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Abstract: Industry 4.0 tools, such as the Internet of Things, artificial intelligence, digital twinning, and
cloud computing, create a technological revolution that accelerates efforts to optimize the efficiency
of cyber-physical operations and services. The waste management system requires a critical share of
city logistics optimization, especially when using cyber-physical systems. Modern tools reduce the
required municipal waste handling, such as loading and unloading, transportation, and warehousing,
which leads to an increase in efficiency and flexibility, saving energy and time, and protecting the
environment. In this paper, we present a cyber-physical waste management system solution by
providing a cyber-physical model design and description, mathematical modeling, and two cases to
investigate the impact on energy consumption and emissions. After an introduction and literature
review, we describe the design of the cyber-physical model and tackle the first echelon. The designed
system incorporates the IoT, smart bins with multi-percentage sensors, data and information analysis,
vehicles’ actual routes, energy and emissions optimization, multi-echelon systems, time windows,
and flexibility. Mathematical modeling equations for the optimized total energy consumption are
presented. Thirty and twenty smart bins located in VIII District in Budapest are detailed as two case
studies, where solutions for the optimized real routes and energy consumption are found using three
metaheuristic algorithms: genetic, particle swarm, and simulated annealing optimization algorithms.
The accrued emissions of CO, NMHC, CH4, NOx, and PM for the optimized solutions are calculated.
Finally, the results are compared with a random traditional solution to measure the effectiveness.

Keywords: cyber-physical system; heuristic optimization; waste management; city logistics

1. Introduction and Theoretical Background

Solid waste management is an increasingly complex task, requiring a huge number
of resources and having a major environmental impact [1]. Industry 4.0 presents many
applications to be researched and implemented in the waste management area [2] that may
increase efficiency and sustainability, while at the same time reducing expenses, pollution,
and energy spent. It is crucial to describe the main scientific results so far, identify the main
topics, and define the scientific gaps in this research area to augment the specific aim of
this research and its scientific contribution.

Among the papers in a survey on the strategic and tactical issues of solid waste man-
agement operations research [1], very few have addressed the use of stochastic parameters,
such as waste generation or travel times, while the majority of tactical models were ori-
ented towards minimizing costs, which makes sense because waste management usually
involves large financial sums. The mentioned study stated that other important issues
should be considered more carefully, such as environmental conservation. In addition to
the environmental aspect, congestion and CO2 emissions cause external transport costs [3]
that are not usually considered, because these costs are not typically borne by the user or
infrastructure operator. Although digitalization in manufacturing contributes positively to
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environmental sustainability by increasing resource and information efficiency, it is impor-
tant to realize that digitalization has negative environmental consequences [4] due to the
increased resource and energy use, as well as waste and emissions. Cyber-physical systems
(CPSs) showed good contributions to and possibilities for more sustainable development
implementation by applying Industry 4.0 tools to promote a circular economy [5] in addi-
tion to the potential improvement from an environmental point of view [6]. Additionally,
in a survey about using the Internet of Things (IoT) within the smart waste management
concept in 2017 [7], more advanced ways of sensing, analyzing, collecting, and processing
data were suggested to effectively handle solid waste with IoT applications. Regarding IoT
technology as a main application within real-time data monitoring, many developments
have been researched accordingly. Low-cost and low-power components were described [8]
for a sensor node that is supported by a single-chip microcontroller to measure the filling
level of trash bins using ultrasounds; a data transmission module where the effectiveness
was presented showed the achieved lifetime was about 502 days.

Many articles have tackled the development of waste management systems. The de-
veloped systems aimed to reduce total transportation costs, maximize recycled revenue, or
achieve both objectives together. A case study in South Korea [9] used various approaches
to find the optimal route for waste carrier vehicles. Another study [10] tackled the collected
waste value as an uncertain parameter to reflect the uncertain value that can be recovered
from each trash bin due to the uncertain condition and quality of waste. A waste separa-
tion center used as a connection point between the sub-models was also tackled [11] by
using four metaheuristic algorithms, simulated annealing (SA), genetic algorithm, genetic
algorithm–simulated annealing, and genetic algorithm–particle swarm optimization. Like
the previously mentioned study, optimization algorithms were used frequently, especially
metaheuristic algorithms, because they provided effective results for vehicle routing, which
can easily be a complex problem; for example, a case study in Argentina [12], where sim-
ulated annealing algorithms showed the best results in computational experimentation
compared to large neighborhood search and genetic algorithms. As a summary of the
operational management approaches to smart waste collection routing [13], the model that
incorporated the choice between the bins to be visited, their fill levels, and their location
led to higher values of profit and fewer pollutant gas emissions, whereas minimizing only
the distance might not be the most efficient solution. For instance, collecting waste from
non-full containers located near a full container can be more efficient. Therefore, it can be
useful to make the waste system flexible regarding the waste bins’ limit when considering
the waste containers to be collected.

