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Abstract: In this paper, four machine learning algorithms are examined regarding their effectiveness
in dealing with a complete lack of sensor drift values for a crucial parameter for ship performance
evaluation, such as a ship’s speed through water (STW). A basic Linear Regression algorithm,
a more sophisticated ensemble model (Random Forest) and two modern Recurrent Neural Networks
i.e., Long Short-Term Memory (LSTM) and Neural Basis Expansion Analysis for Time Series (N-Beats)
are evaluated. A computational algorithm written in python language with the use of the Darts library
was developed for this scope. The results regarding the selected parameter (STW) are provided on
a real- or near-to-real-time basis. The algorithms were able to estimate the speed through water
in a progressive manner, with no initial values needed, making it possible to replace the complete
missingness of the label data. A physical model developed with the simulation platform of Siemens
Simcenter Amesim is used to calculate the ship STW under the real operating conditions of a banker
ship type during a period of six months. These theoretically obtained values are used as reference
values (“ground-truth” values) to evaluate the performance of each of the four machine learning
algorithms examined.

Keywords: machine learning (ML); ship speed through water (STW); supervised algorithms; sensor
drift; long-short term memory ANN (LSTM); random forest; linear regression; N-BEATS; time series
forecasting; missing sensor values

1. Introduction

It is common knowledge that the cost of energy is most likely to rise in the years to
come. Recent events such as the war in Ukraine have made clear that the cost of energy is
a highly complex and flexible aspect dictated by economic and geopolitical criteria that
cannot be estimated with precision [1]. In the shipping industry, the cost of fuel has become
the dominant factor in the operational costs of ships; therefore, all shipping companies are
starting to adopt new technologies in order to reduce their operating expenses and become
more competitive [2]. This is also dictated by the international regulations regarding CO2
emissions (the Carbon Intensity Indicator (CII) and the Energy Efficiency eXisting Ship
Index (EEXI)).

A key strategy of shipping companies to compensate for the aforementioned variable
economic environment is the adoption of modern systems that are based on IoT technolo-
gies and help to operate ships in a more efficient way [3]. State-of-the-art systems based
on Industry 4.0 technologies are currently being installed on board ships. These systems
collect data from various sensors, and process and store these data, to give insights to the
crew, the shipping company personnel and the operators about the operating conditions of
each ship and how they affect the ship’s performance and efficiency.
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The “quality” of the data, in terms of consistency and accuracy, that are collected
with these systems is probably the most important aspect of their overall performance.
Missing or inaccurate data can lead to biased estimations or even the incapability to
monitor performance. In the case of ships, this problem becomes more crucial when taking
into account that while sailing, the resources (if any) to identify and repair sensors/data
acquisition systems are limited.

Dealing with random missing data in log files is a common problem/challenge in
all modern data acquisition, control and presentation systems (ADLMs) that are installed,
but dealing with the complete missingness of a crucial sensor or compensating for sensor
drift is a much more difficult and complex problem. The most common methods for data
imputation that are usually implemented are the following [4]:

• Use of the next or previous value.
• Unsupervised machine learning (ML) techniques such as K-Nearest Neighbors.
• Use of the maximum, minimum, mean, moving average or median value.
• Average or linear interpolation.
• Use of a fixed value.

Unfortunately, all the above methods are not adequate to be used when we are missing
a very large number of continuous data (a series of data) or when we cannot validate the
accuracy of readings in order to calibrate the method used. In order to compensate for
this problem, it has been proposed to use a type of Missing Value Prediction technique.
A number of papers published recently deal with the sensor drift problem. In [5], an LSTM
and SVM Multi-Class Ensemble Learning model was used to deal with the drift of a gas
sensor that improved the accuracy of the sensor over a 3-year period. Numerous algorithms
have been proposed in the literature that are able to detect unreliable/drifted sensor data
in a sensor network [6]. In [7], machine learning approaches to address IoT sensor drift are
presented that need low computational power and, thus, can be implemented in any IoT
sensor network. Time series forecasting algorithms are used to compensate for either the
complete missingness of sensor data or sensor drift. Supervised ML used in time series
forecasting is a very promising approach in order to deal with the missingness of a large
amount of data. The missing data can be set as the label (dependent value), and all the
other data can be set as attributes (independent data) in order to fill in the missing data. In
general, all ML models learn with respect to the distribution of the features in the training
data. If the feature space distribution of the data changes, there will be a mismatch between
the model’s representation and the actual data, resulting in decreased performance. This
inherent characteristic of ML models is used in the present study to detect and compensate
for sensor drift.

The aim of this study is to examine the possibility to address and solve the afore-
mentioned problem with the use of machine learning or deep learning techniques. We
evaluate whether it is possible to compensate for sensor drift if we train an ML model to
predict a sensor value when a sensor is new and in good condition and then transfer the
model’s “knowledge” to actual conditions. Time series forecasting algorithms are used to
compensate for either the complete missingness of sensor data or sensor drift. Supervised
ML used in time series forecasting is a very promising approach in order to deal with the
missingness of a large amount of data. The missing data can be set as the label (dependent
value), and all the other data can be set as attributes (independent data) in order to fill in
the missing data. In general, all ML models learn with respect to the distribution of the
features in the training data. If the feature space distribution of the data changes, there
will be a mismatch between the model’s representation and the actual data, resulting in
decreased performance. This inherent characteristic of ML models is used in the present
study to detect and compensate for sensor drift. The paper content is organized as follows:
In Section 2, the importance of the sea though water (STW) value in ship performance
prediction is described. The different types of STW sensors that are installed in the majority
of ships are presented. Their working principle is explained to support their high exposure
to the possibility of drifting in their accuracy. The basic configuration of modern ADLM
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systems and the mechanisms of missing values are presented in Section 3. Section 4 is
dedicated to the analysis of the proposed method. In Section 5, the results of this study are
presented, and in Section 6, we conclude by briefly discussing the results and providing
future perspectives/challenges.

2. The Significance of Speed through Water

There are two different values that describe a ship’s speed while cruising: the speed
over ground (SOG), which is the speed of the ship relative to the surface of the Earth,
and the speed through water (STW), which is the speed of the ship relative to the water
surrounding it. The SOG is needed to calculate the time needed for a ship to cover a certain
distance, but it is the STW that is, probably, the most important factor that affects a ship’s
performance. The energy that is needed for the propulsion system is by far the largest
energy “consumer” in ships. Depending on the ship type, the percentage of a ship’s
propulsion power demand can be as high as 70% of the total energy consumption when
it is sailing at cruising speed [8]. This amount of energy compensates mainly for the
energy losses due to the ship movement relative to the water (hydrodynamic resistance)
being directly related to the STW. The accurate measurement or estimation of STW is
a key parameter for numerous crucial applications related to ship design, operation and
performance optimization [9].

2.1. Types of STW Measurement

There are mainly three techniques that have been established over the years as the
industrial standard for the measurement of STW. Each of them makes use of different
physical phenomena that are related to or affected by the movement of a ship in water. The
first of them relies on the Doppler effect. A transducer (Doppler log) transmits ultrasound
pulses and measures the backscatter echo from any impurity that lies in the water [10,11].
The frequency shift (Doppler shift) is then used to calculate the ship’s STW. In Figure 1,
a schematic representation of the Doppler speed log is presented.
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Figure 1. Schematic representation of the Doppler speed log sensor principle of operation.

