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Abstract: Biotribology is applied to study the friction, wear, and lubrication of biological systems
or natural phenomena under relative motion in the human body. It is a multidisciplinary field
and tribological processes impact all aspects of our daily life. Tribological processes may occur
after the implantation of an artificial device in the human body with a wide variety of sliding and
frictional interfaces. Blood is a natural bio-lubricant experiencing laminar flow at the lower screw
velocities associated with drilling implants into bone, being a viscoelastic fluid with viscous and fluid
characteristics. The viscosity comes from the blood plasma, while the elastic properties are from the
deformation of red blood cells. In this study, drilling parameters according to material properties
obtained by Finite Element Analysis are given. The influence of blood on the resulting friction
between the surfaces is demonstrated and correlated with mechanical and biological consequences,
identifying an innovative approach to obtaining a new lubricant parameter for bone drilling analysis.
The lubrication parameter (HN) found within the limitations of conditions used in this study is
10.7 × 10−7 for both cortical bone (D1) and spongy bone (D4). A thermal-structural analysis of
the densities of the soft bone (D4) and hard bone (D1) shows differences in only the equivalent
stress values due to the differences in respective Young moduli. The natural occurrences of blood
as a lubricant in bone-screw perforations are poorly investigated in the literature and its effects are
fundamental in osseointegration. This work aims to elucidate the relevance of the study of blood as a
lubricant in drilling and screwing implants into bone at lower speeds.

Keywords: bio-lubricant; lubrication parameter; bone drilling; blood; bioactive kinetic screw

1. Introduction

Blood is a special type of fluid connective tissue derived from mesoderm and com-
posed of plasma (55%) and cellular elements (45%), erythrocytes (red blood cells), leuko-
cytes (white blood cells), and thrombocytes (platelets). Its color changes according to
the gas it carries within its structure, being bright red when carrying oxygen, or dark
purple when carrying carbon dioxide. It represents 8% of body mass, is slightly alkaline
(pH = 7.35–7.45), has a temperature of 37 ◦C, a viscosity 3 to 4 times greater than that
of water, and its average volume in the human body is five liters [1]. Blood transports
hormones to organs and causes them to change their physiology, regulates the pH, restricts
fluid loss during an injury, acts as a defense against pathogens and toxins, and regulates
the body temperature [2]. Plasma is the pale-yellow-colored liquid component of blood
that holds its cellular elements in suspension and is constituted of water (91.5%), proteins
(7%), namely albumins, globulins, and fibrinogen, and other solutes (1.5%) electrolytic ions,
gases, nutrients, and waste products [3]. The function of plasma is to absorb, transport, and
release heat through water, maintain osmotic balance through albumins and provide body
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defense through globulins, blood clotting through fibrinogen, and pH buffering through its
electrolytic ions. Red blood cells are circular biconcave non-nucleated cells, measuring 7 to
8 µm in diameter and 2.5 µm in thickness with a life span of 120 days, presenting red color
(hemoglobin pigment) [4]. Red blood cells transport oxygen (oxyhemoglobin) from lungs
to tissues and carbon dioxide (deoxyhemoglobin) from tissues to lungs via the hemoglobin
molecules (Hb) that represent 13 to 15 g per 100 mL of blood. Each molecule of Hb carries
four molecules of oxygen [5].

When drilling into bone tissue cuts a blood vessel, the body starts the process to
keep homeostasis through hemostasis, which begins with the vascular phase, in which
the diameter of the blood vessels decreases, and endothelial cells (the inner layer of blood
vessels) releasing chemical factors; next, in the platelet phase, a platelet plug forms and other
chemicals are released (ADP, clotting factors); then coagulation or blood clotting occurs,
where in addition to platelets, fibrinogen is converted to fibrin to form a net-like structure
to form a clot; finally, fibrinolysis occurs, and, after the blood vessel is completely healed
and new connective tissue has formed, the now unnecessary blood clot is removed [6].

