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Abstract: Many classic control approaches have already proved their merits in the automotive
industry. Model predictive control (MPC) is one of the most commonly used methods. However,
its efficiency drops off with increase in complexity of the driving environment. Recently, machine
learning methods have been considered an efficient alternative to classical control approaches. Even
with successful implementation of reinforcement learning in real-world applications, it is still not
commonly used compared to supervised and unsupervised learning. In this paper, a reinforcement
learning (RL)-based framework is suggested for application in autonomous driving systems to
maintain a safe distance. Additionally, an MPC-based control model is designed for the same task.
The behavior of the two controllers is compared and discussed. The trained RL model was deployed
on a low-end FPGA-in-the-loop (field-programmable gate array in-the-loop). The results showed that
the two controllers responded efficiently to changes in the environment. Specifically, the response of
the RL controller was faster, at approximately 1.75 s, than that of the MPC controller, while the MPC
provided better overshooting performance (approximately 1.3 m/s less) in terms of following the
reference speeds. The reinforcement-learning model showed efficient behavior after being deployed
on the FPGA with (4.9 × 10−6) m2/s as a maximum deviation compared to MATLAB Simulink.

Keywords: automated driving; safety distance; reinforcement learning; machine learning; model
predictive control (MPC); classic control

1. Introduction

Human perception error is at the top of the significant factors that cause road accidents.
Recently, one of the automotive industry’s top priorities has been to provide passengers
with the highest level of safety by partially or entirely relieving the driver of responsibili-
ties [1]. Over the past decade, control engineers in the automotive industry have devoted
major efforts to improving road transportation by developing and applying advanced
control strategies. The advancement of sensing, communication, and processing technolo-
gies has resulted in a rapid expansion in the development of advanced driver assistance
systems (ADAS) [2]. These systems are designed mainly to assist drivers, either by offering
warnings to lessen risk exposure or automating some control functions to relieve a driver
of human control [3]. After being tested in highly structured environments and under
full supervision, autonomous vehicles have been transitioned to the real world alongside
human-driven vehicles. It is anticipated that, in the near future, fully autonomous vehicles
would replace humans in the role of drivers. This progress has raised many critical concerns
which need to be addressed. Safety-related challenges are at the top of these concerns
since it is crucial to ensure that autonomous vehicles are capable of interacting with other
vehicles safely. One promising ADAS technology is the adaptive cruise control (ACC)
system, which uses data from sensors such as radar to maintain the speed of the vehicle in
order to keep a safe distance from other vehicles on the road. A detailed review of ACC
systems is provided by [4–6]. Studies have demonstrated that the safety systems that have
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already been implemented in the automotive industry, such as electronic stability control,
ACC and lane-following, have reduced the traffic accident rate and consequently increased
the safety level [7].