The electromagnetic speed log (EM log) working principle is based on the induction
law. If any conductor moves across a magnetic field, an electromotive force (EMF) is set up
in the conductor. The induced EMF is directly proportional to the velocity of movement.
An EM log consists of two electrodes in a common shell that are placed beneath the hull.
The current induced in these electrodes by the seawater flowing past is a function of speed.
As the vessel moves, the seawater (conductor) relatively moving through the magnetic
field induces a small electromagnetic field. This induced EMF is detected, amplified and
measured with two sensors on the hull region. To convert the sensor measurements to the
STW, proper calibration is needed [12].

The induced EMF is given using Equation (1):

EMF = F × L × V, (1)
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where F = the magnetic field, L = the length of the conductor and V = the velocity of the
conductor’s movement through the magnetic field. Figure 2 shows the main parts of an EM
log probe.
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Figure 2. Schematic presentation of the main parts consisting of an electromagnetic log sensor for
STW measurements.

The last, older and, at present, not so widespread STW measurement technique relies
on pressure variation. When a tube with an opening is submerged in water, a pressure
(static) related to the depth of the opening is developed. If the tube starts to move through
the water, a second pressure called dynamic pressure is then added. The total pressure in
the tube (called a pitot tube) is, therefore, the sum of both the static and dynamic pressures.
Having a way to eliminate the static pressure and measure only the one that is induced
by the relative velocity of the tube (the dynamic pressure) gives us the ability to calculate
the movement speed [12]. The elimination of the static pressure is accomplished by using
a second tube (with a direction tangential to the water velocity vector) and two pressure
chambers, as presented in Figure 3.
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2.2. Drifting of Sensor Readings

Having established an understanding of the working principles of the three main
technologies for STW measurement, it is easy to identify possible causes that can lead to
the gradually reduced accuracy of readings (drift). Considering that a ship’s STW is related
to the propulsion power to the power of three, even the slightest inaccuracy in the STW
measurement can lead to remarkable errors in the estimated ship performance. Despite
the indisputable importance of the accurate measurement of STW and the existence of
speed log sensors in the majority of ships, several recent studies have highlighted the fact
that a speed log is one of the most inaccurate measurement devices onboard [10,13,14]. As
an example, a recent study on the accuracy of these sensors revealed that in most cases,
the best accuracy of EM logs is around 0.3 knots, while there are often cases in which the
deviations are higher than 1 knot [15].

The main reason for this paradox is the fact that in modern shipping, speed over
ground (SOG) measured via global positioning system (GPS) is the preferred method
for speed measurements by crews due to its accuracy and ease of use, which, in many
cases, leads to a lack of thorough maintenance of the speed log devices that are installed
onboard. Additionally, there are some inherent characteristics of STW sensors themselves
that affect the accuracy of their readings. In the case of a Doppler log, the “window” of
the transducer where a beam is transmitted and received can be partially or completely
blocked by marine growth. This leads to false (biased) readings. To make things worse,
marine growth is a long and slow process that is affected by the intervals during which the
ship is stationary along with the environmental conditions (water salinity and temperature).
It is then nearly impossible to accurately calculate the sensor drift due to marine fouling in
order to compensate for it with proper calibration. Marine growth can also affect an EM
log by disrupting the hydrodynamic form of the EM log probe and thus altering the flow
of water around it. This leads to biased readings of STW with this kind of sensor. In
extreme cases, marine growth can even affect sensors that use pressure by narrowing or
even blocking the openings of the tubes that these sensors use.

The second cause of sensor drift is a lack of calibration. All of the above sensors need
frequent calibration to ensure their smooth operation and the validity of their measurements.
The calibration procedure requires traveling some distances with the ship to different
headings and with controlled conditions. This can cause a major problem since, on one
hand, it is very difficult to identify the drift, and on the other hand, even if the crew
manages to identify it, in-service recalibration will be required. There are, however, no easy
ways of recalibrating speed logs for a ship that is in service [16].

3. The Problem of Missing Values

Missing data logs is a very common problem that occurs in a ship’s onboard automatic
acquisition, recording and transmitting systems. Multiple types of malfunctions can lead
to this result [17]. In order to be able to monitor the performance of a ship in a consistent
and accurate manner, the missing data logs must not exceed a certain amount. A great deal
of missing or inaccurate data logs can render the process of ship performance monitoring
inaccurate or, in extreme cases, impossible. The fact that a ship’s crew often lacks the ability
to investigate and/or repair the cause of missing values, combined with the fact that ships
are usually beyond reach, can lead to the loss of an entire trip’s worth of data.

3.1. Configurations of Onboard Log Systems

In recent years and with the rise of the fourth industrial revolution, all new ship
buildings, and an increasing number of existing ones, adopt some kind of central control
and monitoring system [18]. The main purpose of these systems is to make it possible
to safely operate a complex system (such as a synchronous ship) with a reduced number
of crew members. These systems automatically take the measurements, log the data and
record the parameters needed to fill the numerous reports crew members are obligated to
fill. Moreover, it is possible that all or part of these data are transmitted to the operator and
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shipowners in order to assist them in maximizing ship performance, help the crew with
troubleshooting and plan the maintenance schedule.

In synchronous ships, Automated Data Logging and Monitoring (ADLM) systems
are able to collect the information from the ships’ onboard sensors and other connected
peripherals. A basic block diagram of such a modern system is presented in Figure 4.
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Modern ADLM systems are very complicated. Multiple inputs with different formats
have to be combined in order to analyze, process and store the information [19]. As
an example, one can follow the “path” of a pressure sensor installed in a tank on board
a ship. First, there is the sensor itself that transforms the pressure into an electric signal
(usually in the form of a current in the range of 4 to 20 mA). This current then has to be
transferred to an ADC converter that will transform it into a digital signal that is ready to
be processed. Different transfer protocols and interfaces such as Ethernet, Modbus, AS-I
bus, Matter, Zigbee, MQTT and NMEA may be used to combine and transfer the digital
information to the onboard data acquisition nodes. [20]. Next in line is the conversion of all
the sensor data to a selected “master” frequency. This frequency will form the intervals
of the different data instances. These instances occupy a local database and are analyzed,
presented and transferred to the central server [21,22].

Such a complex system of integration that works in the harsh environment of a ship
has a very high probability of missing data occurrence. Data can be lost or misinterpreted
due to sensor malfunction, false data transfer, and log and software runtime errors. Using
as an example the test case used in the present study, there was an appreciable percentage
of data missing from the dataset provided by the shipowner, covering a typical time period
of operation of six months. Another very interesting observation made when analyzing the
dataset, which was provided by the central data monitoring system installed on the use
case of the present study, was that there were various data attributes (different parameters
that a data monitoring system collects) that had exactly the same number of missing values.
This implies that there might be a central-oriented cause of missingness. The attributes
have been grouped for better presentation. Figure 5 presents the missing amount of data
for each of the formed groups along with two input data attributes (Water_Depth and
Speed_Over_Water) whose numbers of missing values were not identical and cannot be
assigned to any of the above groups. This indicates that the cause of missingness in these
cases is probably sensor-related.
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3.2. Missing Data Mechanism

The identification of the pattern of missing data is crucial when choosing the missing
data resolution approach [23,24] that will be followed. In general, and this was the also
case for the dataset available in the present study, there are three main types of missing
data patterns:

• Missing completely at random instances (MCR).
• In this case, the missingness that is observed in the data is in a totally random pattern.