In contrast, the waste management systems that tackled sustainable aspects, such as
energy efficiency and emissions, were less frequent. A study [14] showed that variable
routing optimization, which considered the real-time data of the waste bins, achieved a
17.60% carbon emission reduction when a 70% fill level was considered for collecting the
waste, compared to fixed routing optimization, where, in this case, the operators did not
know the fill level and weight of the waste bins in advance. In another study [15], the
results after four days of optimizing the route based on the bins’ waste level showed a
36.80% distance reduction for 91.40% of the total waste collection. Additionally, using
electric vehicles showed promising potential from the environmental aspect, but their
limited delivery capacity and limited battery power introduced big challenges, which
encouraged research into the optimization of battery recharging stations [16] with a hybrid
metaheuristic algorithm, which showed savings in the transportation costs. However,
recharging stations are still an obstacle due to implementation costs and practical usage. In
a case study in Istanbul [17], electric garbage trucks were considered for a waste collection
process optimization approach with real road information data consideration. However,
this real road information was used as indirect entry data, which means a non-flexible
implementation.

The literature review is summarized in the following points:
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• Waste management is considered a complex problem with direct and indirect impacts
on various aspects such as transportation, environment, economy, social life, urban
area planning, and waste treatment, which influence many stakeholders.

• Industry 4.0 tools, especially the IoT and cloud computing, provide big developments
in waste management. Different aspects of these tools are actively being researched.
However, due to its modernity and various adoption forms, more deep and focused
research is needed.

• Waste management optimization research focused mainly on vehicle routing to mini-
mize the total route distance, while energy efficiency and environment aspects were
less commonly tackled. This expresses a research gap to cover, especially with the var-
ious available Industry 4.0 tools. Additionally, most articles utilized direct Euclidean
lines to calculate the distances, which means that the results were unrealistic.

• Optimization algorithms provide efficient results in waste management systems. How-
ever, their results and execution times are still in the research phase, and specific
algorithms have not been determined as the most efficient ones for specific models.

• One of the promising solutions for raising sustainability in waste management is
electric vehicles. However, various operational operators, such as limited capac-
ity and distances alongside battery power, pose significant challenges in adopting
this solution.

This study is divided as follows: The cyber-physical waste management system is
designed and discussed with a focus on its first echelon, followed by the chosen algorithms
and this study’s scientific contribution, in Section 2. Section 3 describes the mathematical
modeling of the mentioned system with its considerations and constraints to calculate the
optimized total energy consumption. Section 4 examines two case studies of thirty and
twenty smart bins located in the VIII District in Budapest. The optimized total energy
consumption and accrued emissions of CO, NMHC, CH4, NOx, and PM are calculated
using three metaheuristic algorithms for the two cases. Section 5 deals with the results and
demonstrates a comparison with a random solution to outline the impact and effectiveness
of the system, as well as possible future research directions. Finally, a summary of this
work is outlined in the last chapter.

2. System Description and Methodology

A developed cyber-physical waste management system is presented in this chapter.
The actual waste amounts as real-time data, cloud computing, and waste collection time
are considered within this system. This waste management system is considered a cyber-
physical system, because it contains a physical component of sensors, tools, and hardware
that exists, in reality, to measure, collect, and transfer the waste, in addition to a cyber
component that stores and analyzes data. The cyber component is represented by cyber
management.

2.1. System Description

Using a multi-echelon system in city logistics creates an advantage by raising the
efficiency of distribution tasks [18]. As a two-echelon, cyber-physical waste collection
system, the collection and transfer station is the connection point between the two echelons.
The first echelon starts from the smart waste bins that provide real-time waste amounts
using the IoT to the collection and transfer station where the waste is stored, organized,
and/or separated. This station gives the system the required flexibility by identifying
its task and location depending on the situation being tackled. The smart bin’s sensor is
represented by the colors green, orange, and red depending on the waste percentage. Green
means the percentage is higher than 50%, orange means the percentage is higher than 70%,
and red means the percentage is higher than 90%. The second echelon starts from the
collection and transfer station to the treatment facility, where the waste is processed. The
treatment facility varies from landfilling to other types such as recycling, dismantling, or
incineration. The system components for waste collection, transportation, and treatment are
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directly connected to cyber management, where data are stored and computing processes
are executed. Figure 1 illustrates the described system.
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Figure 1. Cyber-physical waste management system scheme.

