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Abstract: Trihedral lattice towers are widely used as transmission line supports, wind turbine
supports, cell towers, and floodlight towers. The aim of this work is to develop a technique for
optimizing trihedral lattice supports to reduce their weight, taking into account the limitation on
resonant vortex excitation. At the same time, restrictions are also introduced on the maximum stress,
as well as the ultimate slenderness of the elements. Thus, with a minimum weight, the tower must
meet all the requirements of the design codes. A lattice tower used as a floodlight mast is considered.
The tower consists of two sections, the upper of which is of constant width, and the width of the
lower section varies according to a linear law. The elements of the tower are made from pipes with an
annular cross section. The sections’ widths and heights, the dimensions of elements’ cross-sections,
and the number of panels are the variable parameters. The solution of the nonlinear optimization
problem is implemented in MATLAB software. Internal forces in the tower and natural frequencies
are calculated by the finite element method. The tower is subjected to the action of ice and wind
loads, dead weight and the weight of the equipment. The wind load is considered as the sum of the
average and pulsation components. To solve the problem of nonlinear optimization, the surrogate
optimization method and the genetic algorithm are used. One of the serially used designs was
chosen as the initial approximation. The design obtained as a result of optimization compared to the
initial approximation has a mass more than two times less and at the same time satisfies all design
requirements.

Keywords: floodlight tower; steel structures; lattice tower; finite element method; nonlinear optimization;
resonant vortex excitation

1. Introduction

Lattice tower structures are widely used in the practice of erecting steel supports
for power lines [1–5], wind turbine towers [6–10], and towers for placing lighting equip-
ment [11]. At the same time, supports with a trihedral cross section are more economical
than tetrahedral ones [12–15]. It is shown in ref. [16–18] that the economic efficiency of
tower structures essentially depends on their geometry, as well as the shape and size of the
elements’ cross-section.

There is a significant amount of literature on methods for optimizing steel lattice
towers. In [19], the optimization of the tower geometry was performed by combining the
genetic algorithm and the object-oriented approach. The tower was considered as a set of
small objects. With an object-oriented approach, tower panels are optimized independently.
The objective function is the weight of the tower. The magnitude of the stress and the
critical load at which buckling occurs are the main limitations.

Paper [20] presents a method that combines differential evolution, a powerful opti-
mization algorithm, and a machine learning-based classification model to minimize the
weight of lattice structures. The authors have developed a classification model based
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on the Adaptive Boosting algorithm, which screens out unpromising options during the
optimization process.

The optimization of the wind turbine tower structure with a lattice-tubular hybrid
design was performed in [21] using the particle swarm method. The objective function
is the weight, which should be minimal. Limitations are the magnitude of the stress, the
slenderness of the elements and the first natural frequency.

Four non-linear optimization methods were used in [22] to optimize steel lattice
structures: the interior point method, the surrogate optimization method, the genetic
algorithm, and the pattern search method. The determination of forces in the tower was
carried out by the finite element method. The efficiency of the above optimization methods
was compared. The potential energy of deformation, displacement of the top of the tower
and the first natural frequency acted as the target function.

The optimization of such geometrical parameters of the tower as the angle of inclina-
tion of the lattice and tower width is carried out in [23]. At the same time, the width of the
tower remains constant in height, but it is advisable to decrease it towards the top. The
article [24] searches for the optimal cross section shape of the chords for a trihedral lattice
tower, but does not address the issues of optimizing the geometry of the tower overall.

The author of [25] proposes an adaptive differential evolution algorithm for optimizing
bar systems. The proposed algorithm is tested on the example of dome truss structures. The
mass of the structure acts as an optimization criterion. Restrictions on natural frequencies
are introduced.

The author of [26] considers the enhanced shuffled shepherd optimization algorithm
for optimizing spherical truss domes according to the criterion of minimum mass with
restrictions on stresses in the elements. The authors of papers [27,28] are also devoted to
topology optimization of such lightweight bar systems as domes.

Of particular interest are the results of lattice towers full-scale experimental studies,
which are given in papers [29,30].