The probability of missing data on any variable is not related to any other measured
variable or the variable with missing values itself [25]. The complete loss of one or
multiple variables for an extended period (e.g., due to a sensor malfunction) can be
classified in this category.

• Missing at random (MR).
• The cause of the missingness is in the data logging. The probability of missing data

on any variable is related to some other measured variable but not to the value of the
variable with missing values itself.

• Missing not at random (MNR).
• The missingness depends on something that cannot be detected. The missing values

of a variable are related to the values of that variable itself.

Having defined the most typical patterns of missing data, the next step is to describe
some common techniques of missing data imputation and verify if they can be implemented
in the case of complete loss of one or more variables or even in cases wherein sensor accuracy
drift has a severe effect on the related monitored parameters. In the latter case, it might
be preferable to ignore the biased measured values and substitute them with properly
estimated ones. The last case is a very interesting one that will be examined in the present
study [26].

4. Proposed Method for Compensating for Missing Data and Drift in Readings of
STW Sensors
4.1. Use Case Vessel

To evaluate the proposed approach for compensating for missing data and drift in
the readings of STW sensors, a typical dataset was used, provided by the onboard ADLM
system installed on a crude oil tanker with a 165,000 tons displacement and built in 2015.
This system gathers data from various on-board sensors and information received from
external service providers (i.e., weather forecasting and navigational data) The raw dataset
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was generated from measurements/data covering a period of 6 months, from mid-February
of 2020 until the end of July 2020 [27]. The ship’s main specifications are presented in
Table 1.

Table 1. The use case ship’s main specifications.

Feature Value

Ship type Crude oil tanker
Displacement 165,000 (t)
Main engine Hyundai 6S70MC-C 18,660 kW × 91 RPM

Propeller FPP 4Blades DIA 8200 (mm)
LBL 265 (m)

Breadth 50 (m)
Draught 23 (m)

The onboard ADLM system collects and stores data with a sampling frequency
of 0.017 Hz (1 measurement every minute). With this frequency, a total number of
236,161 instances were collected in the period of 6 months. The number of data parameters
(attributes) that the system collects is 178.

4.2. ML Algorithms/Time Series Forecasting

As mentioned, the dataset used in the present study to evaluate the proposed approach
for compensating for missing data and drift in the readings of STW sensors covers a period
of 6 months with data logging every 1 min. Each of the different attributes (parameters
logged) has continuous values that are time-dependent (the value of each time instant is
dependent on the past sequence of values). This kind of dataset is called a time series, and
the method of predicting future values over a future time is called time series forecasting.

Analyzing past data helps us identify future trends. Most of the well-known machine
learning (ML) algorithms can be used to solve this kind of problem in its original form
or after some modifications. The most important characteristic of the algorithms that can
be used in a time series is their ability to extrapolate patterns outside of the domain of
the training data, which, by default, machine learning techniques are not able to perform.
This is a very attractive feature, especially for applications in which the availability of data
covering the whole range of possible values is limited or hard to make available.

For the scope of the present study, four algorithms with the capability to be im-
plemented in time series data frames were applied and compared. These are detailed
as follows:

• Linear Regression;
• Random Forest;
• Long Short-Term Memory Artificial Neural Network (LSTM ANN);
• Neural Basis Expansion Analysis for Time Series N-Beats Model (N-Beats).

These algorithms were selected because they are representatives of the three dominant
categories of algorithms (linear regressors, tree-based and artificial neural networks) that
have a wide field of application and have been widely used in the literature on these types
of problems.

In Linear Regression, the relationships between dependent and independent variables
are modeled using linear predictor functions. The goal is to estimate unknown parameters
from the data (coefficients) that will form a linear equation that can best describe future
data. Due to the assumption that unknown future data depend linearly on their unknown
parameters, these models are easier to fit than models that are non-linearly related to
their parameters because the statistical properties of the resulting estimators are easier to
determine. The computation complexity of these models is relatively small, making them
fast. On the other hand, the assumption of linear dependency deprives them of the ability
to accurately estimate complex patterns [28].
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Random Forests are part of a group of ML algorithms that use ensemble learning
methods for regression. These methods aim at improving the accuracy of predictions by
combining multiple models instead of using a single model. Random Forests contract
a multitude of decision trees at the training time, and all of them are used to predict future
values. The mean or average prediction of these individual trees is returned as a result of
the combined model. Decision trees (which are the structural elements of Random Forests),
in general, outperform Linear Regression because of their ability to “capture” extremely
complex patterns in data. The downside is that they are keen to overfit. Random Forests
were created to compensate for this disadvantage [29].

LSTMs are artificial neural networks that belong to a category named Recurrent Neural
Networks (RNNs). This type of network can process not only single data points but also
entire sequences of data. This characteristic makes them well-suited to making predictions
based on time series data. RNNs can keep track of any arbitrary long-term dependencies
in the input sequences in order to make predictions. The problem with RNNs is that
by using back-propagation (which is the training technique for all ANNs), it is possible
for the long-term (time-dependent) gradients to tend to zero or infinity, making training
impossible. LSTMs were developed in order to solve the vanishing gradient problem. Due
to their construction, they allow gradients to back-propagate and thus allow the training
procedure to be completed [30,31].

The N-Beats (Neural Basis Expansion Analysis for Time Series) is a modern ANN
model (first presented in the literature in 2019) created with a combination of stack se-
quences, whereby each of these stacks is a combination of multiple blocks. The blocks
connect to form a feedforward network via forecast and back cast links. Each block re-
moves irrelevant information from the dataset that cannot be approximated. Then, the
block focusing on the residual error, which the preceding blocks could not disentangle,
generates a partial forecast while focusing primarily on the local characteristics of the
time series at hand. The stack aggregates the partial forecasts across all the blocks that
constitute it, and the result is transferred as an input to the next stack. Each stack identifies
any non-local patterns, and then all these partial forecasts are pieced together to form
a global forecast at the model level. Based on a recent study [32], the N-Beats model had
an exceptional performance in M3, M4 and TOURISM competition datasets (that contain
time series data), improving the forecast accuracy by 11% over a statistical benchmark.
Due to this, it is assumed to be an excellent candidate for evaluation in the present study.
The characteristics of the N-Beats model are extremely useful when dealing with time
series data and especially in compensating for data drift since the algorithm is extremely
adaptable due to the fact that it focuses primarily on the local characteristics of a time series
sequence and thus does not “carry” long-term information that could be infected due to
sensor drift.

4.3. Simulation Platform—Simcenter Amesim Configuration

In order to evaluate the proposed method for overcoming the problem of missing
sensor values in the present study, a well-established mechatronic simulation software
(Siemens Simcenter Amesim) was used. Amesim is an integrated simulation platform used
primarily for the modeling and analysis of various multi-domain physical systems [33].
With the use of this software, we can predict the multi-disciplinary performance of com-
plex systems by connecting the valid analytical modeling blocks of electrical, hydraulic,
pneumatic and mechanical subsystems into a comprehensive and schematic full-system
model [34]. The aforementioned modeling blocks are described using nonlinear time-
dependent analytical equations. Using specific libraries that fall into the mechatronic
engineering field, different physical domain behaviors can be analyzed and predicted.

