist. This makes it hard to identify potentials and
research needs, especially when looking at cross-phase use-cases. Therefore, a literature
analysis of existing integrations of data-driven methods along the development process
according to VDI 2206, which was conducted to analyze existing approaches. The aim is
to research the link between digital engineering methods and the product development
process, particularly with regard to possible application scenarios. For a structured review,
the product development process according to VDI 2206 was divided into four review areas
as shown in Figure 2. The first one is system design, which deals with the left branch of the
V-model. The second area is system implementation, dealing with the V’s bottom while
the third aspect is system integration in the right branch of the V. The last one is validation
addressing the connection between the two branches. The distinction into the four areas
was created since they can be seen as the four main problem areas of the development
process as visualised by the shape of the V.

For the literature study, the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) (http://prisma-statement.org/, accessed 13 June 2023)-method
was used. PRISMA is an evidence-based system for systematic reviews with a focus on
transparent reporting. The search was conducted using the Scopus literature database. The
search string was varied depending on the focus area, but always contained uniform basic
terms. Table 1 provides an overview of the keywords used. The character “|” represents the
keyword OR, the character “&” the keyword AND. The results are limited to the subarea
Engineering (ENGI) and the languages German and English. Since English descriptions
and abstracts are available for the German articles, the use of English-only search terms was
possible. The area “construction” was also excluded from the search, since this keyword

http://prisma-statement.org/
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was used mainly by civil engineering research, which was not in the scope of this research.
Overall, four searches where conducted, combining the Area General with one of the four
defined research areas. For the first search, no specific timeframe was defined.

Figure 2. Assignment of the research areas of the literature review in the V-model
according to VDI 2206.

Table 1. Search string definition.

Area Keywords

General “data mining” | “machine learning” | “data-driven” | “digital engineering”
& “product development” & NOT “construction”
AND

System Design “requirement” | “concept” | “system design”

Implementation “design” | “application” & “domain specific” | “subsystem” | “mechatron-
ics” & “development” & “method” | “product”

System Integration “system integration” | (“component” & “integration” & “system”) &
“method” | “product”

Validation
(“data-driven” | “machine learning” | “data mining”) & (“design” | “ap-
plication”) & (“development” & (method* | “product”) & “assurance”) &
NOT “construction”

The first search yielded a total of 632 results. This was further refined in two prescreen-
ing cycles according to abstract and title. Contributions were excluded if their abstract and
title had no connection to digital engineering methods such as Data Mining or Machine
Learning, or if they were not in the context of product development or the four previously
defined research areas. Moreover, contributions were excluded that did not correspond
to the actual objective after fulltext evaluation. A total of 115 results were considered
relevant to the research objective about the use of data-driven methods in product devel-
opment. The evaluation was conducted by the first four authors, each an expert at the
application of data-driven methods in one of the four research areas. Possible biases of this
research method are elaborated in detail in the discussion section. The total numbers are
shown in Figure 3.
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Figure 3. PRISMA Flowchart of literature review.

4. Results

In the following section, the identified use-cases of data-driven methods in the re-
search areas are presented. The resulting papers of the literature review are categorised
into the four areas with the following additional categories: use-case (realization of an
explicit problem), method (higher-level approach), review (analysis of existing solutions of
data-driven methods), and concept (planning/concept for solving a problem), see Figure 4.
A subdivision in terms of algorithms used etc. was deliberately omitted, as algorithms
strongly depend on the actual task, so that it is difficult to derive universal best practices.

The overview in Figure 5 shows the number of publications in respect to their publi-
cation year from 1996 to 2021. The time series is divided into the four research categories:
System Design, Implementation, System Integration and Validation.

From 1996 onward, there was a gradual increase in publications across the categories.
In 1998, one publication was recorded in Implementation, and System Integration, while
Validation had its first publication in 1996. In the subsequent years, the number of publica-
tions varied, with occasional peaks and declines in different categories. Notably, 2019 had
the highest number of publications across all categories, with eight in System Design, five
in Implementation, three in System Integration, and eight in Validation.

Overall, the time series shows a gradual increase in publications in Digital Engineering,
with different emphases and stages of development. The increasing number of publications
reflects the growing importance of digital engineering in recent years, especially in System
Design and Implementation. This goes along with the continuous development and
integration of digital technologies in engineering in this time series.