For the lattice towers, in addition to calculating the strength, rigidity and stability of
the structure, it is necessary to check for the absence of resonant vortex excitation [31]. This
limitation was not considered in the above publications.

The purpose of this work is to develop a methodology for optimizing trihedral lattice
supports according to the criterion of minimum mass, taking into account the limitations on
the strength, rigidity and stability of the elements, as well as the absence of resonant vortex
excitation. Our solution will be based on the Russian design codes SR 20.13330.2016 “Loads
and impacts” and SR 16.13330.2017 “Steel structures”. The problem of lattice structures
optimization, taking into account the restriction on resonant vortex excitation occurrence,
is solved in this article for the first time.

2. Materials and Methods
2.1. Formulation of the Problem

A trihedral lattice tower used as a projector mast is considered. The material of the
tower elements is assumed to be linear and isotropic. The tower consists of two sections
(Figure 1). The width of the lower section varies from B0 to B1 depending on the z coordinate
according to a linear law. The height of the lower section is H1. The total height of the
tower H is constant. The number of panels in the lower section is n1. The width of the
upper section is constant and equal to B1. The number of panels in the upper section is n2.
The cross sections of the chords and the lattice are round pipes. The outer cross-section
diameter of the lower section chords is Dp. For the upper section, it is equal to Dp1. The
outer diameter of the braces of the lower section is Dr. For the upper section, it is equal
to Dr1. The outer diameter of the lower section horizontal elements is Dh. For the upper
section, it is equal Dh1. The lower nodes are fixed from linear displacements along x, y,
z axes.
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Figure 1. The geometric scheme of the tower.

The stiffness and stability of the tower elements is mainly affected by the cross sections
moments of inertia. In the case of round pipes, the axial moment of inertia takes on
a maximum value at the maximum outer diameter and minimum wall thickness. In
assortments of round pipes, the outer diameter does not change continuously, but discretely,
which makes it impossible to use gradient methods when solving the optimization problem.
To be able to use them, we will assume that the outer diameter of the pipe is a continuous
value. The minimum wall thickness t of round pipes depends on the outer diameter. The
graph of this dependence, drawn according to the Russian standard GOST 8732-78, is
shown in Figure 2. This graph is well approximated by the linear function, the equation of
which is also shown in Figure 2.
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Figure 2. Dependence of the minimum wall thickness of a round pipe on the outer diameter in
accordance with GOST 8732-78.



Designs 2023, 7, 10 4 of 16

The variable parameters are B0, B1, H1, Dp, Dp1, Dr, Dr1, Dh, Dh1, n1, n2. Tower height
H is constant.

The loads acting on the tower include the dead weight of the structure and technologi-
cal equipment placed on it, in addition to ice and wind.

Ice load is determined in accordance with Russian design codes SR 20.13330.2016.
The normative value of the linear ice load with an outer diameter D of sections up to

70 mm is determined by the formula:

i = πbkµ1(D + bkµ1)ρiceg (1)

For structural elements with an outer diameter of more than 70 mm, the normative
value of the surface ice load i′, Pa is determined by the formula:

i′ = bkµ2ρiceg. (2)

In Formulas (1) and (2), b is the normative value of the ice wall thickness (exceeded on
average once every 5 years), on elements of a circular section with a diameter of 10 mm,
located at a height of 10 m, taken according to Table 12.1 of SR 20.13330.2016;

k is the coefficient taking into account the change in the thickness of the ice along the height.
It is adopted according to Table 12.3 of SR 20.13330.2016;
µ1 is the coefficient that takes into account the change in the thickness of the ice depending
on the diameter of the elements of the circular cross-section. It is determined according to
Table 12.4 of SR 20.13330.2016;
µ2 is the coefficient that takes into account the ratio of the surface area of the element subject
to icing to the total surface area of the element. µ2 is taken equal to 0.6;
ρice is the ice density taken equal to 900 kg/m3;
g is the acceleration of gravity, m/s2.

For tower structures, the wind load is the main variable in the calculation of strength
and deformability and is determined as the sum of the average and pulsation components.
The components of the wind load were also determined according to SR 20.13330.2016.