Our use of such software as Amesim was dictated by the fact that there was no access
to the “ground truth” of the STW values. A system able to approximate the real values of
STW without being affected by the deviations caused by sensor drifting was required in
order to test the hypothesis of this study. Modeling software like Amesim are not affected
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by sensor deviations since all the model blocks (ship, propeller, etc.) are implemented
without taking into account the cause that generates these deviations, e.g., the ship model
block does not simulate the hull degradation caused by marine fouling that distorts the
seawater flow and can deviate the STW readings.

A digital twin of the case study ship was created with the use of Simcenter Amesim.
Different modules from the marine library were implemented in order to simulate the
behavior of the ship in actual conditions. Figure 6 presents the Amesim configuration that
is used in this study.

Designs 2023, 7, x FOR PEER REVIEW 10 of 19 
 

 

mechatronic engineering field, different physical domain behaviors can be analyzed and 

predicted. 

Our use of such software as Amesim was dictated by the fact that there was no access 

to the “ground truth” of the STW values. A system able to approximate the real values of 

STW without being affected by the deviations caused by sensor drifting was required in 

order to test the hypothesis of this study. Modeling software like Amesim are not affected 

by sensor deviations since all the model blocks (ship, propeller, etc.) are implemented 

without taking into account the cause that generates these deviations, e.g., the ship model 

block does not simulate the hull degradation caused by marine fouling that distorts the 

seawater flow and can deviate the STW readings. 

A digital twin of the case study ship was created with the use of Simcenter Amesim. 

Different modules from the marine library were implemented in order to simulate the 

behavior of the ship in actual conditions. Figure 6 presents the Amesim configuration that 

is used in this study. 

 

Figure 6. Simcenter Amesim configuration used to study the use case ship. 

The main modules that form the digital twin of the ship are as follows: 

1. Engine: Simulate the behavior of the propulsion engine of the ship. The main input 

parameter of this module is the rpm ordered by the crew. 

2. Propeller: Requires as input the engine power delivered through the shaft, the sea 

current direction and the sea current velocity. The output of the model is the thrust 

produced to overcome the total resistance for the ship movement. The model 

characterization of the propeller used is the first-quadrant—Wageningen B-series 

[35]. 

3. Ship: Simulates the resistance of the ship in calm weather resistance according to the 

ship’s design. The resistance model used by the model is Holtrop and Mennen’s [36]. 

4. Weather conditions module: Simulates the added resistance of the ship due to the 

weather conditions. Receives as input the wind speed at a 10 m height above the sea, 

the wind direction, the mean wave period, the significant wave height and the wave 

direction. For the air drag coefficient, the computation model used is IMO 2012, and 

the wave resistance model used is STAwave-2 [37]. 

The aforementioned blocks of models are interconnected according to the actual 

physical relations that exist between them, and based on the first principles (the 

equilibrium of mass, torque and energy), the integrated simulation model (the digital twin 

of the ship examined) can predict the ship through water (STW) velocity of the ship that 

corresponds to the input operating parameters provided at each time instant, based on 

the available dataset from the ADLM system used in the current study. Comparing the 

Figure 6. Simcenter Amesim configuration used to study the use case ship.

The main modules that form the digital twin of the ship are as follows:

1. Engine: Simulate the behavior of the propulsion engine of the ship. The main input
parameter of this module is the rpm ordered by the crew.

2. Propeller: Requires as input the engine power delivered through the shaft, the sea
current direction and the sea current velocity. The output of the model is the thrust
produced to overcome the total resistance for the ship movement. The model charac-
terization of the propeller used is the first-quadrant—Wageningen B-series [35].

3. Ship: Simulates the resistance of the ship in calm weather resistance according to the
ship’s design. The resistance model used by the model is Holtrop and Mennen’s [36].

4. Weather conditions module: Simulates the added resistance of the ship due to the
weather conditions. Receives as input the wind speed at a 10 m height above the sea,
the wind direction, the mean wave period, the significant wave height and the wave
direction. For the air drag coefficient, the computation model used is IMO 2012, and
the wave resistance model used is STAwave-2 [37].

The aforementioned blocks of models are interconnected according to the actual
physical relations that exist between them, and based on the first principles (the equilibrium
of mass, torque and energy), the integrated simulation model (the digital twin of the ship
examined) can predict the ship through water (STW) velocity of the ship that corresponds
to the input operating parameters provided at each time instant, based on the available
dataset from the ADLM system used in the current study. Comparing the theoretical
(predicted by the model) STW ship speed with the logged one (derived using the onboard
speed log system), the mean square error is determined.

In order to validate the digital twin of the case study ship that we created using
Amesim, we simulated the STW using data that belong to the first of the trips that are
available to us. Using these data, we can check how close Amesim approximates the
values of the measured STW in the case study reference conditions. Figure 7 presents
the comparison between the measured STW values with the onboard sensor and the
corresponding predicted ones using the model developed with the Amesim platform,
during the first time series being examined.
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Figure 7. Comparison of the STW values measured with the onboard sensor and those predicted by
the simulation model developed with Amesim platform, during the first time series examined.

As observed, the predicted values are close to the measured ones during the whole
time period examined, which is a strong indication that the developed model manages to
correctly predict, at least qualitatively, the effect of operating conditions on the value of
STW. Moreover, the absolute values are very close to the measured ones, with the MSE
value being equal to 0.2245.

5. Results and Discussion

To evaluate the performance of the aforementioned time series forecasting algorithms
to compensate for missing sensor values or drifted values in a real ship scenario, the ship’s
speed through water (STW) was set as a label parameter since this has a dominant effect
on a ship’s fuel consumption, which is of the utmost importance for ship operators and
ship owners. Another very important reason for choosing STW as the label is the fact that
any sensor responsible for measuring STW, regardless of its type, is outside of the hull and
exposed to the harsh environment of the sea. This makes these sensors more prone to drift.
One other note is that one can argue that since Amesim or any other simulation software
can estimate the STW, why bother using time series forecasting models? The answer to this
question is that exactly the same procedure that is proposed in this paper, with the same
expected results, can be used to predict any other sensor data that might be completely
missing, even the ones that are crucial inputs for the simulation software to work. Creating
virtual sensors with time series forecasting models might be the answer to increasing the
robustness of an overall performance monitoring system.

The aforementioned time series algorithms predict the STW speed of a ship using
all the available logged data following a gradually time-evolving procedure covering the
full time period of the available dataset. A total of three cases were examined: in the first
case, each algorithm predicts at each time step the value of the STW speed based on all the
previous data available until that time, and this value is assumed to be known in the next
time step until all the time period under investigation is covered (forecast horizon = one).
In each iteration, past (known/estimated) data are increased with the forecast horizon. This
type of prediction takes place in real-time.

In the second case, the prediction of the STW speed is estimated in batches of
five values (forecast horizon = five). After each group of 5 time instants (t = 5), the STW
speed values corresponding to each one of the past 5 time instants (t = 0 to t = 4) are
predicted. In the following iteration of the prediction procedure (i.e., at t = 10), the already
predicted STW speed values of the last predicted group of data (until t = 4) are used to
predict the following group of 5 values (i.e., from t = 5 to t = 9). This procedure is then
repeated in the next batch and so on. This type of prediction is near to real-time but has the
advantage that algorithms have future knowledge of all the independent attribute values.
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The third case is similar to the second with the difference that each batch expands
to nine values (forecast horizon = nine). The limit of the examined forecast horizon to
values between five and nine was purposely set due to the high computational demand
of ANN algorithms and the corresponding time needed to provide results. Taking into
account that in the use case examined, the ADLM system has a sampling frequency of
0.017 Hz, the calculations should be completed in less than 60 s with a forecast horizon of 1.
In the cases of forecast horizons of five and nine, the available time increases by a factor
of five and nine, respectively. The latter is crucial, especially in cases where CPU power
is limited (which is the case, for example, when these techniques should be applied for
specific applications onboard).