Many collection and transfer stations may exist in the system depending on the
urban area, since each station covers a relatively small area. In a small urban area, it is
possible to have one collection and transfer station. Each station’s location and tasks are
adjustable based on the specific case. For instance, waste trucks can park there, so the
station would be their start-off location. Figure 2 shows the information and waste flow in
the designed system.
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Figure 2. Information and waste flow.

The collection and transfer station’s tasks vary from waste storage to waste separation
and/or dismantling, which reflects higher flexibility and potential. For instance, it is
possible to ignore some of the stations depending on the smart waste bins’ percentages and
locations when it is more effective to do so or due to operational needs. This first echelon
is tackled in detail within this study with the implementation of collecting waste up to
the collection and transfer station. All bins with a waste percentage of less than 50% were
ignored. The waste collection process was also carried out in a specific time span. The
routes and time taken were calculated using Open Route Service, which was developed by
HeiGIT gGmbH [19]. It gives the required real distances and time in which vehicles move
between given locations.
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2.2. Used Algorithms

The use of heuristic and metaheuristic algorithms has accelerated the progress of
finding optimum solutions in various applications, particularly in logistics and supply
chains [20]. Three metaheuristic algorithms were used in this research. The selection of
such algorithms usually depends on the nature of the problem being solved. In general,
optimization problems are categorized as continuous or combinatorial. In our case, the
capacitated vehicle routing problem (CVRP) falls under the latter category; hence, and
according to the aforementioned literature review, both the genetic algorithm (GA) and
simulated annealing (SA) algorithm were chosen due to their effectiveness in solving
these types of problems. Additionally, the particle swarm optimization (PSO) algorithm
was selected even though its equations can only work with real numbers and continuous
domains because fortunately, it can be adapted to discrete versions [21]. Another criterion
that influenced our choice of the algorithms above is the metaheuristic classification of
single-solution vs. population-based algorithms. Both GA and PSO are classified as
population-based algorithms, whereas SA is a single-solution algorithm. This, in turn,
helps to introduce a slight variation for better comparative analysis.

2.3. Scientific Contribution

The scientific contribution of this research is summarized as follows:

1. Designing a flexible, two-echelon, cyber-physical waste management system that can
be adjusted depending on the given urban area.

2. Providing a detailed description of mathematical modeling based on the energy effi-
ciency and sustainability of the cyber-physical system. While part of the mathematical
modeling was adopted from previous research [22], another part was developed and
adopted within this research.

3. Presenting a modern method of using actual routes in city logistics locations instead
of the traditional direct lines between the examined locations. Additionally, two case
studies of thirty and twenty smart bins’ real locations in the VIII District in Budapest
are discussed and analyzed.

4. Calculating optimized energy consumption and accrued emissions based on actual
routes using three metaheuristic algorithms (GA, PSO, and SA) with a clear compari-
son and discussion of the cost optimization and execution time.

Additionally, this study’s interdisciplinary approach among city logistics, sustainabil-
ity, energy efficiency, transportation, and IT heighten its importance.

3. Mathematical Modeling

The vehicle routing problem (VRP) addresses the operation of serving a set of cus-
tomers in reduced travel distance routes by starting in and returning to the same loca-
tion [23]. The VRP is also known as the node routing problem (NRP), and it has been the
focus of much research attention in many applications, including but not limited to waste
collection. However, some researchers consider the waste collection problem to be an arc
routing problem (ARP). The main difference is that in the arc routing problem, the focus
is on the routes instead of nodes because the vehicle/vehicles carry out the service while
traversing the routes. In other words, in the waste collection problem, from an arc point
of view, the customers are located along the routes, not at the nodes [24]. However, this
was not the case in this study, since there is was specific set of smart bins with known
locations that should have been serviced/emptied; hence, the VRP model was chosen.
Moreover, in certain cases, the density of the points along a street is so large that the natural
way to approach the corresponding routing problem is to adopt the ARP instead of the
VRP [25]. Such cases did not apply in this study, where the locations of the bins were
sparsely scattered around the city.