Blood behaves as a non-Newtonian fluid and its viscosity varies with shear rate,
decreasing at high shear rates (shear-thinning fluid) and vice versa. Blood viscosity also in-
creases with increases in red cell aggregability, in coagulating blood, falls with the thrombus
formation, while in non-coagulation blood, retains almost the same value, as shown by the
activated clotting time and fibrinogen concentration tests. Blood viscosity is determined by
plasma viscosity, hematocrit (red blood cell volume), and the mechanical properties of red
blood cells, mainly erythrocyte deformability and erythrocyte aggregation [7]. The viscosity,
equivalent to friction in fluids, of blood at 37 ◦C is normally 4 × 10−3 pascal-seconds [8].
The friction arising from bone-implant contact (BIC) during drilling converts kinetic en-
ergy into thermal energy. Between bone-implant surfaces, blood flows naturally after the
surgical cutting of the bone blood vessels during drilling, and filling this gap with blood
is desirable to obtain the initial phase of inflammation and subsequent osseointegration.
Hydrophilic features are desired on implant surfaces to attract and adhere blood in the
initial process of inflammation in the bone-implant contact healing process [9]. Although
surgery damages bone tissue, it also triggers a cascade of wound-healing events that stimu-
late osseointegration, improving implant stability through bone remodeling [10]. The shear
rate (τyx) for a fluid flowing (blood) [11] between bone and a BKS implant, one moving
at a constant speed (BKS) and the other stationary (bone) is determined by the change in
pressure (∆P), the distance between fluid flow (L) and the diameter of the bone-implant
interface micro gap (y), defined by Equation (1):

τyx =
∆P y

L
(1)

The Stribeck curve is a fundamental concept in the field of tribology. It shows that
friction in fluid-lubricated contacts is a non-linear function of the contact load, the lubricant
viscosity, and the lubricant entrainment speed (sliding speed), differentiating boundary
lubrication (bone-implant contact), mixed lubrication (bone-implant contact gap filled by
blood) and hydrodynamic lubrication (load supported by hydrodynamic pressure) [12]. For
the contact between two fluid-lubricated surfaces, the Stribeck curve shows the relationship
between the so-called Hersey Number (HN) [13], a dimensionless lubrication parameter
that shows the relationship between viscosity and load, and how friction changes with
increasing velocity. The Hersey number is defined as Equation (2):

HN =
ηN
P

(2)

where η is the dynamic viscosity (Pa·s = N·s/m2) of the fluid, N is the entrainment speed
of the fluid, which is equal to the velocity of BKS Implant insertion (m/s), and P is the
Insertion Torque applied (Nm).
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Boundary lubrication is related to bone-implant contact without the effect of the blood
as a lubricant and is commonly analyzed by insertion torque forces [13]. Hydrodynamic
lubrication is related to the pressure in the plasma and cells involved in the inflammation
process initiated by the surgical cut made by drilling into the bone. Mixed lubrication,
the objective of this study, correlates the influence of roughness contact between the bone-
implant load, supported by both surfaces and the liquid lubricant (blood) [13]. The mixed
lubrication regime can be determined by the (λ) ratio of the film thickness to the root-
mean-square (RMS) surface roughness of the two frictional surfaces. When 1 < λ < 3
the lubrication condition is considered mixed lubrication. The RMS surface roughness of
Ti6Al4V implants is in the range of 6–14 µm [14–16] depending on the surface treatment
applied, and the roughness—the linear dimensions of the bone tissue—range from 5.5
to 6.5 µm, depending on the quality of the bone drilling cut [17]. Both can change either
slightly or significantly during drilling wear. To maintain full blood film lubrication, the
minimum film thickness must be greater than 15–18 µm, which is generally the case in
actual physiological conditions when 150 µm is the distance between the screwed implant
and the bone bed site after healing [18]. The analysis of the Stribeck curve shows that the
lubricant decreases the coefficient of friction proportionally to the velocity applied, likewise
when the lubricant is blood, higher speeds can also aggregate the red blood cells increasing
its viscosity and decreasing its lubricant properties. Understanding the ideal speed for
insertion torque in bone screw implants can optimize the use of the blood as a lubricant,
inherent to the surgical cut of the drilling process, and maintain its biological properties,
improving the healing process and predictable results in osseointegration [19].

The mechanical properties of bone tissue are widely studied and discussed in the
literature [20]. Several properties can be quantified, including the stiffness (S), the ultimate
load that corresponds to the load at failure, the energy or work to failure (U), and ultimate
displacement. The elastic region, before yield, represents Young’s modulus (material
stiffness), and the plastic region, a post-yield nonlinear region that contains the ultimate
stress and the failure point. Yield stress is the transition to nonlinear behavior, which means
that the stress begins to cause permanent damage to the bone structure. The maximum
stress and strain that the bone can sustain are called the ultimate stress (strength) and
ultimate strain. These properties are strongly dependent on the loading mode (tensile,
compression, bending, or shear) and determine the mechanical response of the bone tissue
to drilling operations [21]. Bone density varies between individuals and throughout life. A
basic concept accepted in the literature is the structural and functional properties differences
between cortical bone and trabecular bone. Trabecular bone has the same structures as
compact bone, but they are not arranged in osteons, containing the same components.
Instead, it has very distinct trabeculae (small beams of bone) separated by macroscopic
spaces filled with red bone marrow or yellow bone marrow. The trabeculae are organized
on the long lines of stress and help to reduce the weight of the bone [22]. The less-dense
trabecular bone presents larger spaces (lacunae) in its composition, filled with higher blood
quantity than cortical bone [23]. Maximum insertion Torque analyses clearly show the
influence of different bone densities, and their relationship is robustly described in the
literature. However, the lubricating effect of the blood into the bone-implant contact during
drilling and screwing, and the lower torque obtained in the insertion of implants into
trabecular bone, are not correlated in the literature and may influence these results [21].