The predicted values of STW speed according to each of the above three data inter-
pretation approaches (with forecast horizons of one, five and nine) using each of the four
algorithms presented (LR, RF, LSTM and N-Beats), along with the measured values from
the o-board speed log sensor, were compared with the assumed as “true” value of the
STW speed predicted via the digital twin of the ship (physical simulation model) for the
corresponding operating conditions. The parameter used to compare these values and
evaluate the performance of each of the approaches presented in compensating for the
missing data and the drift in the readings of the STW sensors is the mean squared error
(MSE). More specifically, considering that the predicted values of the STW speed based on
the developed simulation model are independent of the possible causes that could lead to
the STW log sensor’s failure or drift, it is suitable to assume that these predictions could be
treated as being closest to the unbiased real STW speed value for each operating condition.
Therefore, this value is used for the definition of the MSE when the various approaches
proposed in the present study are evaluated, and high values of MSE could be attributed
to the low effectiveness of a certain approach to compensate for STW sensor drift or loss
of data. In this way, it becomes possible to compare the various approaches objectively,
although it the actual/accurate value of the STW at each operating condition is unknown.

5.1. Data Pre-Processing—Time Series Forming

In the first step for all the instances, from the data collected with the ship’s ADLM
system, speed over ground (SOG) values of less than 2 knots were discarded because they
were considered to correspond to transition periods or periods in which the ship was
in harbor.

From the original set of available attributes (logged parameters), only those related
(directly or indirectly) to the parameter under study (STW) were taken into account. All
other (irrelevant) attributes (e.g., parameters related to the auxiliary engines, or data used
to monitor the operating conditions of the auxiliary pipe network) were excluded from the
dataset in order to reduce the total volume of the data and thus maximize the prediction
accuracy of the ML models that were used. Following this approach, the total number of
attributes taken into account decreased from the original 178 entries to 49.

In the second step, all the attributes that have an extremely high correlation with STW
and originate from the same sensor were excluded. Therefore, longitudinal water speed,
transverse water speed and stern transverse water speed were excluded from the dataset
since they could bias the results.

Afterward, all the instances that had missing values for attributes related to meteoro-
logical conditions and in which missingness was continuous for very long time spans were
also excluded from the dataset used. This eliminated the possible bias of the dataset that
would arise with any kind of interpolation technique applied.

Especially for the attribute “Water depth” (which might affect the way that an STW
sensor works), interpolation was applied in cases where there was continuality between the
last non-missing value and the first non-missing value. The criterion used for determining
the continuality of the missing values was the percentage of the difference between the last
and first consecutive non-missing values, which was set to be as high as 3%. The threshold
of 3% was set since this is the typical accuracy of this type of sensor [38]. For those entries
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where continuality criterion checks failed or the number of continuous missing values was
high enough, they were excluded from the final dataset used.

5.2. Algorithm Training/Hyperparameter Optimization

After the above preprocessing, 53 separate time series data (each of them correspond-
ing to a different trip of the ship) were created, with no missing values, that span from
13 February 2020 until 20 July 2020. These time series can be separated into two periods.
The first 26 time series represent continuous trips with minimum harbor periods that span
from February to April. From the 27th time series until the 53rd, the ship started to increase
the periods of staying in harbors. Due to the fact that marine growth mainly develops when
a ship is stationary and, thus, the possibility of affecting the accuracy of the STW sensor
increases, we decided to use the first 26 time series for the training of all the algorithms
and test with the dataset corresponding to the second period. In this way, the ability of the
algorithms to compensate for both missingness and sensor drift can be evaluated.

The time series forecasting needed for this paper was conducted using Python scripts
that utilize well-known and established libraries in the area of ML. A relatively new Python
library (Darts) simplified the code to a great extent and has been proven to be very helpful.
Darts is an open-source Python library created by Unit8 that uses scikit-learn as a back-bone
and can be used for forecasting time series [39].

The hardware/software used to perform the necessary calculations in this study were
made common for all the algorithms examined to make the time comparisons reliable. The
configuration that was used is presented in Table 2. (It is worth noting that the intelligence
that is now feasible to be implemented and integrated into our systems is mainly attributed
to the hardware capabilities, which in the near past could not easily support protocol
processing execution [40].)

Table 2. Hardware/software configuration.

Component Specs

CPU AMD Ryzen 9 5900X
RAM 128GB Dual Chanell DDR4
GPU Nvidia RTX 3060Ti 8GB (Cuda-enabled)

Operating system Windows 10 Pro
IDE PyCharm

Python version 3.9.13
Python libraries Darts, Pytorch, Pandas and NumPy

The training of any ML algorithm is, basically, the procedure in which a number of
parameters are learned from the data. We used existing data in order to fit the model
parameters. In every ML model (including the ones used for time series forecasting), there
is another kind of parameter that cannot be directly learned from the regular training
process. These parameters, which are called hyperparameters, are model-specific and must
be determined before the learning process begins. These kinds of parameters determine
the important properties of each model, such as its complexity or how fast it can learn from
data. For this implementation, we determined the best hyperparameters using the grid
search technique for the Linear Regression and Random Forest algorithms and the random
search technique for LSTM and N-Beats in each of the 26 time series (1st period) that were
used for algorithm training.

In the grid search hyperparameter tuning, we defined a search space as a grid of
hyperparameter values and evaluated every position in the grid, while in the random
search, we defined a search space as a bounded domain of hyperparameter values and
randomly samples points in that domain [41]. The above separation was dictated by the fact
that the LSTM and N-Beats algorithms completed the grid search for the hyperparameters
in a test time series over unacceptably long time periods due to the extensive calculations
needed. In Table 3, the average time needed for a grid hyperparameter search for the
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Linear Regression and Random Forest algorithms together with the corresponding time for
a random time series when using LSTM and N-Beats are presented.

Table 3. Times for completion of grid search.

Algorithm Time (s)

Linear Regression (LR) 12
Random Forest (RF) 287

LSTM 33,649
N-Beats 219,070

In Table 3, we can witness the exponential increase in the computational time when
using the ANN models. The final set of hyperparameters that were used for the combined
model (the one that used all of the 26 time series for training) was constructed with the use
of the median of each separate hyperparameter in the cases of the Linear Regression and
Random Forest algorithms and the corresponding results of the random search in the cases
of LSTM and N-Beats.

In each of the three test cases examined (i.e., with forecast horizons of one, five and
nine) and for all of the time series that were used for training, we calculated the MSE that
the algorithms had when predicting the STW. The last 10% of the values of STW in each
time series were used for testing. This was carried out in order to evaluate the performance
of the algorithms in terms of consistency. Figure 8 presents the allocation of mean MSE
values for the prediction of STW for all four algorithms used (LR = Linear Regression model
and RF = Random Forest model).
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Figure 8. Evaluation of the 4 algorithms examined (LR, RF, LSTM and N-beats) with the 3 forecast
horizons, i.e., 1, 5 and 9, based on the MSE value for the training domain (26 time series).