The normative value of the wind load average component wm depending on the height
z above the ground is determined by the formula:

wm = w0k(z)c, (3)

where w0 is the normative value of wind pressure, determined according to Table 11.1. SR
20.13330.2016, k(z) is a coefficient that takes into account the change in wind pressure along
the height determined from Table 11.2 SR 20.13330.2016, c is the aerodynamic coefficient.

The standard value of the pulsation component wp is determined as follows:

(1) for structures in which the first natural frequency f1, Hz, is greater than the limit
value of natural frequency flim (according to Table 11.5 of SR 20.13330.2016):

wp = wmζ(z)ν, (4)

where ζ(z) is the wind pressure pulsation coefficient, taken according to Table 11.4 SR
20.13330.2016;
ν is the spatial correlation coefficient of wind pressure pulsations.

(2) for structures with f1 < flim < f2:

wp = wmξζ(z)ν, (5)
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where f2 is the second natural frequency, ξ is the dynamism coefficient, determined from
Figure 11.1 of SR 20.13330.2016 depending on the logarithmic oscillation decrement δ and
the parameter ε1, which is determined by the formula:

ε1 =

√w0k(z)γ f

940 f1
, (6)

where γf = 1.4 wind load safety factor.

(3) For structures, in which the second natural frequency is less than the limiting one,
the dynamic calculation is made taking into account the s first vibration modes. The
number s is determined from the condition fs < flim < fs+1.

The mass of the elements of the structure is reduced to nodes.
The inertial force applied to the node with the number j in the direction of the degree

of freedom p when the structure vibrates according to the i-th eigenmode is determined by
the formula:

Qijp = Mjξiηijp, (7)

where Mj is the mass at the j-th node, ξi is the dynamism coefficient determined from
Figure 11.1 SR 20.13330.2016 depending on the logarithmic oscillation decrement δ and the

parameter εi =
√w0k(z)γ f

940 fi
, ηijp is the reduced acceleration of the j-th node in the direction

of the p-th degree of freedom

ηijp =
yijp ∑r

k=1 ∑
q
l=1 Qm

klζ(z)yikl

∑r
k=1 ∑

q
l=1 y2

ikl Mk
, (8)

where yijp is the displacement of the j-th node during vibrations along the i-th eigenmode
in the direction of the p-th degree of freedom;

r is the total number of nodes;
q is the number of degrees of freedom in the node;
Qm

kl is the nodal load from the average component of the wind pressure in the node k in the
direction of the l-th degree of freedom.

The resulting forces and displacements Tres, taking into account the dynamic response
to s eigenmodes, are determined by the formula:

Tres = Tm +
√

T2
1 + T2

2 . . . + T2
s , (9)

where Tm is the force (displacement) from the average component of the wind pressure.
The objective function is the mass of the structure, which should reach a minimum.

The mass of the structure is calculated as the sum of the masses of the bar elements without
taking into account the connecting parts (gussets, etc.):

M = ρ
n

∑
i=1

Aili → min, (10)

where Ai and li are the cross-sectional area and length of the i-th element, respectively, and
ρ is the steel density.

The following restrictions must be satisfied:

1. Structural elements must satisfy the conditions of strength N
A ≤ Ryγc and stability

N
ϕ·A ≤ Ryγc, where N is the axial force in the element, A is the cross-sectional area of
the element, ϕ is the coefficient of buckling, γc is the coefficient of working conditions,
Ry is the design strength of steel.
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The buckling coefficient in accordance with SR 16.13330.2017 is calculated by the formula:

ϕ =

0.5
(
δ−

√
δ2 − 39.48λ2

)
λ

2 , (11)

where λ = λ
√

Ry/E is the reduced slenderness of the element, E is the modulus of elasticity
of steel, λ = l0/imin is the slenderness of the element, imin is the cross section minimum
radius of gyration, l0 is the design length of the element, δ = 9.87

(
1− 0.03 + 0.06λ

)
+ λ

2.
For simplification, the design length of all elements was taken equal to their actual

length l.
When assessing the strength and stability of the elements, the design combination of

loads is taken as the design value of N:

N = Ng +ψt1Nw +ψt2Nice, (12)

where Ng is the design axial force in the element from its dead weight and the weight of
the equipment, Nw is the design axial force from the effect of wind, Nice is the design axial
force from the ice load, ψt1 = 1 and ψt2 = 0.9 are the combination coefficients.