The friction coefficient is independent of the applied normal force and displacement
rate [24] but depends on the properties of the bone tissue surrounding the implant and
on the properties of the implant surface [10]. The test of bone against implant surfaces
produced a variety of different force-displacement curves and a wide range of friction
coefficients (in the range of 0.19 to 0.78) [25–27].

Maximum insertion torque (MIT) values can range from 15 to 150 Ncm [28] with
a mean value of 78.30 Ncm. The mean MIT is typically higher in D1 cortical bone
(126.67 Ncm) and lower in D4 spongy bone (40.22 Ncm) [29]. A statistically significant
correlation is found between bone volume and MIT values (r= +0.771, p < 0.0001). No sta-
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tistically significant correlation is found between implant length and/or diameter and MIT
in all bone densities. About 50–80% of bone-implant contact is described in the literature as
clinically successful implants. Some results suggest that no matter the initial percentage of
BIC, the final Osseointegration is about 58–60% BIC if the bone remodeling equilibrium
state is reached [18].

Many studies on BIC are on the secondary stability (biological) of bone implants,
and only the values of maximum insertion torque are described in primary or mechanical
stability analysis, without the determination of BIC in this initial and fundamental phase
to promote healing. Understanding BIC in primary stability, mainly in cases of high
(D1) and low (D4) bone density increases our understanding of osseointegration. The
interface between the implant and bone tissue presents a dynamic environment expressed
by mechanical and biological interactions between the surfaces. The surgical trauma
caused by drilling and screwing the screw into the bone promotes hemorrhage, the first and
most important step of the healing process in osseointegration [3–7,14–16]. The objective
of this work is to use finite element analysis (FEA) of drilling an implant into the bone
with specific parameters to introduce innovative theoretical hypotheses of the correlation
between blood as a natural biological lubricant, bone densities, maximum insertion torque,
and a coefficient of friction that is a result of those interactions. The focus is on mechanical
stability or primary stability and its immediate mechanical behaviors after bone plastic and
elastic deformation due to the drilling and screwing process. Within the limitations of this
study, we found a new lubrication parameter for bone drilling.

2. Materials and Methods

BKS is an innovative mechanical device with inherent biomechanical properties [22]
including the bone compacting factor inside the BKS, allowing us to determine the absolute
bone density through invasive direct measurement in the region of interest.

Applying simple biomechanical concepts of bone drilling, screwing, biocompatibility,
and bone implant, the engineering design of BKS was created to, among other character-
istics, optimize the surgical technique and reduce the trauma of bone perforation, with a
smaller number of drillings, as seen in Figure 1.
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Figure 1. BKS as a dental implant applied in the Finite Element Analysis drilling and screwing into
the bone simultaneously.

In this work, three-dimensional finite element modeling and numerical analysis were
carried out to facilitate thermal-structural analysis. The 3D models were built in Solidworks
® and ANSYS 2020 R2 ®—Workbench 2020 R2 software programs. The BKS modeling was
carried out in Solidworks and imported into ANSYS Workbench, as shown in Figure 1.
After importing the Solidworks model into ANSYS, a cortical bone block (workpiece) was
constructed, representing the surrounding dental bone.
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Based on the geometrical models, finite element meshes were generated. The numeri-
cal model was prepared in ANSYS 2020 R2 ®—Workbench 2020 R2. The BKS model and
the bone disc were meshed with 3D SOLID elements.

In the presented simulation, the BKS tool was provided with TiAl64V parameters as
seen in Table 1, and cortical bone (Table 2) with two distinct parameters to compare bone of
density D1 (1.85 × 10−6 kg/mm3) and D4 (0.45 × 10−6 kg/mm3). First, for bone of density
D1, an angular velocity of 300 rpm and a feed rate equal to 0.1 mm/s vertically down into
the bone were applied. Second, the steps were applied to bone of density D4. In both cases,
a thrust load of 80 N was used with a temperature of 39 ◦C in the absence of irrigation, as it
is intended to be used in ongoing research.