In Figure 8, it is observed that the absolute best performance in terms of the MSE
corresponds to the Random Forest (RF) algorithm when setting the forecasting horizon
equal to one. The MSE = 0.00023 observed in this case is an exceptional value, meaning
that the total amount of data from the 26 time series are sufficient enough to train this
algorithm without overfitting the data. On the other hand, the Linear Regression algorithm
(an algorithm that is commonly used for data imputation) is not able to fit the data very
well, presenting by far the worst performance, regardless of the forecast horizon. The
more sophisticated and computationally demanding ANN algorithms (LSTM and N-Beats)
accomplished very good performances (with LSTM outperforming in all cases) but cannot
outperform the Random Forest algorithm, which seems to be the most suitable algorithm
of all. Finally, it is worth noting that, with the exception of the N-Beats algorithm, the best
MSE value is achieved when the forecast horizon is set to one. This means that “future
knowledge” of the attributes at the time of prediction (which is used in the case of the time
horizon at five and nine) does not increase their performance.
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In Figure 9, we present the CPU time needed for model creation in each of the twelve
cases examined (three cases of time horizons for each of the four algorithms evaluated). It
should be noted that the y-axis (time spent in seconds) is on a log scale.
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Figure 9. CPU time needed for model creation with Linear Regression (LR), Random Forest (RF),
Long Short-Term Memory (LSTM) and Neural Basis Expansion Analysis for Time Series (N-Beats)
algorithms for 3 time horizons examined: h = 1, 5 and 9.

As expected, the increase in the model complexity resulted in more computational
demands, which in turn led to an increase in the time needed to complete the necessary
calculations for model creation. The increase in the time needed in the cases of LSTM and
N-Beats is exponential compared with that in the LR and RF cases. The average time for
completion of LSTM is one 1 h and 6 min, while Random Forest has an average time of
1 min and 50 s. Combining these results with the comparison of the MSE values shown
in Figure 8, it is concluded that Random Forest proved to be among the most accurate
algorithms with the lowest CPU demand, which makes it preferable for the application
examined. Moreover, from Figure 8, it is observed that the increase in the forecast horizon
does not improve the completion time as could be expected, although this leads to fewer
iterations needed from the algorithms.

5.3. Algorithm Evaluation

After validating the models’ performances, their evaluation in the 2nd period of the
ship cruising data (and, specifically, the 53rd time series) is presented in Figure 10. As
already explained, the criterion for this evaluation is the MSE defined using the predicted
value of the STW for each variant of the model being examined and the corresponding value
predicted with the Ship Digital Twin model (Amesim) for the same conditions. Moreover,
in the same figure, the MSE for the sensor is presented, which is derived using the recorded
actual value with the onboard installed STW sensor and the corresponding value predicted
with the physical model (Amesim), which is assumed to be independent of any parameter
that could cause sensor drift or missing values. In Figure 10, we can witness an increase in
the MSE values between the digital twin and the STW values measured with the sensor
when we switch from the first period to the test period (the MSE increases from 0.2158 to
0.2431), which indicates that there is a slightly increasing drift, as observed, and the MSE
of the sensor is very low (equal to 0.2431), which is an indication that in the specific time
period examined (2nd period), the STW sensor does not suffer from high drift.

On the other hand, when focusing on the performance of the Random Forest method
with a forecast horizon of one (RF-1), which was identified as having the best performance
in terms of MSE when tested in the first time domain (the twenty-six time series used for
training), it seems that in the second time series (representing the actual test conditions),
it has the second best MSE value and is outperformed by the LSTM model with the same
forecast horizon (LSTM-1). This indicates that the LSTM model can generalize better in the
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domain adaptation. Both the Random Forest model and LSTM model achieved comparable
MSE values with the sensor readings, which implies that both models can compensate for
the complete missingness of STW data; however, this score is not considered good enough
to indicate that these algorithms could also be used to compensate for the error induced
by sensor drift. On the other hand, the LR model seems to have the worst performance,
followed by N-Beats.

Designs 2023, 7, x FOR PEER REVIEW 16 of 19 
 

 

already explained, the criterion for this evaluation is the MSE defined using the predicted 

value of the STW for each variant of the model being examined and the corresponding 

value predicted with the Ship Digital Twin model (Amesim) for the same conditions. 

Moreover, in the same figure, the MSE for the sensor is presented, which is derived using 

the recorded actual value with the onboard installed STW sensor and the corresponding 

value predicted with the physical model (Amesim), which is assumed to be independent 

of any parameter that could cause sensor drift or missing values. In Figure 10, we can 

witness an increase in the MSE values between the digital twin and the STW values 

measured with the sensor when we switch from the first period to the test period (the 

MSE increases from 0.2158 to 0.2431), which indicates that there is a slightly increasing 

drift, as observed, and the MSE of the sensor is very low (equal to 0.2431), which is an 

indication that in the specific time period examined (2nd period), the STW sensor does 

not suffer from high drift. 

On the other hand, when focusing on the performance of the Random Forest method 

with a forecast horizon of one (RF-1), which was identified as having the best performance 

in terms of MSE when tested in the first time domain (the twenty-six time series used for 

training), it seems that in the second time series (representing the actual test conditions), 

it has the second best MSE value and is outperformed by the LSTM model with the same 

forecast horizon (LSTM-1). This indicates that the LSTM model can generalize better in 

the domain adaptation. Both the Random Forest model and LSTM model achieved 

comparable MSE values with the sensor readings, which implies that both models can 

compensate for the complete missingness of STW data; however, this score is not 

considered good enough to indicate that these algorithms could also be used to 

compensate for the error induced by sensor drift. On the other hand, the LR model seems 

to have the worst performance, followed by N-Beats. 

 

Figure 10. Comparison of the MSE values of STW for the second time series examined (during actual 

test conditions) between the algorithms proposed and STW sensor readings against physical model 

(Amesim) predictions (ground truth). 

6. Conclusions and Future Perspectives 

Most new ship buildings are equipped with modern data acquisition, control and 

monitoring systems that collect data from various sensors installed onboard, and analyze 

and combine these data with meteorological and geographical data provided by external 

sources, to assist shipping companies to minimize their operating expenses and become 

Figure 10. Comparison of the MSE values of STW for the second time series examined (during actual
test conditions) between the algorithms proposed and STW sensor readings against physical model
(Amesim) predictions (ground truth).

6. Conclusions and Future Perspectives

Most new ship buildings are equipped with modern data acquisition, control and
monitoring systems that collect data from various sensors installed onboard, and analyze
and combine these data with meteorological and geographical data provided by external
sources, to assist shipping companies to minimize their operating expenses and become
more competitive by optimizing ship performance. One of the most important metrics that
is logged by the ADLM system and used for the analysis of ship performance is the ship’s
speed through water (STW), which is directly related to the propulsion power needed
during cruising. This is why this parameter was selected to evaluate the performance
of four widely used time-series forecasting algorithms (with three variants for each) in
compensating for missing data and drift in the readings of STW sensors, which is a common
problem in real-life applications.

The four selected time series forecasting algorithms have escalating complexity in
dealing with the complete missingness of STW data or the degradation of STW read-
ing accuracy due to drift. All four algorithms were tested in three different configura-
tions, i.e., in real-time prediction (forecast horizon = one) and near-to-real-time prediction
(forecast horizon = five and forecast horizon = nine). The predictions as well as the onboard
STW sensor readings were compared in terms of MSE with the assumed “ground truth”
STW value predicted with the physical model of the ship developed using the Siemens
Amesim simulation platform.