The CVRP is an extension of the VRP with capacity constraints. The CVRP in solid
waste collection is defined as collecting waste from a set of bins by a homogeneous or
heterogeneous fleet of trucks with fixed capacities that cannot be violated; each of them
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starts from and returns to the same point [15]. The CVRP model in this study is explained
below, where n is the number of smart bins and m is the number of trucks, with the set
of homogeneous trucks defined as K = {1, 2, . . . , m}, each of which is initially stationed
at the collection and transfer station. The index set I = {1, 2, . . . , n} corresponds to the
smart bins, where i, j ∈ I, and i = 0 corresponds to the start point location. Each smart bin
contains a non-negative waste quantity qi, and a non-negative value Dij represents the real
distance from bin i to bin j, where i 6= j.

The CVRP model in this study considered both the capacity of the trucks and the
smart bins, where:

• C represents the maximum waste capacity that each of the trucks can transport along
their specified routes.

• Q represents the maximum waste capacity that can be carried by the truck’s mounted
crane during material handling operations.

• qmax refers to the maximum capacity that each smart bin can hold.

Additionally, the model also imposes a time limit, where:

• Tmax represents the maximum allocated time for the whole waste collection process.
• tk corresponds to the time taken by truck k to complete its assigned route and return

to the collection and transfer station.

The objective function is to minimize the total energy consumption (TE) of the used
trucks in kWh during the waste collection and transportation, which is calculated depend-
ing on the route length, required material handling operations (waste loading), and specific
fuel consumption rate [22]. The model includes two decision variables. First, Xijk is defined
as 1 if vehicle k moves from bin i to bin j; otherwise, it is 0. Second, Yik is defined as 1 if bin
i belongs to the route of vehicle k; otherwise, it is 0.

The total energy function is expressed as follows:

TE = ET + EMH . (1)

where ET is the energy consumption of the transportation process and EMH is the energy
consumption of material handling (waste loading) operations at the bins’ locations. The
energy consumption of the transportation process is

ET = ∑n
i=0 ∑n

j=1 ∑m
k=1 Dij Xijk cFT

i,k . (2)

where cFT
i,k is the specific fuel consumption of the transportation process that is calculated as

cFT
i,k = cFT

kmin + ((cFT
kmax − cFT

kmin)/cFT
kmax)qik/

((
qik/cFT

kmax

)
+ C− qik

)
. (3)

where cFT
kmin and cFT

kmax are the lower and upper bounds of the specific fuel consumption of
transportation depending on the loading waste weight, and qik represents truck k waste
load after moving from bin i.

The energy consumption of the waste loading operations performed by the truck’s
mounted crane is given by

EMH = ∑n
i=1 ∑m

k=1 cFMH
i,k . (4)

where cFMH
i,k is the specific fuel consumption of material handling operations that is calcu-

lated as

cFMH
i,k = cFMH

kmin + ((cFMH
kmax − cFMH

kmin )/cFMH
kmax )qi/

((
qi/cFMH

kmax

)
+ Q− qi

)
. (5)

where cFMH
kmin and cFMH

kmax are the lower and upper bounds of the specific fuel consumption of
material handling operations depending on the loading waste weight, and qi is the waste
quantity of bin i.
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The optimization model, which aims to minimize the total energy consumption, is
described in Equation (1) and is formulated as follows:

minimize (ET + EMH). (6)

Subject to the following constraints:

∑n
j=1 ∑m

k=1 X0jk = 1. (7)

∑n
j=1 q0jk = 0 ∀k ∈ K. (8)

∑n
i=0 ∑m

k=1 Xijk = 1 ∀j ∈ I. (9)

∑n
j=1 Xijk = ∑n

j=1 Xjik = Yik ∀i ∈ I; k ∈ K. (10)

∑n
i=0 ∑m

k=1 qjik −∑n
i=0 ∑m

k=1 qijk = cj ∀j ∈ I. (11)

∑n
i=1 ciXijk ≤ C ∀j ∈ I; k ∈ K. (12)

∑n
i=1 ∑m

k=1 Xi0k = 1. (13)

∑n
i=1 qi ≤ 0.9 ∑m

k=1 Ck. (14)

max(t1, t2, . . . tm) < Tmax. (15)