Generally speaking, any control problem can be described as an optimal control
problem and several classical control approaches have been used to address the safety
problem of autonomous vehicles. In [8], linear temporal logic (LTL) is used to describe the
system specifications for adaptive cruise control, where a discrete abstraction of the system
serves as the foundation for the controller. However, this solution is computationally
expensive as the complexity of the controller synthesis increases exponentially with the
dimensions of the system (LTL formula). In [9], the safety constraints are maintained as
control barrier functions (CBFs), which penalize the violation of the determined constraints,
while the control objective (desired speed) is formulated as control Lyapunov functions.
These two sets of functions are structured in quadratic problem (QP) form. Despite the
promising performance, the computational loads and the resource requirements are still
very high. In addition, finding the control barrier functions is not an easy task. Model
predictive control (MPC) is a very well-known control strategy that is used to solve control
problems, where it represents the state of the art in real-time optimal control [10] due to its
capabilities to deal with multi-input-multi-output (MIMO) systems and handle multiple
(soft and hard) constraints using a future prediction strategy. An MPC framework is
used to tackle ACC system safety problems and its efficiency in many other autonomous
control applications has already been proven [11]. Bageshwar et al. [12] provided an
MPC-based control strategy for application to transitional maneuvers. The results showed
that the efficiency of the MPC controller in achieving a safe and comfortable driving
system depended on the explicit incorporation of collision avoidance and acceleration
limits into the formulation of the control problem. Recently, a cooperative adaptive cruise
control (CACC) system was introduced. The main idea of the approach is inter-vehicle
communication, where all the vehicles within a “cooperative team” know the trajectory of
each other. However, a collision can happen when an unexpected maneuver occurs due to
a communication problem [13]. Corona et al. [14] successfully implemented a hybrid MPC
framework in order to enhance safety by achieving the optimal tracking of a time-varying
trajectory. The results confirmed the efficiency of using an MPC controller in an industrial
application with computation restrictions. Using an MPC control strategy, multiple control
objectives, such as tracking and driver comfort, can be balanced with the cost function
by solving the optimal control problem over a finite horizon in a receding fashion [15].
However, MPC design involves many parameters and takes a long time to fine tune, as
stated in [16]. In addition, a thorough system dynamics model with high fidelity is required
in order to effectively anticipate system states. Solving the optimization problem of high
dimensional and non-linear state spaces causes a significant increase in computational loads,
which, in turn, affects and impedes real-time implementation, especially with short sample
time control. However, linearization is not the best solution to deal with these systems.
As a result, implementations of MPC controllers may provide invisible solutions with
limited resource computing platforms, such as FPGAs (field-programmable gate arrays)
and SOCs (systems-on-chips). Thus, the necessity of developing an alternative control
approach that has the capability to deal efficiently with the non-linearity and uncertainty
of vehicle dynamics becomes more urgent. In this context, machine-learning algorithms
have shown outstanding performance in a wide range of applications in different fields
and have recently become an efficient alternative solution to classical control approaches.

Machine learning has been used for many autonomous vehicle applications, including
perception and motion planning [17], traffic routing [18], object detection, semantic seg-
mentation [19] and others. Pomerleau’s autonomous land vehicle was one of the earliest
research projects to implement machine learning (neural network) for autonomous vehicle
control [20]. Generally, machine learning is divided into three main categories: supervised
learning, unsupervised learning, and reinforcement learning. Unlike supervised learning
and unsupervised learning, implementation of reinforcement-learning algorithms are still
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a significant challenge. Even with the promising results that have been reported, reinforce-
ment learning is still an emergent field and has not been transitioned to the real world as
successfully as supervised and unsupervised learning [21].

Reinforcement learning (RL) is a learning-based algorithm that is used for solving
complex sequential decision-making problems by studying the agent’s behavior and its
interaction with the environment. RL is structured as Markov decision processes (MDPs),
where the agent takes an action within the current state of the environment and conse-
quently receives a reward. The action taken moves the environment to the next state.
The objective of an RL agent is to learn an optimal (state-action) mapping policy that
maximizes the long-term cumulative rewards it receives over the time. RL depends on
trial and error to achieve the optimal policy, with training based on Bellman’s principle
of optimality [22,23]. Numerous studies have been conducted on reinforcement learning
to address the learning control or sequential decision-making problems occurring within
uncertain environments [24]. It is worth mentioning that RL is also known as approximate
dynamic programming (ADP) from the perspective of learning control for dynamic systems.
An actor-critic reinforcement-learning algorithm is suggested in [25] for addressing the
longitudinal velocity tracking control of autonomous land vehicles. The value function and
the optimal policy were approximated based on parameterized features that are learned
from collected samples so that the actor and critic share the same linear features. The
results show the superiority of the approach used over the classical proportional-integral
(PI) control. In [26], an RL-based model with energy management is suggested to increase
fuel consumption efficiency, where the Q-learning algorithm is implemented to obtain the
near-optimal policy. In [27], an RL-based controller is suggested to ensure the longitudinal
following of a front vehicle, where a combination of a gradient-descent algorithm and
function approximation is employed to optimize the performance of the control policy.
This study concluded that, although performance was good, more steps must be taken to
address the control policy’s oscillating nature utilizing continuous actions. In [28], a deep
reinforcement-learning algorithm was proposed to study the efficiency of RL in handling
the problem of navigation within occluded intersections. The solutions discovered by
the proposed model highlight various drawbacks of the present rule-based methods and
suggest many areas for further investigation in the future. A multi-objective deep reinforce-
ment learning (DQN) [29] approach was suggested for automotive driving in which the
agent is trained to drive on multi-lane ways and in intersections. The results show that the
learned policy was able to be transferred to a ring-road environment smoothly and without
compromising performance.