The results indicate that an ensemble model (Random Forest) and the LSTM Recurrent
Neural Network, if used recurrently to predict only the next label value (forecast horizon = one),
are able to generalize well and predict STW with adequate accuracy when trained in
a certain domain (with the ship and STW sensor under certain reference conditions in terms
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of calibration and hull degradation) and tested in a different domain (with the ship and
STW sensor in real-life operational test cases over a long time period).

The MSE scores for the STW for the above 2 algorithms (RF and LSTM) were 0.3829
and 0.4337, respectively, while the corresponding value for the sensor readings was equal to
0.2431. This high difference is an indication that these algorithms cannot be used or at least
do not offer high confidence in solving the crucial problem faced in real-life occurrences of
sensor drift or missing values. Based on the results, it seems that using a physical model
could be a challenging alternative, at least in cases where this could be possible (i.e., the
data required for the model are available). However, it should be noted that also in the case
of using a physical simulation model, as was carried out in the present study to “generate”
the unbiased reference value of STW for each operating condition, the effect of the model
accuracy must be considered. In real-life applications, the STW value depends on many
parameters, often being difficult to be precisely determined and simulated, especially if
the results are needed in real-time. Even if using more detailed simulation approaches,
using computational fluid dynamics (CFD) is not expected to provide a better solution to
the scope of this study. Therefore, the use of simple physical models based on the first
principles seems to be a fair compromise. The next steps include the investigation of more
specialized techniques for domain adaptation, such as RNN autoencoders.

Author Contributions: Conceptualization, K.A., E.G.P. and H.C.L.; data curation, K.A.; formal
analysis, K.A. and E.G.P.; investigation, K.A., E.G.P. and H.C.L.; methodology, K.A. and E.G.P.;
project administration, H.C.L. and E.G.P.; software, K.A.; validation, K.A.; writing—original draft,
K.A.; writing—review and editing, K.A., E.G.P. and H.C.L. All authors have read and agreed to the
published version of the manuscript.

Funding: Part of this research was conducted under a project co-financed by European Union and
Greek national funds through the Operational Program of Competitiveness, Entrepreneurship and
Innovation, under the call RESEARCH–CREATE–INNOVATE (project code: T2EDK-03241).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ukraine War Strains Shipping and Supply Chain. Available online: https://www.rmmagazine.com/articles/article/2022/08/01/ukraine-

war-strains-shipping-and-supply-chain (accessed on 15 March 2023).
2. IEA. Renewables 2021: Analysis and Forecast to 2026; OECD Publishing: Paris, France, 2021. [CrossRef]
3. Sullivan, B.P.; Desai, S.; Sole, J.; Rossi, M.; Ramundo, L.; Terzi, S. Maritime 4.0–Opportunities in Digitalization and Advanced

Manufacturing for Vessel Development. Procedia Manuf. 2020, 42, 246–253. [CrossRef]
4. Emmanuel, T.; Maupong, T.; Mpoeleng, D.; Semong, T.; Mphago, B.; Tabona, O. A survey on missing data in machine learning.

J. Big Data 2021, 8, 140. [CrossRef]
5. Zhao, X.; Li, P.; Xiao, K.; Meng, X.; Han, L.; Yu, C. Sensor Drift Compensation Based on the Improved LSTM and SVM Multi-Class

Ensemble Learning Models. Sensors 2019, 19, 3844. [CrossRef] [PubMed]
6. Reiffers-Masson, A. Worst-case drift detection of sensor networks: Performances and algorithms. In Proceedings of the 2020

International Conference on Signal Processing and Communications (SPCOM), Bangalore, India, 19–24 July 2020.
7. Zheng, H.; Paiva, A. Assessing Machine Learning Approaches to Address IoT Sensor Drift. In Proceedings of the 4th International

Workshop on Artificial Intelligence of Things, Virtual Conference, Guangzhou, China, 14–18 August 2022.
8. Baldia, F.; Johnsona, H.; Gabrieliia, C.; Anderssona, K. In Proceedings of Energy analysis of ship energy systems—The case

of a chemical tanker. In Proceedings of the 6th International Conference on Applied Energy (ICAE 2014), Taipei, Taiwan,
30 May–2 June 2014.

9. Dalheim, Ø.Ø.; Steen, S. Uncertainty in the real-time estimation of ship speed through water. Ocean Eng. 2021, 235, 109423.
[CrossRef]

10. Antola, M.; Solonen, A.; Pyörre, J. Notorious Speed through Water. In Proceedings of the HullPIC’17, Ulrichshusen, Germany,
27–29 March 2017.

11. Van den Boom, H.; Hasselaar, T.W.F. Ship Speed-Power Performance Assessment. In Proceedings of the SNAME Maritime
Convention, Houston, TX, USA, 20–25 October 2014.

https://www.rmmagazine.com/articles/article/2022/08/01/ukraine-war-strains-shipping-and-supply-chain
https://www.rmmagazine.com/articles/article/2022/08/01/ukraine-war-strains-shipping-and-supply-chain
http://doi.org/10.1787/6dcd2e15-en
http://doi.org/10.1016/j.promfg.2020.02.078
http://doi.org/10.1186/s40537-021-00516-9
http://doi.org/10.3390/s19183844
http://www.ncbi.nlm.nih.gov/pubmed/31492034
http://doi.org/10.1016/j.oceaneng.2021.109423


Designs 2023, 7, 46 18 of 19

12. Abedinia, H. Ship’s Speed Measurement in Water. ResearchGate. 2016. Available online: https://www.researchgate.net/
publication/301222640_Ship%27s_speed_measurement_in_water (accessed on 5 March 2022).

13. Hasselaar, T.W.F.; den Hollander, J. Uncertainty of ship speed determination when sailing in waves. In Proceedings of the
HullPIC’17, Ulrichshusen, Germany, 27–29 March 2017.

14. Ikonomakis, A.; Galeazzi, R.; Dietz, J.; Holst, K.K.; Nielsen, U.D. Application of sensor fusion to drive vessel performance.
In Proceedings of the HullPIC’19, Gubbio, Italy, 6–8 May 2019.

15. Giesberg, E. Measurement of Speed through Water. In Proceedings of the HullPIC’17, Ulrichshusen, Germany, 27–29 March 2017.
16. Taudien, J.Y.; Bilen, S.G. Quantifying long-term accuracy of sonar doppler velocity logs. IEEE J. Ocean. Eng. 2018, 43, 764–776.

[CrossRef]
17. Jeon, M.; Noh, Y.; Jeon, K.H.; Lee, S.B.; Lee, I. Real Ship Maritime Big Data Analysis for Prediction of Fuel Consumption.

In Proceedings of the HullPIC’19, Gubbio, Italy, 6–8 May 2019.
18. Alexiou, K.; Pariotis, E.G.; Leligou, H.C.; Zannis, T.C. Towards Data-Driven Models in the Prediction of Ship Performance

(Speed—Power) in Actual Seas: A Comparative Study between Modern Approaches. Energies 2022, 15, 6094. [CrossRef]
19. Yeo, N.Y.; Park, S.-H. Development of Ship Data Acquisition Embedded System. J. Inf. Commun. Converg. Eng. 2010, 8, 528–533.