Table 1. BKS Implant properties applied in FEA [21,30].

Ti6Al4V (Grade 5)

Young’s Modulus, MPa 2.0 × 105

Poisson’s Ratio 0.3

Maximum Yield Stress, MPa 1450

Initial Yield Stress, MPa 850

Density, kg/mm3 4.51 × 10−6

Coefficient of Thermal Expansion, 1/◦C 8.5 × 10−6

Table 2. Bone properties applied in FEA [21,30].

Cortical Bone

Poisson’s Ratio 0.3

Maximum Yield Stress, MPa 125

Initial Yield Stress, MPa 10

Coefficient of Thermal Expansion, 1/◦C 8.9 × 105

Young’s Modulus, MPa (D1) 17,000

Young’s Modulus, MPa (D4) 175.12

Density, kg/mm3 (D1) 1.85 × 10−6

Density, kg/mm3 (D4) 0.45 × 10−6

In the present study, an electric motor EM-12L with a maximum power of 59 W was
selected with angular speeds of between 100 and 40,000 rpm [30]. The relation between the
torque (Mt in Nm), the maximum electrical power during drilling (P in W), and the speed
of rotation (n in rpm) are determined according to Equation (3).

Mt = 9.55
P
n

(3)

According to this equation, the torque is equal to 187.8 Ncm at a rotational speed of 300
rpm. The FEA results obtained were applied to determine optimal parameters for insertion
of the new BKS biomechanical design, as seen in Figure 2, relating them to the mathematical
concepts used in tribology to support the proposed hypothesis of the lubricating effect
of blood when drilling implants into bone, and the advantages of choosing the drilling
parameters based on the geometry and surface of the bone implant.
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Figure 2. Schematic diagram of BKS Screw in the cortical bone block (workpiece).

3. Results

In previous studies [30] the formation of the plastic strain over different time instants
of the bone drilling process was described. As expected, the BKS screw during the drilling
process does not present plastic strain. Bone material during perforation presents high
plastic strain which increases with the amount of material removed [30–32]. The soft bone
(D4) and hard bone (D1) densities used in the thermal-structural analysis show differences
in only the equivalent stress values, which, in the case of D1 equals 102.6 MPa, and in
the case of D4 equals 1.056 MPa; and normal stress values, which is the case of D1 equals
−92.7 MPa, and in the case of D4 equals −0.955 MPa, due to the differences in respective
Young moduli. The results for deformation and strain followed the same trend.

3.1. FEA Bone Density D1 (1.85 × 10−6 kg/mm3, 17,000 MPa)

The results of drilling the implant into bone of density D1 are shown in Figures 3–7:
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3.2. FEA Bone Density D4 (0.45 × 10−6 kg/mm3, 175.12 MPa)

The results of drilling the implant into bone of density D4 only changed in terms of
equivalent and normal stress values, since they depend on the Young modulus.

The displacement and deformation are the same because the remaining conditions are
equal, as seen in Figures 8 and 9.
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4. Discussion

Previous studies of BKS implants [22,30–32] obtained by FEA, when analyzed from
the biological perspective, describe the plastic deformation promoting bone tissue rupture
(osteotomy fracture), blood vessel rupture, the release of salts, enzymes, acids, proteins,
macromolecules, and cell death; and the elastic stress/strain of the BKS in the bone, with
the blood from cutting and drilling the bone around the screw, and the higher stress/strain
obtained in the MIT at the apex of the BKS in contact with the bone at the end of the drilling.
As soon as the BKS implant is drilled into the bone, the inflammation process starts through
the release of blood adjacent to the cutting, deformation, and stress areas.

Microscopically, the cut bone tissue and blood vessels develop at the interface of the
cutting edge of the drilling site, exactly where the bone will be stressed on the threaded
walls of the BKS, as analyzed in the results by FEM. Since in the BKS surgical technique, the
drilling is not performed by an undersized drill, it is possible to determine and control the
plastic and elastic stress/strain, which varies only with the relative bone densities, during
the BKS insertion. The coefficient of friction is independent of the applied normal force and
the displacement rate [33].