The central result of the analysis is that previous research work primarily relates to
the areas of system design and implementation. System integration, in particular, is found
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in the literature, but takes up a small share of the total sources. In the following, the central
findings of the respective areas are discussed in more detail.

System Design: 33

Implementation: 39

System Integration: 21 Validation: 36
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Figure 4. Distribution of the included papers among the four research areas. Some papers are
assigned to two categories.

Figure 5. Distribution of the identified papers among the publication years.

4.1. System Design

In system design, there have been significant advances in the application of data-
driven methods, particularly in the form of use-cases. Researchers such as Bertoni et al. [18]
have demonstrated the potential of Data Mining for decision support in the early stages
of product development. Similarly, Menon et al. [19] have focused on the benefits of text
mining for predicting quality and reliability. As new digital products require innovative
product development processes that incorporate data-driven capabilities, Li et al. [20]
proposed an integrated process model based on the classical product development model
and CRISP-DM. Their model emphasises the fuzzy early system design phase.

Numerous literature reviews have also been conducted in specific areas of system
design. Shabestari et al. [21] explore the use of machine learning in the early stages of
product development, while Breitsprecher et al. [22] and Burggräf et al. [23] investigate
knowledge-based problem solving and Data Mining in modern product development
processes. Trauer et al. [24] evaluate industrial climate system developers and identify
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several opportunities for data-driven design throughout the product development process,
with a particular focus on system design. Various methods have been developed to support
system design using data-driven approaches. In the domain of requirements engineering,
researchers have addressed challenges [25] and presented automated techniques for select-
ing requirements from diverse digital sources [26]. Dworschak et al. [1] even generate new
geometries based on changing part requirements.

While current system design support systems struggle to address the goals of green
products, approaches that combine artificial intelligence, multi-criteria decision support,
expert systems, and life cycle assessment have emerged to address this gap [27]. Patent
analysis is another critical task in the early stages of new product development; however,
this can be time-consuming. To tackle this issue, digital engineering methods such as text
mining combined with ontologies have been employed to automatically generate patent
summaries [28]. Furthermore, sketching plays a crucial role in communicating new ideas
during system design. To assist inexperienced designers, AI-based pedagogical support
tools have been developed to facilitate idea development through sketching [29].

Other applications support the concept phase by providing suggestions for later
manufacturing strategies [30], manufacturing capabilities [31,32], and assembly [33]. Addi-
tionally, product configurations [34,35] and product family management [36] have been
explored as use-cases as well as concept analyses [37–40]. There are also attempts to influ-
ence product reliability during system design using test and field data [41]. For companies
dealing with low-volume, high-complexity, and long-life products, as well as spare parts
producers, cost estimation support is of particular relevance [42]. Since customer attitudes
and perceived quality significantly impact sales, Gussen et al. [43] have developed an
approach to predict the perceived quality of surface materials, which can be utilised during
system design. Lindemann et al. [44] have defined a method to integrate perceived quality
evaluations into the product development process. Furthermore, data-driven prediction
and analysis are used to consider physical interactions between users and products [45].

Customers often express their opinions online through comments and product reviews.
Text mining combined with Kansei Engineering has been employed to analyze customer re-
quirements based on these expressions [46]. Additionally, Lutzenberger et al. [47] propose a
method to combine product usage information with data-based models, leveraging text min-
ing algorithms on quality reports during requirement engineering. Wang and Zhang [48]
address the semantic gap between well-defined product specifications and customer needs
by proposing a machine learning mechanism based on classification algorithms. In the field
of gear design, [49] employ Data Mining techniques to perform uncertainty quantification
focused on noise, vibration, and harshness characteristics.

In summary, there is a wide range of use-cases available for data-driven methods in
system design, addressing various relevant problems. These use-cases provide starting
points for the development of a generalised concept for the application of these methods in
this field.

4.2. Implementation

The field of domain-specific implementation is primarily divided into manufactur-
ing engineering, automotive engineering, and aerospace engineering sectors. Within
each sector, there are subdivisions that focus on concepts, methods, literature reviews,
and use-cases.