To better understand the importance of successful implementation of RL algorithms
compared to classical MPC, it is important to point out some key differences. MPC is a
model-based control strategy that benefits from the accurate dynamics of the plant, which
has mainly been developed to solve an optimal control problem of models that have been
explicitly formulated for the control problem using a future prediction strategy. In contrast,
RL is a learning-based method which has a strong theoretical basis. The efficiency of
the model depends on how well the agent is trained within its environment. The high
computing demands of MPC for real-time applications raises financial concerns, while
offline-trained RL, which uses neural networks, requires relatively minimal computing time
during deployment. Additionally, one of the primary advantages of reinforcement learning
is its effectiveness in handling high-dimensional environments with complex observations,
obtained, for instance, from photos and videos, which are regarded as overly complex
for the traditional MPC, which deals with signal measurements. Compared to MPC, the
trained policy in a reinforcement-learning model can be viewed as the controller, where the
reward function is equivalent to the cost function, while the observations and the actions
taken correspond to the measurements and the manipulated variables, respectively [30,31].

This paper seeks to build on studies that have been conducted on reinforcement-
learning methods in order to pave the way for more successful RL applications in real-life



Designs 2023, 7, 18 4 of 19

autonomous vehicle applications and to evaluate their efficiency compared to classical
control approaches.

In this paper, two different control models were developed for the purpose of maintain-
ing a safe distance between two vehicles, an MPC-based control system and a reinforcement-
learning-based control system. The performance and efficiency of the developed RL-based
model were evaluated compared to the behavior of the classical MPC-based model. The
two controllers were implemented and tested using the same environment and subjected
to the same conditions and constraints.

The paper is structured as follows: In the second section, a brief theoretical background
of the optimization problem and the related methods used is provided. In the third section,
the design process of the MPC-based and RL-based control models and the implementation
steps for the RL model on the FPGA are presented. The implementations and the results
obtained are discussed in the fourth section. Finally, the conclusions are summarized in the
last section.

2. Materials and Methods
2.1. General Optimization Problem

Optimization is considered essential in a variety of applications in different areas,
including engineering, science and business. The goal of the optimization process differs
from one application to another based on the nature of the task itself. Generally, opti-
mization provides improvements in different respects with the aim of minimizing power
consumption and cost or maximizing performance, outputs and profits. The value and
necessity of the optimization process mainly derives from the complexity of real-world
problems and limitations regarding resources, time and computational capabilities. This
means that finding solutions to optimally manage and use these resources is an essential
topic for research. As a result, it is not an overstatement to say that optimization is needed
in each and every real-world application.

Mathematically speaking, any optimization problem consists of an objective function,
decision variables and constraints. The objective function needs to be minimized or maxi-
mized and must be subjected to constraints, which can be soft and/or hard. The standard
mathematical form for most optimization problems can be described as

minimize fi(x), (i = 1, 2, . . . N),

gj(x) ≤ 0, (j = 0,1, 2, . . . J),

gl(x) = 0, (l = 0,1, 2, . . . L)

(1)

where fi(x) is the objective function, gj(x) are inequality constraints, gl(x) are equality
constraints, N is the number of objective functions, J is the number of inequality con-
straints and L is the number of equality constraints. The objective function can be linear
or non-linear and, similarly, the constraints can be linear, non-linear or even mixed. The
components of the vector x = (x1, x2, . . . xn)T are called decision variables and can be
discrete or continuous variables. The inequality constraints can also be written in the form
(≥ 0) and the cost function can be formulated as a maximization problem

maximize fi(x), (i = 1, 2, . . . N),

gj(x) ≥ 0, (j = 0,1, 2, . . . J),

gl(x) = 0, (l = 0,1, 2, . . . L)