When specifying loads, the dead weight is taken with a safety factor of 1.05, wind load
is taken with a safety factor of 1.4, and ice load is taken with a safety factor of 1.8.

2. The slenderness of the elements should not exceed the limit values λ < λu. Ultimate
slenderness is determined in accordance with SR 16.13330.2017. For compressed
chord elements:

λu = 180− 60α, (13)

where α = N/
(
ϕARyγc

)
.

For compressed lattice elements:

λu = 210− 60α. (14)

The parameter α in Formulas (13) and (14) is assumed to be at least 0.5.
For tensioned elements of the chords, the ultimate slenderness is assumed to be

250, and for tensioned elements of the lattice it is equal to 350.

3. Resonant vortex excitation should not occur in the structure. In accordance with SR
20.13330.2016, resonant vortex excitation in the i-th eigenmode does not occur if

Vcr,i > Vmax
(
zeqv

)
, (15)

where Vmax
(
zeq
)

is the maximum wind speed at the level zeq, determined by the formula:

Vmax
(
zeq
)
= 1.5

√
w0k

(
zeq
)
. (16)

The coefficient k, as in Formula (3), takes into account the change in wind pressure
with height, and is determined from Table 11.2 SR 20.13330.2016. For tower structures
zeq = 0.8 H.

Critical wind speed, at which resonant vortex excitation occurs according to the i-th
eigenmode, is determined by the formula:

Vcr,i =
kν fid

St
, (17)

where fi is the natural frequency in the i-th bending eigenmode, d is the transverse dimen-
sion of the structure, and St = 0.11 is the Strouhal number of the tower cross section.
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The Russian standards recommend taking the value of the kν coefficient in the range
from 0.9 to 1.1. The most unfavorable variant takes place at kν = 0.9, so this value was
taken by the authors for calculation.

The transverse size of the structure was calculated as its average width according to
the formula:

d =
B0 + B1

2
· H1

H
+ B1 ·

H − H1

H
. (18)

4. Variable parameters xi must lie in the range (lb ≤ xi ≤ ub)
5. Parameters n1 and n2 must be integers.

2.2. Technique for Solving the Optimization Problem

The solution of the lattice tower optimization problem was implemented in the MAT-
LAB environment. The limitations presented in Section 2.1 require the calculation of the
internal forces and natural frequencies of the tower, which was implemented using the
finite element method (FEM).

To model a trihedral lattice tower, spatial bar finite elements (FE) (Figure 3) with
three degrees of freedom at the node (linear displacements u, v, w along the x, y, z axes)
were used.
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The local stiffness matrix of an element working only in tension or compression has
the form:

[Ke] =
EA

l

[
1 −1
−1 1

]
, (19)

where E is the modulus of elasticity of the material, A is the cross-sectional area of the
element, and l is the length of the FE.

The transition from the local coordinate system to the global one is carried out accord-
ing to the formulas:

[K] = [L]T [Ke][L]; {Ue} = [L]{U}, (20)

where {Ue} = {u1 u2}T and {U} = {u1 v1 w1 u2 v2 w2}T are the displacement vectors in
the local and global coordinate systems, respectively, [K] is the stiffness matrix in the global
coordinate system, and the matrix [L] has the form:

[L] =
[
λx′x λx′y λx′z 0 0 0

0 0 0 λx′x λx′y λx′z

]
, (21)

where λij are the direction cosines between the i and j axes.
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The direction cosines included in Formula (21) are defined as follows:

λx′x =
x2 − x1

l
; λx′y =

y2 − y1

l
; λx′z =

z2 − z1

l
, (22)

where x1, x2, y1, y2, z1, z2 are the coordinates of the bar ends.
Displacements are determined from the solution of the FEM system of equations,

which has the well-known form
[K]{U} = {F}, (23)

where {F} is the vector of nodal loads.
The forces in the bars are determined by the formula:

N =
EA

l
(u2 − u1), (24)

where u2 and u1 are the displacements of the bar ends along its axis.
Natural vibration frequencies fi are determined from the equation:

det
(
[K]−ω2[M]

)
= 0, (25)

where det ( . . . ) is the matrix determinant, [M] is the diagonal mass matrix,ωi = 2π fi.
All the necessary tables and graphs of the coefficients from SR 20.13330.2016 were

included in the program, and linear interpolation was performed for intermediate values.
The problem statement described in Section 2.1 contains nonlinear inequality con-

straints and integer constraints. Very few optimization methods allow taking into account
such limitations. The optimization problem was solved by the surrogate optimization
method and the genetic algorithm in MATLAB.

The essence of the surrogate optimization is to find a global minimum of an objective
function using few objective function evaluations. To do so, the algorithm replaces the ob-
jective function with its approximation (surrogate), which takes little time to evaluate [32].

The surrogate is created as an interpolation of the objective function by a radial basis
function in randomly generated points [33].

The genetic algorithm is a method for solving nonlinear optimization problems with
complex constraints. This method is based on a natural selection process. At each iteration,
a set of points is generated and repeatedly modified, mimicking biological evolution [34].

3. Results

A steel tower with a total height H = 23 m was considered. The material characteristics
were E = 206 GPa, Ry = 235 MPa, γc = 1. The normative value of wind pressure was
w0 = 0.38 kPa, and ice wall thickness was b = 10 mm. These parameters correspond to the
climatic conditions of Rostov-on-Don, Russia. Type A was chosen as the type of terrain from
SR 20.13330.2016 (open areas with buildings less than 10 m high). The limiting vibration
frequency for the considered wind region is flim = 3.8 Hz. The weight of the equipment at the
top of the tower was 5 kN. It was applied in the form of three identical concentrated forces
at the top nodes. In addition to the weight of the equipment, a load of 1 kN was applied to
one of the upper nodes, simulating the weight of a person. In the initial approximation, the
following values of the geometric parameters of the tower were taken: width B0 = 2.14 m,
B1 = 1.84 m, and height of the lower section H1 = 10.5 m. Chords were made of round pipes
with a section D× t 170× 2.8 mm, braces had a section 65 × 3 mm, and horizontal elements
had a section of 53 × 3 mm. These parameters correspond to one of the serially used tower
structures. The mass of the tower in the initial approximation was 2 tons.

As the calculation showed, this tower meets the requirements for strength, rigidity,
and stability, but does not satisfy the test for the absence of resonant vortex excitation for
the assumed climatic conditions.
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The upper (ub) and lower (lb) limits for the variable parameters are given in Table 1.
The upper bound for the parameter B0 is usually limited by the area of the site where the
structure is located, and the equipment located in the upper part of the tower limits the
lower bound for the parameter B1. The existing product range of the pipe manufacturers
usually limits the cross-sectional diameters.

Table 1. Upper and lower bounds for variable parameters.

Parameter B0, m B1, m H1, m n1 n2 Dp, Dp1, Dr, Dr1, Dh, Dh1, m

lb 1 0.84 1 4 4 0.025
ub 5 2 15 10 10 0.3

Figure 4 shows a graph of the optimization process progress when using the surrogate
optimization method. In this method, there is no explicit criterion for the completion of the
optimization process, and we stopped the calculation after 7500 iterations.
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The mass of the tower is 891 kg. The outer diameters of the chords’ cross-section were
83.5 mm and 43.2 mm. The diameters of the inclined elements of the lattice were 68.1 mm
and 34.3 mm. The diameters of the horizontal elements of the lattice were 52 mm and
26.7 mm. Corresponding wall thicknesses calculated by Formula (4) are 3.4 and 2.7 mm for
chords, 3.1 and 2.5 mm for braces, and 2.8 and 2.5 mm for the horizontal elements. The
obtained optimal values of the remaining variable parameters are given in Table 2.