100 qi/qmax ≥ 50 ∀ i ∈ I. (16)

where qijk represents the waste load amount picked up by truck k when moving from bin i
to bin j. Equations (7) and (8) specify that truck k starts the tour from the start point carrying
no load. Equation (9) states that each bin is visited by only one vehicle. Equation (10)
ensures the continuity condition. Equation (11) ensures that the vehicle empties the visited
bins. Equation (12) shows that the total collected waste from all visited bins in a tour must
not exceed the vehicle capacity. After the tour, the truck returns to the depot according to
Equation (13). Equation (14) states that the total waste amount of the aimed smart bins is
less than the total capacity of the used trucks. Equation (15) ensures that the time taken
by all trucks does not exceed the total time span allocated for the waste collection process.
Equation (16) states that all the considered bins for waste collection have a waste amount
equal to or larger than 50%. The mathematical notations used are explained in Table 1.

Table 1. Mathematical notations used.

Mathematical
Notation Description

n The total number of smart bins.
m The total number of trucks.
K The set of indices representing all trucks.
I The set of indices representing all smart bins.

i, j ∈ I Two arbitrary indices, each of which denotes a smart bin.
k ∈ K An arbitrary index that denotes a truck.

qi A non-negative value that represents the waste quantity of bin i.

qik
A non-negative value that represents the truck k waste load after moving from
bin i.

qijk
A non-negative value that represents the waste load amount picked up by truck
k when moving from bin i to bin .

C The maximum waste capacity of the truck.
Q The maximum waste loading capacity of the truck.

Tmax The maximum allocated time span for the whole waste collection process.
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Table 1. Cont.

Mathematical
Notation Description

tk
The taken time by truck k to complete its assigned route and return to the
collection and transfer station.

qmax The maximum waste capacity for the smart bin.

Xijk
A decision variable is defined as 1 if vehicle k moves from bin i to bin j, and 0
otherwise.

Yik
A decision variable is defined as 1 if bin i belongs to the route of vehicle k, and 0
otherwise.

ET The energy consumption of all transportation processes.
EMH The energy consumption of all waste loading operations.
TE The total energy consumption of the system.

cFT
i,k

The specific fuel consumption of the transportation process for truck k after
moving from bin i.

cFMH
i,k The specific fuel consumption of material handling operations for truck k at bin i.

cFMH
kmin

The lower bound for the specific fuel consumption of material handling
operations.

cFMH
kmax

The upper bound for the specific fuel consumption of material handling
operations.

cFT
kmin The lower bound for the specific fuel consumption of the transportation process.

cFT
kmax The upper bound for the specific fuel consumption of the transportation process.

4. Case Studies in Budapest

Two case studies of thirty and twenty smart bins in the VIII District in Budapest were
considered to validate the mathematical model. The optimized energy consumption of the
total used vehicles was calculated based on actual routes in kWh. The optimized solutions
were calculated using three metaheuristic algorithms: GA, PSO, and SA. The solutions
are compared with a random solution to outline their effectiveness. We assume that the
used trucks complied with Euro VI European emission standards. We used the values in
Table 2 to calculate the accrued emissions of CO, NMHC, CH4, NOx, and PM for Euro
VI under the WHSC test for heavy-duty and transit testing [26] in g/kWh depending on
energy consumption.

Table 2. EU VI emission standards for heavy-duty and transit testing in g/kWh.

CO NMHC CH4 NOx PM

4 0.16 0.5 0.46 0.01

In this study, we considered the lower and upper bounds of the specific fuel con-
sumption of transportation and the lower and upper bounds of specific material handling,
similar to a previous study [22], for an average speed of 25 km/h. The values are shown in
Table 3. Each bin’s capacity was 100 kg. The maximum allocated time span Tmax = 3 h.

Table 3. Truck specifications.

cFT
kmin cFT

kmax cFMH
kmin cFMH

kmax Q

41 kWh/km 52 kWh/km 25 kWh 37 kWh 200 kg

In order to obtain the smart bins’ location data, two geographical locations were chosen.
These two locations served as geographical boundaries for the generation of location data
within the area of study in Budapest. The distance between those two locations, which
would be the diameter, was calculated using the Haversine formula. Additionally, the
central location along the segment between the two boundaries was also calculated; hence,
a circle/ellipse was formed. The locations were then randomly generated within the circle
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boundary. The random locations were generated from a uniform distribution. All the
locations were checked on the map to ensure that they represented convenient locations,
and some of them were manually adjusted. The waste values for each smart bin were also
randomly generated following a uniform distribution. Smart bins’ locations and waste
amounts are shown in Table 4.