(2)

The optimization problem can be classified based on two factors: the number of
objective functions and the number of constraints. In terms of the number of objective
functions, it can be divided into a single objective where N = 1 and a multi objective
where N ≥ 1. In terms of number constraints, the optimization problem is divided into
unconstrained (j = l = 0), inequality constrained (l = 0 and j ≥ 1) and equality constrained
(j = 0 and l ≥ 1) optimization problems. It is worth pointing out that, if both the objective
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function and the constraints are linear, then the optimization problem is called a linear
programming problem. In the case where both the objective function and constraints are
non-linear, the problem becomes a non-linear optimization problem. The problem is called
quadratic programming (QP) when the objective is a linear–quadratic function and the
constraints are affine (linear combinations). In certain objective functions, we could have a
local minimum or global minimum. The point is called the local minimum if the value of
the function at this point is equal to or smaller than its values at nearby points. When the
value of the function at this point is equal to or smaller than its values at the feasible points,
the point is called the global minimum. Figure 1 shows three local minimum points and
one global minimum point. Global optimization problems are usually more complex and
challenging [32].

Figure 1. Local and global minimum points.

2.2. Model Predictive Controller

MPC is a very well-known classical control strategy that is used in a variety of ap-
plications. An MPC controller solves an online constrained optimization problem, which
is mainly a quadratic problem (QP). MPC uses an optimizer to ensure that the output of
the plant model follows the reference target. Figure 2 shows the control loop of the MPC
controller. The goal of the MPC controller is to minimize the cost function and satisfy
the system constraints, such as acceleration and physical boundaries. MPC uses a future
prediction strategy to output its control actions, where it looks forward to the future and
uses its internal plant model to simulate different scenarios based on the current state.
Here the optimizer comes into the picture by choosing the optimal scenario. The optimal
predicted scenario is the one that achieves the minimum error compared to the reference
target (Figure 3). Figure 4 shows the designing parameters of the MPC controller, where
Ts is the sample time, which determines the rate at which the MPC controller executes
its algorithm, k is the current sampling step, the prediction horizon (P) represents the
time over which the controller looks forward into the future to make predictions, and the
control horizon (M) represents the possible control steps to the (k+P) time step. The MPC
controller solves the optimization problem at each time step, which makes the process
computationally expensive. In the design process, and in order to balance performance
and computational load, it is important to consider that, by determining a long time-step
interval, the MPC will not be able to respond in time and, while the response will be faster
for a small time step, the computational load will significantly increase. The control horizon
should be chosen in a way that covers the dynamic changes in the system. The response
behavior of the MPC is significantly affected by the first two control moves; therefore, a
large control horizon will only increase the computation complexity [33].
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Figure 2. MPC control loop.

Figure 3. Future prediction strategy of MPC.

Figure 4. MPC controller parameter design.

2.3. Reinforcement Learning

Reinforcement learning is a category of machine learning that is formulated as Markov
decision processes (MDPs). An MDP system consists of an agent (decision-maker), a set of
actions (T), a set of states (S), a transaction function (A) and a reward function (R). At each
time step, the agent takes an action At based on the current state St and the environment is
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transitioned to a new state S(t+1), where the agent receives a reward Rt. The main goal is
maximizing the total cumulative reward, which simply represents the sum of the expected
returns at each time step. Figure 5 shows the MDP process. For continuous systems,
the final time step T = ∞; therefore, the total reward cannot be calculated. To solve this
problem, the concept of discounted reward is used and the goal, in turn, is to maximize
the discounted total reward. The main idea behind this concept is to minimize the effect
of future returns on the actions taken in a way that causes the action taken to be greatly
influenced by the immediate reward compared to future ones. Equation 3 represents the
concept of the total discounted reward.

Figure 5. Markov decision processes.

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... = Σ∞
i=0γiRt+i+1 (3)

where G is the total reward and γ is the discount factor which is chosen to be in the
range [0–1].