In the domain of mechanics, there are several noteworthy concepts being introduced.
For instance, Przystałka et al. [50] propose an expert system concept for the coal mining in-
dustry to support decision-making in determining the optimal location for new coal mines.
Another concept by Pasqual and de Weck [51] involves network analysis to aid in change
management within the mechanical engineering domain. In the domain of informatics, re-
search primarily centers around hardware and circuit design [52]. Tine et al. [53] present an
expert system for near real-time simulation of circuit design, while Qin and Ji [54] develop
a hyperparameter optimization toolkit for ML models using parallel strategy parameter se-
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lection. In the context of Industrial Internet of Things (IIoT), Liu et al. [55] leverage artificial
intelligence (AI) methods to optimise security systems in high-speed railways. For human-
machine interfaces (HMI), Czauski et al. [56] introduce a domain-specific language (NERD)
for the Internet of Things (IoT) that facilitates HMI definition in production control systems.
Sartori et al. [57] employ ML and HMI techniques in a use-case involving smart control of
prosthetics. In the aerospace industry, Horoschak et al. [58] propose a concept to reduce
the return-to-service time for space equipment. Additionally, Daiker et al. [59] explore a
broader range of applications, specifically in the development of safety-critical systems for
NASA. Regarding method usage, data-driven methods like machine learning (ML) find ex-
tensive application in manufacturing engineering. For example, Fredin et al. [60] utilise ML
to optimise tools, while Ozer et al. [61] employ ML to support product development in flex-
ible electronics. Settaluri et al. [62] utilise reinforcement learning, a novel ML approach, for
designing analogue circuits. Murrell et al. [63] propose a supervised learning-based method
for reducing sensor data. In the domain of informatics, data-driven methods often focus on
pattern recognition algorithms. Li and Wu [64] develop a text mining-based approach to
support reliability analysis and design failure mode and effect predictions. Luo et al. [65]
employ fog computing, a form of edge computing, to facilitate process monitoring in
larger production plants using a data-driven design process. In the early stages of product
development, Ivezic and Garrett [66] utilise ML to support collaborative design through
co-simulation. Bork [67] investigates meta-approaches by analyzing domain-specific con-
ceptual modeling methods using a metamodel approach, facilitating the application of
use-case-specific modeling methods. In the aerospace field, Martin et al. [68] focus on
ML-based control models for contamination in extraterrestrial space.

Literature reviews and studies within the automotive industry mainly revolve around
the automation of routine activities [69] and the use of computer-aided design (CAD)
tools [70]. In “classical” mechanical engineering, there are initial investigations into inte-
grating data-driven methods such as ML and Data Mining into mechanical-mechatronic
component development [71]. Verhagen et al. [72] conducted a literature review on
knowledge-based engineering, which serves as a predecessor to data-driven and digital
engineering, focusing on identifying research questions in this area. In materials science,
Pilania [73] explores the application of ML methods for discovering and developing new
materials. Menezes et al. [74] conducted a comprehensive review to identify the poten-
tials of Industry 4.0 and smart operations within the manufacturing domain. IoT is often
utilised for condition-based maintenance of products, and Prajapati et al. [75] surveyed
condition-based maintenance methods that frequently employ ML to predict dangerous
conditions. Simonetto et al. [76] explored the state-of-the-art time-dependent optimization
methods, which have broad applications in mechatronic products.

In terms of use-cases, condition-based maintenance and condition monitoring are
prominent areas. Shan and Li [77] developed a data-driven system to support smart bridge
management and maintenance, while Grishin [78] focused on intelligent algorithms for han-
dling errors and deviations in condition monitoring systems. ML and data-driven methods
are also being investigated for production optimization and control [79]. Geiger et al. [41]
explored the use of Data Mining methods to test existing products for reliability and
optimise future products based on this analysis. Hui et al. [80] present a use case in-
volving boiler design. Schreiber et al. [81] propose an ML and data-driven approach for
building cooling management system design. Lützenberger et al. [47] demonstrate an
approach for improving product-service-systems (PSS) using data from the usage phase.
Bertoni et al. [82] combine ML and value-driven design to create a decision support system
for product design. Kayama et al. [83] evaluate the usefulness of model-driven thinking
in academic teaching institutions. In aerospace engineering, Wei et al. [84] present an AI
and ML-based control system for failure detection, while Kalita and Thangavelautham [85]
combine design optimization and evolutionary algorithms for microsatellite design.
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4.3. System Integration

In the system integration phase, the developed system elements are combined into
bigger systems and finally the overall system. To overcome problems, it is closely inter-
linked with the implementation phase. Another element is the interaction with verification
to ensure the overall system fulfils its requirements and the prediction of system properties
to achieve this [4]. For system integration, there are few literature results that use the
term according to VDI 2206. This is mainly caused due to the spare use of the system
integration phase itself in engineering-related publications. The identified papers can
mainly be divided into three categories. In product development, data-driven methods
can be used to simplify the integration of components into systems by simulating their
behaviour [86]. Another use-case is the implementation of data-driven methods into prod-
ucts, either existing or under development. There it can be used for predictive maintenance
applications [87]. The last category is the use for production preparation and surveillance,
where these methods can act as a connection between development and production [33,88].