Table 2. Optimal values of variable parameters when using the surrogate optimization method.

B0, m B1, m H1, m n1 n2

3.13 1.51 14.12 5 7

The sections of the elements were rounded to the nearest values according to the GOST
8732-78* assortment. The final sections are given in Table 3.

Table 3. The final sections of the chords and lattice of the tower.

Dp, mm Dr, mm Dh, mm Dp1, mm Dr1, mm Dh1, mm

89 68 54 45 38 28

tp, mm tr, mm th, mm tp1, mm tr1, mm th1, mm

3.5 3.5 3 2.5 2.5 2.5

Furthermore, the tower was exported to the LIRA-SAPR software package for test-
ing [35]. In this software package, the tower chords were modeled by finite elements with
six degrees of freedom per node (three translational and three rotational degrees), and
the lattice elements were modeled by finite elements with three translational degrees of
freedom per node.

The results of checking the assigned sections for strength, stability and slenderness
are shown in Figures 6 and 7. The maximum value of the ratio N

Nu
· 100%, where Nu is the

ultimate force, is 26.9%, and the maximum ratio λ
λu
· 100% is 99.7%.
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The first vibration frequency in LIRA-SAPR was 1.96 Hz, which differs from the
solution in the program developed by the authors by 0.5%. The critical wind speed at
which the resonant vortex excitation of this tower occurs according to the first eigenmode
is 32.2 m/s, which is higher than the value Vmax

(
zeq
)

= 32.04 m/s.
The progress of the optimization process when using the genetic algorithm is shown

in Figure 8. The optimization process was completed after 270 generations, and the total
number of the objective function evaluations was 25,755. The shape of the tower obtained
using the genetic algorithm is shown in Figure 9.
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The mass of the tower shown in Figure 9 was 834.5 kg. The diameters of the pipes of
the chords were 75.2 mm and 46.8 mm. The diameters of the inclined lattice elements were
65.9 mm and 50.8 mm. The horizontal elements of the lattice had diameters of 51.6 mm and
31.5 mm. Corresponding wall thicknesses calculated by Formula (4) were 3.2 and 2.7 mm
for chords, 3.1 and 2.8 mm for braces, and 2.8 and 2.5 mm for horizontal elements. The
obtained optimal values of the remaining variable parameters are given in Table 4.

Table 4. Optimal values of variable parameters when using a genetic algorithm.

B0, m B1, m H1, m n1 n2

3.11 1.86 10.82 4 5

The final cross-sections of the elements, adopted in accordance with the assortment of
GOST 8732-78*, are given in Table 5.

Table 5. The final cross-sections of the chords and lattice of the tower shown in Figure 9.

Dp, mm Dr, mm Dh, mm Dp1, mm Dr1, mm Dh1, mm

76 68 54 50 54 32

tp, mm tr, mm th, mm tp1, mm tr1, mm th1, mm

3 3 3 3 3 2.5

The resulting solution was also exported to the LIRA-SAPR software package. The re-
sults of checking the elements for strength and slenderness are shown in Figures 10 and 11.
The maximum value of the ratio N

Nu
· 100% was 59.9%. The slenderness of all elements
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with the exception of one element of the chord in the upper part of the tower was below the
limit. For one element, the excess of slenderness relative to the ultimate slenderness was
2%. This can be explained, firstly, by the rounding of diameters and wall thicknesses, and,
secondly, by the difference in finite element models in LIRA-SAPR and MATLAB. When
optimizing, the rotational degrees of freedom for the finite elements of the chords were not
taken into account.
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The first vibration frequency for the adopted design solution was 1.76 Hz when
calculating in LIRA-SAPR. The critical wind speed at which the resonant vortex excitation
of this tower occurs according to the first natural mode of vibration was Vcr = 31 m/s,
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which is 3.2% lower, than Vmax
(
zeq
)
. The downward deviation of the critical wind speed

can also be explained by the rounding of the cross sections dimensions and the difference
between the finite elements used in LIRA-SAPR and MATLAB.