The function that maps the probabilities of selecting each action at a specific state
is called the policy (π). The function that evaluates how good it is for the agent to be
in a specific state under the policy (π) is called the state-value function (vπ), while the
function that evaluates how good it is for the agent to select a specific action under policy
(π) at a given state is called the Q-function or the action-value function (qπ). The opti-
mal policy (π∗) corresponds to the optimal Q-function (q∗) and the optimal state-value
function (v∗) [34,35]. Based on the way the agent learns the policy and/or the value func-
tion estimates, reinforcement learning is categorized into three main methods: policy-based
methods, value-based methods and actor-critic methods [36–38]. All the RL methods follow
the same strategy of evaluating the agent’s behavior; however, the fundamental distinction
between them relates to where the optimality resides. Q-learning and deep Q-learning are
the most common value-based methods. In Q-learning, the Q-values for each pair (state,
action) are stored in a Q-table and the agent determines the optimal policy by learning how
to find the optimal Q-value. In reinforcement learning, the agent may exploit its knowledge
by selecting an action that is known to provide a positive reward in order to maximize
the total reward. On the other hand, the agent may take the risk of exploring unknown
actions, which may lead to a lower reward or to discovering actions that provide a higher
reward compared to the current best-valued action. Managing the exploration-exploitation
trade-off is considered a critical challenge for the RL algorithm and an ε-greedy approach
is one of the most commonly used strategies to overcome this challenge. In this strategy,
the exploration rate (ε) refers to the probability of exploring the environment rather than
exploiting it, meaning that the agent will either choose an action randomly with probability
(ε) or will be greedy by selecting the highest valued action with probability (1-ε). Since
the agent at the beginning knows nothing about the environment, the exploration rate (ε)
is usually initialized to be one, so the agent starts by exploring the environment. With
progress of training, the agent learns more about the environment and should conduct more
exploitation, which can be achieved by gradually decreasing the probability of exploration
(ε) by a specific rate at the beginning of every new episode. After taking the action, the
agent observes the next state, obtains the gained reward and updates the Q-table. With
increase in the state space size the efficiency of the Q-learning algorithm drops off due to
its iteration strategy and the large number of pairs (state-action) that need to be stored
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in the Q-table. The deep Q-learning algorithm overcomes this problem by using a deep
neural network as a function approximation to estimate the optimal Q-value instead of the
value iteration strategy. Instead of learning the optimal policy based on the cumulative
reward, the policy-based method directly optimizes the policy itself by parametrizing the
policy and determining the parameters in a way that maximize the objective function of
the policy. The advantages of the value-based and the policy-based methods are combined
in the actor-critic method, where two different approximators are used to determine and
update the parameters of the policy and the actions-value function. The deep deterministic
policy gradient (DDPG) approach is one of the most common actor-critic methods. The
DDPG algorithm uses two neural network-based approximators, the critic and the actor.
The actor deterministically approximates the best action for the given state, while the critic
evaluates the action taken [39,40].

2.4. Design of the Controllers Models

The two controllers are designed to respond to the environment changes using two
control modes: the speed and maintain modes. In the case where the relative distance (drel)
between the two vehicles (ego vehicle and leading vehicle) is greater than the reference
safety distance (dsa f ), the controller applies the speed mode that makes the ego vehicle
drive at the reference velocity. In the case where the relative distance is less than the safety
distance, the controller switches to the maintain mode and the vehicle drives at the speed
of the leading vehicle to keep a safe distance (Figure 6).

Figure 6. The schema of applying the control modes.