[CrossRef]
20. Sofiadi, D.; Hansen, S. Effective Data Handling for Practical Vessel Performance Analysis. In Proceedings of the HullPIC’18,

Redworth, UK, 12–14 March 2018.
21. Kaminaris, S.D.; Tripolitakis, E.; Stavrakakis, G.S.; Diakaki, C. An intelligent data acquisition and transmission platform for the

development of voyage and maintenance plans for ships. In Proceedings of the 5th International Conference on Information,
Intelligence, Systems and Applications, Chania, Greece, 7–9 July 2014; ISBN 978-1-4799-6171-9.

22. Kakuta, R.; Ando, H.; Yonezawa, T. Vessel Performance Model and its Utilization in Shipping Company. In Proceedings of the
HullPIC’17, Ulrichshusen, Germany, 27–29 March 2017.

23. Liu, X. Methods and Applications of Longitudinal Data Analysis; Elsevier Academic Press: Amsterdam, The Netherlands, 2016; ISBN
978-0-12-801342-7.

24. Eekhout, I. Don’t Miss Out! Incomplete Data Can Contain Valuable Information. Ph.D. Thesis, Vrije Universiteit Amsterdam,
Amsterdam, The Netherlands, 2014.

25. Little, R.J.A.; Rubin, D.B. Statistical Analysis with Missing Data, 3rd ed.; Wiley Series in Probability and Statistics; Wiley: Hoboken,
NJ, USA, 2020.

26. Andridge, R.R.; Little, R.J. A review of hot deck imputation for survey non-response. Int. Stat. Rev. 2010, 78, 40–64. [CrossRef]
[PubMed]

27. Alexiou, K.; Pariotis, E.; Zannis, T.; Leligou, H. Prediction of a Ship’s Operational Parameters Using Artificial Intelligence
Techniques. Mar. Sci. Eng. 2021, 9, 681. [CrossRef]

28. Freedman, D.A. A simple regression equation has on the right-hand side an intercept and an explanatory variable with a slope
coefficient. A multiple regression e right hand side, each with its own slope coefficient. In Statistical Models: Theory and Practice;
Cambridge University Press: Cambridge, UK, 2009.

29. Gilles, L. Understanding Random Forests: From Theory to Practice. 2014. Available online: https://www.researchgate.net/
publication/264312332_Understanding_Random_Forests_From_Theory_to_Practice (accessed on 5 March 2022). [CrossRef]

30. Sherstinsky, A. Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) Network. Phys. D
Nonlinear Phenom. 2020, 404, 132306. [CrossRef]

31. Staudemeyer, R.; Morris, E. Understanding LSTM—A tutorial into Long Short-Term Memory Recurrent Neural Networks.
arXiv 2019, arXiv:1909.09586.

32. Oreshkin, B.N.; Carpov, D.; Chapados, N.; Bengio, Y. N-BEATS: Neural basis expansion analysis for interpretable time series
forecasting. In Proceedings of the ICRL 2020 Virtual Conference, Addis Ababa, Ethiopia, 26 April–1 May 2020.

33. Mäkinen, H. Introduction to Mechatronic System Simulation; Siemens AG: Munich, Germany, 2017.
34. Bourdon, T.; Saussol, L.; Varoquié, B. Integration of Physical AMESim® Engine Model in Hardware in the Loop Environment, Dedicated

to Engine Control Unit Testing; SAE Technical Paper: Warrendale, PA, USA, 2007. [CrossRef]
35. Nernitsas, M.M.; Ray, D.; Kinley, P. Kt, Kq and Efficiency Curves for the Wageningen B-Series Propellers; Department of Naval

Architecture and Marine Engineering the University of Michigan: Ann Arbor, MI, USA, 1981.
36. Holtrop, J.; Mennen, G.G.J. An Approximate Power Prediction Method; Delft University Press: Delft, The Netherlands, 1982.
37. International Maritime Organization. MEPC.1 Circ.796. Interim Guidelines for the Calculation of the Coefficient Fw for Decrease

in Ship Speed in a Representative Sea Condition for Trial Use. 2012. Available online: https://wwwcdn.imo.org/localresources/
en/OurWork/Environment/Documents/Circ-796.pdf (accessed on 5 March 2022).

38. Zheng, Y.; Liu, P.; Qian, L.; Qin, S.; Liu, X.; Ma, Y.; Cheng, G. Recognition and Depth Estimation of Ships Based on Binocular
Stereo Vision. Mar. Sci. Eng. 2022, 10, 1153. [CrossRef]

39. Herzen, J.; Lässig, F.; Piazzetta, S.G.; Neuer, T.; Tafti, L.; Raille, G.; Van Pottelbergh, T.; Pasieka, M.; Skrodzki, A.; Huguenin, N.; et al.
Darts: User-Friendly Modern Machine Learning for Time Series. J. Mach. Learn. Res. 2022, 23, 1–6. [CrossRef]

https://www.researchgate.net/publication/301222640_Ship%27s_speed_measurement_in_water
https://www.researchgate.net/publication/301222640_Ship%27s_speed_measurement_in_water
http://doi.org/10.1109/JOE.2017.2735558
http://doi.org/10.3390/en15166094
http://doi.org/10.6109/jicce.2010.8.5.528
http://doi.org/10.1111/j.1751-5823.2010.00103.x
http://www.ncbi.nlm.nih.gov/pubmed/21743766
http://doi.org/10.3390/jmse9060681
https://www.researchgate.net/publication/264312332_Understanding_Random_Forests_From_Theory_to_Practice
https://www.researchgate.net/publication/264312332_Understanding_Random_Forests_From_Theory_to_Practice
http://doi.org/10.13140/2.1.1570.5928
http://doi.org/10.1016/j.physd.2019.132306
http://doi.org/10.4271/2007-01-1300
https://wwwcdn.imo.org/localresources/en/OurWork/Environment/Documents/Circ-796.pdf
https://wwwcdn.imo.org/localresources/en/OurWork/Environment/Documents/Circ-796.pdf
http://doi.org/10.3390/jmse10081153
http://doi.org/10.48550/arXiv.2110.03224


Designs 2023, 7, 46 19 of 19

40. Vlachos, K.; Orphanoudakis, T.; Papaeftathiou, Y.; Nikolaou, N.; Pnevmatikatos, D.; Konstantoulakis, G.; Sanchez-P, J.A. Design
and performance evaluation of a Programmable Packet Processing Engine (PPE) suitable for high-speed network processors
units. Microprocess. Microsyst. 2007, 31, 188–199. [CrossRef]

41. Machine Learning Mastery. Available online: https://machinelearningmastery.com/hyperparameter-optimization-with-random-
search-and-grid-search/ (accessed on 20 December 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.micpro.2006.09.001
https://machinelearningmastery.com/hyperparameter-optimization-with-random-search-and-grid-search/
https://machinelearningmastery.com/hyperparameter-optimization-with-random-search-and-grid-search/

	Introduction 
	The Significance of Speed through Water 
	Types of STW Measurement 
	Drifting of Sensor Readings 

	The Problem of Missing Values 
	Configurations of Onboard Log Systems 
	Missing Data Mechanism 

	Proposed Method for Compensating for Missing Data and Drift in Readings of STW Sensors 
	Use Case Vessel 
	ML Algorithms/Time Series Forecasting 
	Simulation Platform—Simcenter Amesim Configuration 

	Results and Discussion 
	Data Pre-Processing—Time Series Forming 
	Algorithm Training/Hyperparameter Optimization 
	Algorithm Evaluation 

	Conclusions and Future Perspectives 
	References