Table 4. Bins’ locations and waste amounts.

ID Latitude Longitude Waste Amount

0 47.487448 19.105228 -
1 47.483984 19.085934 98 kg
2 47.492993 19.078542 75 kg
3 47.497693 19.072976 66 kg
4 47.48618 19.092511 70 kg
5 47.491468 19.087551 99 kg
6 47.493208 19.085197 79 kg
7 47.488254 19.080151 67 kg
8 47.49816 19.077611 97 kg
9 47.489349 19.087007 73 kg
10 47.485646 19.08784 66 kg
11 47.496471 19.072441 94 kg
12 47.49282 19.085386 78 kg
13 47.490987 19.085437 72 kg
14 47.482154 19.09956 75 kg
15 47.488997 19.084106 54 kg
16 47.483539 19.077086 65 kg
17 47.494968 19.071751 69 kg
18 47.486889 19.080102 89 kg
19 47.487093 19.088391 91 kg
20 47.496417 19.072926 90 kg
21 47.478491 19.091825 56 kg
22 47.479669 19.088727 83 kg
23 47.495945 19.08181 68 kg
24 47.487821 19.075307 96 kg
25 47.486882 19.071569 92 kg
26 47.485501 19.072039 93 kg
27 47.488094 19.084196 57 kg
28 47.489819 19.082287 64 kg
29 47.494475 19.071527 66 kg
30 47.48275 19.07939 90 kg

Regarding the parameters used for the implementation of the algorithms, in the case
of GA optimization, the number of iterations was 600, cross over probability pc was 1,
mutation probability pm was 0.08, population size was 300, elite size was 40, and the
selection methods were fitness proportionate selection, the reverse sequence mutation
method, and the ordered cross over method. In the case of PSO, the number of iterations
was 500, the number of particles was 400, c2 was 0.1, and c1 was 0.9. In the case of SA, the
number of iterations was 3000, the starting temperature was 140, the stopping temperature
was 10−12, and the temperature cooling rate α was 0.991. The machine used had an
i7-8750H 2.20 GHz processor, 16 GB of RAM, and a Windows 10 Home operating system.

5. Results and Discussion

According to the described smart bins and waste management system in the previous
chapter, two cases are discussed. The first case considered the mentioned thirty smart bins
in Table 4. The second case only considered the first twenty smart bins in the same table.
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5.1. First Case of Thirty Smart Bins in Budapest

The execution time, the total consumed energy, and the total distances for this case
are summarized in Table 5. The results were calculated using the three aforementioned
algorithms next to a random solution (RS) without optimization.

Table 5. Execution results of the case of thirty bins.

Ex. Time (s) Total Energy (kWh) Total Distance (km)

GA 17.5616664 1766.8860 24.19838
PSO 25.9850608 1765.9722 24.16504
SA 0.7237922 1958.02908 28.75177
RS - 3176.2595 58.3101

Figures 3–5 show the results of the total energy consumed by the three trucks for each
iteration.
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Figures 6–8 show the actual routes taken by the three trucks when using the three
algorithms next to a random solution without optimization. The black location represents
the collection and transfer location where the trucks start from and return to. Green, orange,
and red locations represent the smart bins, marking the waste percentage for each one. The
three trucks’ lines are represented by blue, red, and black colors.

The random solution in Figure 9 shows many overlaps in the routes, which reflects
the causes of its increase in results compared to the optimized results. Table 6 shows the
estimated accrued emissions. Additionally, Figure 10 shows the total energy and emissions
of the three optimized results and the random solution.

Among the three algorithms, GA demonstrated the best results. It achieved a 44.4%
reduction in total consumed energy and emissions and a 58.5% decrease in the total
distance compared to the random solution. PSO showed a similar reduction of 44.4% of
total consumed energy and emissions and a 58.7% decrease in the total distance compared
to the random solution. Although both GA and PSO achieved a similar reduction in
consumed energy and emissions, GA was computationally faster; it saved a third of the
total execution time. SA demonstrated a 38.4% reduction in total consumed energy and
emissions and a 50.7% decrease in the total distance compared to the random solution.
However, SA was much faster than both GA and PSO. In conclusion, GA achieved the best
results, while SA achieved less optimized results with the shortest execution time.
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5.2. Second Case of Twenty Smart Bins in Budapest

The execution time, the total consumed energy, and the total distances for this case are
summarized in Table 7. Table 8 shows the estimated accrued emissions.