2.4.1. Design of the MPC Controller

As the MPC controller is a model-based control strategy and depends on the feedback
coming from its internal plant, the first step in the design process is to design the model
that describes the relation between the longitudinal velocity and the acceleration of the
vehicle. This relation is subjected to the dynamics that describe the relation between the
engine throttle system and the resistance of the vehicle to the change in direction or velocity
(vehicle inertia). The throttle system regulates how much air and fuel mixture reaches the
engine cylinders using a control valve. By increasing the opening angle of the control valve,
more fuel mixture enters the engine, which, in turn, increases the vehicle speed. Equation
4 describes this relation, where TF is the transfer system that approximates the dynamics
between the throttle system and the vehicle inertia. Figure 7 shows the subsystem block in



Designs 2023, 7, 18 9 of 19

MATLAB Simulink, which describes the transfer function in connection with the velocity,
acceleration and position of the vehicle. After designing the plant model, the next step is
to determine the input/output signals and the design parameters of the control system
(Figure 8 and Table 1). The measured outputs are used for state estimation, while the
manipulated variables are the optimal control actions. The MPC design parameters and
the control constraints are presented in Table 2. Figure 9 shows the overall workflow of the
MPC-based control system.

TF =
1

S(0.5S + 1))
(4)

Figure 7. MATLAB simulink subsystem—vehicle model actual position and velocity.

Figure 8. MPC plant model—inputs/outputs.

Figure 9. Overall diagram of the control system—MPC model.
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Table 1. Input/output signals of MPC controller.

Signal Type Parameter Unit Description

Measured outputs
(MO)

vego m/s Longitudinal velocity
of the ego vehicle

dre f m The relative distance between the
proceeding and the ego vehicles

Measured disturbance
(MD)

vprcd m/s Longitudinal velocity of the
proceeding vehicle

Manipulated variable
(MV)

accego m/s2 acceleration\deceleration

References
vre m/s reference velocity in speed mode

dsa f m The reference safety distance

Table 2. MPC design parameters.

MPC Controller Parameters

Sample time (Ts) 0.1 s

Prediction horizon (P) 30

Control horizon (M) 3

Control Action Constraints

Acceleration [−3, 3] m/s2

2.4.2. Designing and Training the Reinforcement-Learning-Based Controller

In this study, the deep deterministic policy gradient algorithm is used to design the
reinforcement leaning controller. As mentioned earlier, this algorithm uses two different
deep-learning-based approximators, the actor and the critic. The design process went
through several steps, starting from preparing the environment, designing the neural
networks of the actor and critic, creating and training the agent, and, finally, running,
testing and validating the model. The observations of the environment are determined
to be the vehicle velocity (vego), the velocity error (ver) and the integral velocity error
(per). The velocity error represents the difference between the reference and the vehicle
velocity. The acceleration constraint is determined to be in the same range as that of
the MPC controller, [−3, 3] m2/s. Figure 10 shows the neural network structure of the
actor-critic approximators.

Figure 10. RL model: Actor–critic neural network structure.

In detail, the critic network consists of two input layers, four hidden layers and one
output layer. The first input layer is structured with three neurons to receive the three
observations from the environment, while the second input layer is structured with one
node to receive the action from the actor network. Each hidden layer consists of 50 neurons
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and ReLU is used as an activation function between the layers. The output layer consists of
one neuron to output the estimated Q-value. The actor network consists of one input layer
with three neurons to receive the observations, five hidden layers, each one structured with
50 neurons, and a ReLU activation function between the layers. Figure 11 shows the overall
workflow of the RL-based control system.

Figure 11. Overall diagram of the control system-RL model.

2.4.3. Training Algorithm

The goal of the training is finding the optimal policy which achieves the highest
cumulative rewards. During the training, the parameters of the policy are updated based
on the following algorithm: taking action, getting the reward, and updating the policy.
This cycle continues until the trained agent learns to take the best action that achieves the
highest long-term reward at each state. The training options are determined, including
the maximum number of episodes, the number of steps per episode and the stop training
criteria. Assuming S and A represent the state and the action, respectively, the training
algorithms can be summarised as shown in Figure 12.