Applying equation (2), where η is the dynamic viscosity of the blood (4 × 10−3 N·s/m2),
N is the entrainment speed of the fluid, that is equal to the velocity of BKS Implant insertion
(5 × 10−4 m/s), and P is the insertion torque applied (1.87 Nm), we can determine the
dimensionless lubrication parameter (HN) where, for a given viscosity and load, the
Stribeck curve shows how friction changes with increasing velocity, resulting in:

HN =
4 × 10−3 × 5 × 10−4

1.87
(4)

The lubrication parameter (HN) found within the limitations of the conditions em-
ployed in this study is 10.7 × 10−7 for both the cortical bone (D1) and spongy bone (D4)
properties defined as shown in Table 2, and the BKS Implant properties in Table 1.

The Stribeck Curve helps us to understand the lubrication regimes where the interface
between the bone-implant acts [13]. A meta-analysis [24] compared the suitability of various
parameters used to characterize wettability in tribological systems and showed the relation-
ship between wettability and the friction factor for multiple lubricant-surface pairings.

The differences in equivalent stress values, 102.6 MPa, and 1.056 MPa for D1 and
D4 respectively, and normal stress values, of −92.7 MPa and −0.955 MPa for D1 and D4,
respectively, indicate that the bone blood vessels adjacent to the BIC site suffer different
stresses under those densities, which has already been proven in the literature to interfere
in the healing process, slowing, or preventing, it [34].

The bleeding and clotting time measures the clotting time of the blood and is depen-
dent on the proper functioning of platelets in the blood vessels with normal hemostasis
occurring between 2 and 7 min [35]. Most individuals have a bleeding time of less than
4 min, showing that the lubricating capacity of blood, before its clotting, should become
active immediately after cutting the bone through the initial drilling.
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More time spent with multiple bone drilling not only damages the bone bed [36] but
also increases the time between initial bone drilling and final implant screwing, decreasing
the benefit of blood as a lubricant and its sliding across the implant surface [34–36]. With
the new BKS design, simultaneous drilling and screwing and low applied speed ensure that
the blood acts as a lubricant and can maintain its normal functions. The benefits of blood in
intimate contact with the bone-implant surface have already been robustly described in
the literature, and the optimal surface for this to occur in a controlled manner is still being
sought [18,34].

Bone is tensioned and compressed during the drilling and screwing of implants.
On the compression side, bone undergoes a cascade of events that result in upregulated
osteoclasts absorbing bone, and, on the tension side, bone undergoes a separate cascade of
events that result in upregulated osteoblasts, which create bone. These result in resorption
on the compression side and apposition on the tension side, remodeling in such a way
that enables the implant to develop long-term osseointegration [37]. By understanding
and respecting these parameters, we optimize the probability of achieving controlled and
successful results.

Within seconds of the drilling and cutting forces being applied, the bone blood vessels
are distorted on the compression side, and they will be partially compressed and partially
dilated on the tension side. In minutes, with those blood vessels having been distorted, the
blood flow is altered, and oxygen and carbon dioxide levels will change. This change in
oxygen tension will trigger inflammatory mediators like prostaglandins and RANKL to be
released [38].

Limitations in experimental in vivo research and computational modeling due to the
not-well-established mixed-lubrication mechanism, the high computational costs required
to model the bearing surfaces within a relatively large contact area, and the complexity
of geometry analyzing lubrication of biological and non-biological surfaces (drilling bone
screws, hip, and knee joints) with biological lubricants, inhibit the development of the field
of tribology [27,39].

Highlighting the importance of the inflammatory process and the lubricating effect of
the blood during bone drilling, we can promote future studies to determine other blood
lubrication parameters at different bone densities, different blood viscosities (pathologies),
other bone screw insertion speeds, and different implant geometries, comparing the results
and improving the osseointegration prognosis. In addition, biofunctionalization may
shorten the healing period of osseointegrated biomaterials [40].

5. Conclusions

A new BKS biomechanism for bone screws and implants was presented as a bone
implant screw to show how blood could influence the resulting friction between bone-
implant surfaces, correlating with mechanical and biological properties, defining a novel
approach to obtain a new lubricant parameter in the analysis of drilling into bone. The
natural effect of blood as a lubricant in bone-screw perforations is not investigated in
the literature and its effects are paramount in bone healing. This work has elucidated
the relevance of blood as a lubricant in drilling and screwing bone at lower speeds with
pre-defined parameters.

The lubrication parameter (HN) found within the limitations of the conditions em-
ployed in this study is 10.7 × 10−7 for both cortical bone (D1) and spongy bone (D4).

Thermal-structural analysis of soft bone (D4) and hard bone (D1) densities shows dif-
ferences only in equivalent stress values, due to the differences in respective Young moduli.
This is ongoing research and future studies will be able to experimentally determine the
advantages and disadvantages of blood as a bio-lubricant.
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