Table 7. Execution results.

Ex. Time (s) Total Energy (kWh) Total Distance (Km)

GA 14.4321162 1188.3266 16.4887
PSO 6.459 1190.7251 16.5891
SA 0.2832 1311.2013 19.4575
RS - 1974.3287 35.5153

Table 8. Estimated accrued emissions in g of the case of twenty bins.

CO NMHC CH4 NOx PM Total

GA 4753.3 190.1 594.2 546.6 11.88 6096.1
PSO 4762.9 190.5 595.4 547.7 11.91 6108.4
SA 5244.8 209.8 655.6 603.2 13.11 6726.5
RS 7897.3 315.9 987.2 908.2 19.74 10,128
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Figure 11 shows the total energy and emissions results.
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Similar to the case of thirty bins, both GA and PSO achieved the best results in mini-
mizing the total energy and emissions, with 39.8% and 39.7% decreases in total consumed
energy and emissions compared to the random solution, respectively. Additionally, 53.6%
and 53.3% decreases in total distance were shown compared to the random solution. SA
showed a decrease of 33.59% in total consumed energy and emissions compared to the
random solution and a decrease of 45.2% in total distance compared to the random solution.
Moreover, SA was much faster in terms of execution time than both PSO and GA.

5.3. Discussion and Further Research

While the three algorithms showed great results in optimizing energy efficiency and
raising sustainability, there was evident variation in the execution time in favor of SA.
Therefore, SA is recommended to be used in situations where time efficiency is essential. Its
speed of execution can be attributed to its simplicity. GA and PSO showed more optimized
results than SA. The execution time was the longest in PSO in the first case, while it was
the longest in GA in the second case. This difference may be explained due to the case’s
data size. It is important to consider this, because it is possible to have a huge increase in
the execution time for PSO in cases with big data sizes.

The designed system encompassed the following aspects: the IoT, smart bins with
multi-percentage sensors, data and information analysis, vehicles’ actual routes, energy
and emissions optimization, multi-echelon system, time windows, and flexibility. The
system’s flexibility was demonstrated through the dynamic nature of the collection and
transfer station’s tasks based on the given situation. For instance, this station can be used
as a waste separation center. Therefore, this paper only dealt with the first echelon since the
second echelon’s application may vary from one case to another. The mathematical mod-
eling was detailed and developed to optimize the energy consumption. Using the actual
routes made the results more realistic and factual than the traditional direct lines. Three
metaheuristic algorithms were used to validate the mathematical modeling in two case
studies in Budapest for energy consumption and emissions optimization. A comparison
between the three results and a random solution next to the execution time was made.

Further research work is advised in four directions. First, the second echelon of the
system should be modeled and validated, where the allocation of the collection and transfer
station next to its tasks can be considered. Second, optimization is a continuous operation
that does not stop at a specific point; therefore, improvements in the mathematical modeling
and the used metaheuristic algorithms can be researched. Hybrid algorithms specifically
showed promising results in other cases [20]. Third, using case studies with a bigger
number of smart bins seems promising to gain more reliable results. For instance, there
was a big difference in the PSO execution time between the two cases in this study. Fourth,
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electric vehicles can be directly adopted in this system; however, further research in this
direction considering battery recharging stations is also promising.

6. Summary

Within this study, a cyber-physical waste management system was designed and
described with a focus on its first echelon. The mathematical modeling of the mentioned
system with its main considerations and constraints was developed and enhanced for the
optimization of the total energy consumption. The results of the total optimized energy
consumption were calculated for two case studies of thirty and twenty smart bins located
randomly in the VIII District in Budapest by using three metaheuristic algorithms, GA,
PSO, and SA, next to a random solution to compare the solutions and discuss their impact
and effectiveness. Accrued emissions of CO, NMHC, CH4, NOx, and PM were calculated.

The results showed a big advantage in optimizing the total consumed energy and
emissions with a reduction ranging between 33.59% and 44.4% compared to the random
solution depending on the algorithm and study case used. In short, SA is recommended to
be used when time efficiency is essential. GA and PSO showed more optimized results than
SA. The execution time was the longest in PSO in the first case, while it was the longest in
GA in the second case. This difference may be explained due to the case’s data size. It is
important to consider this, because it is possible to have a huge increase in the execution
time for PSO in cases with big data sizes.
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