2.4.4. SOC Implementations and Verification of RL Model

As the reinforcement-learning algorithm depends on trial and error, it was safer to
first test the design using the MATLAB Simulink, before implementation on the real SOC.
For this purpose, multiple simulations were performed and the final trained policy that
met the requirements was taken to the next step to be deployed on the target FPGA. The
suggested RL-based control model was deployed on a low-end SOC (ZedBoard). The
deployment process went through several steps (see Figure 13). In the first step, the
trained policy was extracted from the trained agent (the Simulink model) and represented
in C code generated using the MATLAB embedded coder. The generated code accepts
the environment observations as inputs, and outputs the optimal action for the current
state based on the trained policy. In the next step, the hardware configurations were
prepared in order to enable communication between the SOC and MATLAB Simulink. The
deployment was performed by downloading and running the generated code on the target
SOC. Running the model on Zedboard goes through the following cycle: SOC receives
the signals from MATLAB Simulink through the communication channel, executes the
algorithm, outputs a control action (acceleration or deceleration), and then sends it to the
Simulink model to update the state of the driving environment.
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Figure 12. RL training algorithm.
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Figure 13. Overall diagram of running the RL model on FPGA.

3. Results and Discussion

In the first part of this section, the performance of the RL model is evaluated and
compared to the performance of the MPC model. In the second part of the section, the
deployment of the RL-based model on SOC is discussed and evaluated compared to the
Simulink results. The efficiency of the models is determined based on different metrics: the
ability to follow the environment changes, the response time, overshooting, and the ability
of the controller to switch between the two control modes (the speed and maintain modes)
in a way that the vehicle will either keep a safe distance by following the preceding vehicle
or follow the reference speed based on the current state of the environment.

3.1. MATLAB Simulink

Figures 14–16 present the obtained results of the MPC model while Figures 17–19
present the obtained results of RL model. Figures 14 and 17 show the behavior of the MPC
and RL-based controllers, respectively, and their response to different driving scenarios.
Figures 15 and 18 show the relative distance between the two vehicles compared to the
reference safety distance. Figures 16 and 19 show the change in the preceding vehicle’s
velocity, the reference velocity and the response of the ego vehicle to the outputs of the
controllers.

3.1.1. MPC Controller

Figure 15 shows that, in the first 10 seconds, the relative distance between the two
vehicles is greater than the safety distance; the MPC controller response is based on the
speed control mode, where it successfully drives the ego vehicle to follow the reference
velocity (Figure 16). Between 12 to 28 s, the relative distance is less than the safety distance,
the MPC controller switches to “maintain” control mode and the ego vehicle changes its
speed in order to follow the minimum speed of the preceding vehicle. The detailed behavior
of the MPC during this period of time (0 to 28 s) shows that, in the first three seconds, the
MPC controller outputs a near maximum acceleration (Figure 14) since the relative distance
is much higher than the safety distance and the ego vehicle follows the reference speed. On
the other hand, with the continuous decrease in the velocity of the preceding vehicle and,
consequently, the relative distance, the MPC begins to gradually reduce the acceleration.
At second 10, the relative distance becomes very close to the safety distance. The MPC
controller switches to the “maintain” control mode and responds in a way that drives the
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vehicle in the direction of following the speed of the preceding vehicle. At second 28, the
MPC controller switches back to “speed” mode and the ego vehicle follows the reference
speed until second 58, regardless of the (maximum or minimum) speed of the preceding
vehicle, since the relative distance is greater than the safety distance.

3.1.2. Reinforcement-Learning Control Model

Figures 17–19 show that the RL-based controller is able to switch between “speed”
and “maintain” control modes efficiently. The controller drives the ego vehicle to follow
the reference speed between 0 to 10 s since the relative distance is greater than the safety
distance. Then it successfully switches to “maintain” control mode when the relative
distance becomes very close to or less than the safety distance between 10 to 28 s. From 31
to 56 s, the relative distance is greater than the safety distance and the RL controller switches
back to the “speed” control mode, where the ego vehicle follows the reference speed.