Modern development projects often make use of a holistic development approach. This
includes the storage of all data produced during the development, e.g., from simulations,
testing and field data, in a data management system. As part of digital development, this
data-driven development enables the planning of reliability tests and thus optimises the
product and component testing during the system integration phase [89]. This becomes
especially important when the level of integration and therefore challenges related to
product manufacturability and reliability increase [90]. Because of the integration of
multiple-disciplinary fields, such as mechanical, electro-mechanical, digital, etc., system
integration is getting more and more complex. An approach to connect these fields is by
reorganizing the data management system, including support for agile methods. Therefore,
a framework has been developed to illustrate the benefit of agile methods for multi-
disciplinary integration tasks [91]. Key tasks during system integration are positioning
and dimensioning of components in combination with verifying the solutions. This is
supported by object-oriented multidisciplinary modeling and related languages [92]. In
today’s companies, there is often a huge number of similar products available, which could
be used as carry-over parts. The complex task of portfolio analysis can be acheived through
a data-driven approach, which utilises metamodels [93].

When it comes to testing of system elements, information about their usage and life cy-
cle data is needed. To allocate this information and enable methods, such as X-in-the-loop,
which help during the development cycle and provide testing techniques for hardware
and software, methods of Data Mining are applied [20,94]. While Data Mining has become
useful to gain information in maintenance, it is not solely usable as a stand-alone technique.
Therefore, Data Mining products are shifting from stand-alone technology to be integrated
in relational databases. The right deployment of this technique enables optimised mainte-
nance decisions [87,95]. An important part of the system integration is to ensure that the
overall system meets its requirements. For this topic, assembly planning and design for
assembly have to be considered. Data mining techniques are also used to gather informa-
tion about the expected assembly effort and cost, as well as to gain clarity about the test
requirements themselves [33,96–98]. They are also used for monitoring, planning, fault
analysis, etc., and are directly integrated into production systems [74,99,100]. This includes,
for example, the prediction of assembly processes and thus the verification of the system
integration process [101].

4.4. Validation

Out of the total of 36 publications identified in the field of validation, around one-third,
see [96,102–111], are strongly related to manufacturing, while an equally large proportion,
see [112–124], stems from the field of automotive and aerospace development. Still, five
contributions, see [125–129], contemplate the development and production of integrated
circuits. Besides two contributions that focus on advancements in material science [130]
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and medical technology [131], only four articles address product development on a more
general, abstract level:

Kano et al. [106] focus on the improvement of quality and yield, especially for new
products in the advent of increasingly short life cycles, and propose a corresponding data-
based methodology. Li et al. [132] go one step further regarding new product development
and address the number of necessary verification, validation, and accreditation cycles
of the V-Model with a Model-Based Systems Engineering integration and an explicit ex-
tension towards data-driven features. On a slightly lower but equally important level,
Shao et al. [133] realised that current data-mining approaches regarding historical simula-
tions are often limited to specific and isolated engineering challenges and neglect overall
performance evaluation. Therefore, they present a data-mining approach to discover inter-
relations between erstwhile singular design parameters and improve overall performance
estimations. The earliest identified publication was released in 1996 and aims at enhancing
the use of Quality Function Deployment (QFD). The crux of QFD lies in the necessity of es-
timating a large number of values based solely on the subjective and potentially inaccurate
experiences of the developers in charge. To mitigate the lack of accurate data input, the
paper suggests a machine-learning approach to determine the required data by learning
from examples in a white-box process that represents the actual terms of the respective
application [134]. In a similar machine-learning-based approach, Li and Wu [64] utilise
text mining to classify failure modes and failure causes in FMEA analyses and therefore
unveil the most economical improvement activities. However, they have not investigated
the potential interrelationships between failure modes and failure causes, yet.