4. Discussion

The results obtained show a rather high efficiency of the surrogate optimization
method and the genetic algorithm in the solution of the formulated problem. In both cases,
the mass of the structure was reduced by a factor of more than two. The genetic algorithm
in this problem turned out to be more efficient than the surrogate optimization method. In
addition to the smaller mass of the structure, the solution based on the genetic algorithm
contains a smaller number of nodes, which also helps to reduce the complexity of building
the tower and its cost [36]. Note that in [22], the surrogate optimization method and the
genetic algorithm were compared earlier, and the opposite result was obtained: the genetic
algorithm proved to be much worse than the surrogate optimization algorithm. However,
the formulation of the problem in [22] differed significantly: the mass of the structure
acted not as an objective function, but as a constraint, and there was only one non-linear
constraint. Furthermore, in [22] the high efficiency of the interior point method was noted.
The specified method does not allow for the setting of integer constraints. For the problem
considered in this article, an attempt was made to apply this method for fixed n1 and
n2. However, the use of the interior point method leads to convergence to an infeasible
point, which can be explained by a large number of nonlinear constraints. In addition,
the interior point method finds the local minimum of the function, but not the global one.
Figure 4 shows that the objective function contains many local minima, so the algorithm
has to periodically reset and re-generate the starting point of the search. The Lagrange
multiplier method is also inapplicable for this class of problems [37].

As a result of optimization, there is a noticeable increase in the width of the tower
B0 compared to the initial approximation (by almost 1 m), which can be explained by
an increase in the overall rigidity of the structure. At the same time, the optimum is
not achieved at the maximum possible width, which was assumed to be 5 m. Note that
in [22], when optimizing according to the criterion of minimum potential strain energy and
minimum displacement, the optimum was achieved at the maximum possible width, B0.
However, there was no restriction on the slenderness of the elements in that work.

The presented results also show that the main limiting factors in the search for the
optimal design solution for the considered tower are the slenderness of the elements and
the absence of resonant vortex excitation. For the solution obtained by the surrogate
optimization method, the degree of loading of the elements is noticeably lower than 50%,
and for the solution based on the genetic algorithm, it exceeds 50% only in individual
elements. This makes it possible to exclude the criterion of strength and stability of elements
from the restrictions when searching for the optimal geometry of the tower. Instead, when
determining the ultimate flexibility, one can put α = 0.6 for the compressed elements of
the chords and α = 0.5 for the remaining compressed elements. The limiting slenderness
for them will then be 144 and 180, respectively. Reducing the number of constraints can
significantly increase the speed of solving the optimization problem.

It is also possible to choose the ratio of the first natural frequency of the structure to
the mass f1/M as the objective function, as is done, for example, in [38], but at the same
time introduce a restriction on the slenderness of the elements. This will increase the first
frequency while keeping the weight of the structure as low as possible. An increase in
the first frequency will lead to an increase in the resistance of the structure to resonant
vortex excitation. Our further investigations will be aimed at solving the problem in this
formulation. In addition, our further research will be devoted to experiments on lattice
towers’ small-scale models.



Designs 2023, 7, 10 15 of 16

5. Conclusions

1. A technique has been developed for optimizing trihedral lattice towers according
to the criterion of minimum mass, taking into account the restriction on the occurrence of
resonant vortex excitation based on the surrogate optimization method and the genetic
algorithm. In comparison with the initial approximation, the mass of the structure was
reduced by more than a factor of two as a result of optimization.

2. A comparison of the surrogate optimization method and the genetic algorithm was made,
which showed a higher efficiency of the latter with a large number of nonlinear constraints.

3. It has been established that the main factors limiting the constructive solution of
the tower are the ultimate slenderness of the elements and the limitation on the resonant
vortex excitation occurrence. The degree of loading of the elements in the optimal solution
does not exceed 60%. Thus, as a simplification in the first approximation, it is possible to
remove the restrictions on the magnitude of the stress in the elements.
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