3.1.3. Performance Comparison

The results show that both controllers responded efficiently to the changes in the
environment based on the control modes and the design specifications. In detail, at the
beginning, the RL controller drove the vehicle from the initial state to the reference velocity
in approximately 4.5 s, while it took around 6.2 s in the case of the MPC controller. The
results also show that the RL controller was able to follow and respond to changes in
the environment faster than the MPC controller—it took approximately 4.6 s to reach the
preceding vehicle speed after changing to “maintain” mode with the RL controller, while it
took approximately 6.4 s in the case of the MPC controller. Similarly, the results show stable
behaviour of the RL model, which responded faster to the other environment changes,
driving the vehicle at the reference speed at 26 s after switching back to the speed control
mode, while the MPC controller reached the reference speed at 28.5 s. The RL-based model
improved the response time by 1.75 s on average.

On the other hand, the behavior of the RL controller showed higher overshooting in
terms of following the reference speed compared to the MPC behavior, especially against the
initial state, where the maximum overshooting was approximately 1.3 m/s. In conclusion,
the results demonstrate the advantage of the reinforcement-learning model in terms of the
ability to predict and follow changes in the state of the environment faster than the MPC
controller. This result is compatible with the fact that solving the optimization problem
using a trained neural network is faster than solving an online quadratic problem at each
time step (MPC controller). On the other hand, the results demonstrate the advantage of
MPC control in terms of producing less overshooting behaviour in all switching points.

Figure 14. MPC-based controller’s response—MATLAB Simulink.
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Figure 15. Relative distance compared to safety distance—MPC controller.

Figure 16. Velocity of ego and proceeding vehicle compared to reference velocity—MPC controller.

Figure 17. RL-based controller’s response—MATLAB Simulink.

Figure 18. Relative distance compared to safety distance—RL controller.



Designs 2023, 7, 18 16 of 19

Figure 19. Velocity of ego and proceeding vehicle compared to reference velocity—RL controller.

3.2. RL-Model on SOC

The performance of the RL controller after being implemented on SOC was evaluated
compared to its performance on MATLAB Simulink. The compression was analyzed in
terms of tolerance error, which was determined to be 0.2 m/s2 maximum. The results
shown in Figure 20 indicate that the response of the RL controller was within the deter-
mined tolerance range. Figure 21 represents the detailed deviations where the maximum
was (4.9 × 10−6 m/s2). These results demonstrate the success of the deployment of the
proposed RL controller on SOC, which also, in turn, indicates the effectiveness of the
approach employed for extracting the optimal policy that is trained and validated using
MATLAB Simulink.

Figure 20. FPGA—Simulink comparison—RL-based controller’s response within the tolerance range.

Figure 21. FPGA—Simulink comparison—RL-based controller’s response deviations.

4. Conclusions

In contrast to classical control strategies, whose efficiency depends strictly on the
design parameters, the reinforcement-learning algorithm provides an efficient generalizable
model and higher stable control using a very well-trained agent that is exposed to all
possible scenarios within the environment.
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In this paper, a reinforcement-learning-based control strategy was suggested for the
task of maintaining a safe distance in an automated driving system.

The efficiency of the reinforcement-learning algorithm was studied as an alternative
approach to the classical MPC control. The performance of the suggested model was
evaluated compared to the performance of an MPC controller that was designed for the
same task. Additionally, the RL model was deployed on a low-end FPGA/SOC after
being verified in MATLAB Simulink. The results obtained show the superiority of the
reinforcement-learning algorithm over the MPC in terms of the ability to predict, follow
and respond faster to environment changes. The RL model provided stable behaviour
against the changes in the environment, improving the response time by 1.75 s on average.
On the other hand, the MPC controller outperformed the RL-based controller performing
with less overshooting (approximately 1.3 m/s less), which demonstrates the advantage of
MPC control in terms of overshooting behavior. After verifying the reinforcement-learning
model, the trained policy was extracted and successfully deployed on FPGA. The obtained
results showed stable behaviour of the RL model after being implemented on FPGA
compared to the Simulink behaviour, where its response was within the tolerance range
(0.2 m2/s) and the maximum deviation was (4.9 × 10−6 m/s2). In conclusion, developing
a reinforcement-learning-based control strategy for highly complex environments can be
considered a promising and efficient solution to address the disadvantages of classical
control approaches.
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