This aforementioned pattern suggests that digital methods for validation have so far
been considered primarily on a rather application-specific basis. When new methods are
presented in these works, as in [115,117,119,125,134–136], they mostly refer to the context
of manufacturing, e.g., [96,104,106,107,109,126]. Considering the share of manufactur-
ing within the entire overarching development process, this subtopic seems to be over-
represented in the given context. On the contrary, only a single publication [119] explicitly
targets the vertical aggregation of data across the entire second half of the V-model. An-
other paper [20] addresses horizontal verification and validation between product, model,
and data life cycles in this same context. Particularly with regard to general approaches
and recommendations for action, the topic of validation across the product development
process still lacks further assistance of a generic nature.

5. Discussion

Using a comprehensive view and broad approach for a complete overview, the general
use of digital engineering in individual sections of the product development process has
been shown. Different companies and, thus, researchers refer to different process models for
product development that are tailored to their individual and specific use cases. The authors
chose the V-model as a flexible approach to cater to different needs in product development.
Although there is a limitation regarding the search terms due to the utilization of the
V-model and its specific terminology for the literature review, the selection was made
because the V-model has found its way into VDI 2206 [4] as the leading process model used
by different companies and for numerous studies. Articles that failed to properly situate
themselves within the context of the product development process or neglected to employ
the appropriate keywords were excluded from the dataset and subjected to subsequent
analysis. As a result, the analysis focused solely on a specific sector of ongoing research,
thereby limiting the scope of the investigation. Furthermore, the restriction to English
and German publications leads to a language bias. To overcome this bias, an international
research consortium covering all the major world languages is needed. Another bias is a
lack of publications elaborating industrial use-cases in detail. This is because companies do
not want to publish their innovative solutions to keep the competitive advantage. However,
this leads to the fact that there are digital engineering solutions in practice that cannot
be covered by scientific research. An industry survey would have to be carried out to
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record use-cases and best practices. However, the significance of such a study can also be
questioned due to the companies’ intention to maintain secrecy, as explained above.

Considering the aforementioned scope of the analysis, the initial research question
can be answered as follows: In the early and concept phases of the product development
process, digital engineering is widely used. Especially in system design and implemen-
tation, several best-practices and use-cases as well as first literature studies which can be
used as a first application database are known. According to the authors, this is particularly
due to the fact that conceptual data rather than engineering data are preferred in these
phases. This results in easier accessibility of data, since proprietary engineering data must
usually first be made usable via exchange formats such as point clouds or data tables. In
the next product development process steps, especially in system integration, the share of
digital-engineering use-cases is much lower. Use-cases for linking the individual areas and
also for validation or verification are also still hardly known and researched.

Further potential aftermarket application possibilities of data-driven methods are
given. In the areas such as marketing, user-centered design [137] or education [138], digital
engineering methods could provide beneficial insights or process automation support. In
user-centered design, mass customization is a big new area of interest. Here, companies
try to make products as individual as possible and customise it to the individual customer
needs. A first approach of combining Industry 4.0 methods with mass customization is
available, using augmented reality to visualise those customizations [139]. Digital Engineer-
ing may open up the opportunity of generating those customised products automatically
based on Machine Learning or generative design.

The results of the literature review presented in Figure 5 depict the evolution of
publications in the field of Digital Engineering over time. The data show fluctuations in
the number of publications across different categories, indicating varying research focuses
within the field. These findings provide insights into the trends and advancements within
Digital Engineering and can serve as a basis for further analysis and understanding of the
field’s development.

Furthermore, manufacturing-focused publications are highly represented in the find-
ings, although they were not the main research-focus. A possible reason for this bias is an
easier data-acquisition and availability in manufacturing. Manufacturing machines can be
extended with IoT sensors, enabling easy data generation during the manufacturing pro-
cess. Since data generation and provision is one of the biggest hurdles in the application of
digital engineering methods, this is a significant advantage that promotes its spread in the
manufacturing sector. In order to exploit this opportunity in the field of upstream product
development and gain initial experience more easily, data-driven approaches that utilise
production data and incorporate them back into product development are a good first step
for companies to introduce digital engineering. Future research should therefore focus on
this area just as much as on simplified data acquisition in the actual development context.

From a research perspective, there is often a lack of reliable and realistic data. This
highlights the need for enhanced collaboration with the industry. To facilitate this cooper-
ation, public funding opportunities that explicitly support technology transfer between
research and industry are desirable. On the industry side, integrating such partnerships
brings about greater complexity to the problem at hand. This is because a multitude of
factors and their corresponding data need to be mapped and identified. Accomplishing
this task without expert assistance from the research community can be challenging. Both
of the aforementioned aspects hold significant potential for further research activities and
should be focused on.
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