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Abstract: Robots and especially mobile robots have experienced rapid growth, making them part of
everyday life. An inertial measurement unit (IMU), which is a set of sensors, plays an important role
in mobile robots’ navigation. Data collected by the IMU sensors on a robot are properly converted
and useful information is calculated concerning, i.e., position, orientation, and acceleration. With the
advancement of technology, IMUs have been transformed from large and complex devices into small,
flexible, and efficient ones. The main sensors included in an IMU are the gyroscope, the accelerometer,
and the magnetometer. Additionally, there are other sensors such as a barometer, a temperature sensor,
a pressure sensor, or even an attitude sensor. The components that an IMU consists of are many and the
main differences concern the technology they integrate, the designer purpose, and the specifications
set by the manufacturer. The purpose of this review is a comparative presentation of 42 IMU models
from 7 different manufacturers over the last five years comparing main features such as structure
details, connectivity, and communication protocols. Moreover, statistical results are quantitatively and
qualitatively presented providing a future user the possibility to select the proper IMU.

Keywords: mobile robots; commercial Inertial Measurement Unit (IMU); sensors

1. Introduction

Nowadays, the word robot is very familiar to people. A major category of robots
is mobile robots. Mobile robots can navigate using various sensors, software, properly
developed and intelligent algorithms. Robots navigation is a complex process and to
achieve it, many challenges must be overcome.

For the successful navigation of a robot, many open problems exist. These problems
concern localization, mapping, simultaneous localization and mapping, path planning,
obstacle avoidance. For localization, different sensors and methods have been developed
for more accurate positioning [1]. There are different techniques for calculating the robot
location, in a relative or absolute way. Techniques that calculate robot location in an absolute
way are based on widespread systems. One well-known example is the Global Position
System (GPS), which determines the current position with the assistance of satellites [2].
Techniques that relatively calculate robot location take into account previous states using
various sensors such as the Inertial Measurement Unit (IMU) [3].

An IMU is an electronic device based on a set of sensors that takes into account data
generated by them. Basic sensors are accelerometers, gyroscopes, or even magnetometers.
The data generated—depending on the type of IMU—concern acceleration, angular velocity,
as well as orientation in three directions respectively. Each sensor takes into account a
reference axis making it mandatory to have one sensor for each lateral, longitudinal, and
vertical axis for each accelerometer, gyroscope, and magnetometer, part of the device. Thus,
there is a total output of nine different parameters (9 DOF) [4].
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Historically, inertial measurement units have made evolutionary leaps after many
years of research. Based on the acquisition method of the data, their development is divided
into three stages. At first, there are the mechanical gyroscopes from 1940 to 1960, then the
strap down gyroscopes (placed along with the object) with a time frame from 1960 to 1980.
From 1980 until today there are the micro electro-mechanical gyroscopes. The transition
to micro electro-mechanical technologies was considered very important, as they moved
from large and expensive gyroscopes to devices smaller in size, less weight, and reduced
cost while increasing their reliability. Along with the gyroscopes, small accelerometers
and magnetometers have been also created and today they are manufactured very small,
reliable, and cost-effective IMUs known as Micro Electro Mechanical Systems (MEMS) [5].

This paper presents a comparative review on IMUs in the past five years and describes
the models, features, structure, connectivity, and their communication protocols. Moreover,
deploys comparative presentation on commercial IMU products and presents usage statis-
tics on commercial and research mobile robots. The novelty of this work is to provide easy
access to the list of 42 IMU products, with the above characteristics, for future commercial
or research projects with them.

The next section refers to the literature review and in particular presents the literature
selection protocol and the way the research was executed. The third one refers to the
description of the selected models. More specific presents the 7 different manufacturers
and two Tables (Tables 1 and 2) with features of 42 IMUs. The comparative presentation of
model’s features and the related analysis takes place at the fourth section. The fifth section
provides the mobile robots usage statistics. Finally, at last section, the conclusions of this
work are presented.

2. Literature Report

Literature report is a scientific method, widely used to review various topics of interest.
It is secondary research, as it takes into account other scientific researches related to the
same subject. After collecting the data, their evaluation follows and finally, we end up with
the analysis in a documented way [6].

2.1. Bibliography Selection Protocol

• Research Question
Q1: What are the IMU models used in the last 5 years?
Q2: What are the properties, main features, structure, response speed, connectivity
and protocols of IMUs over the last 5 years?
Q3: What are the comparative differences in their characteristics?
Q4: What are the most used IMUs?

• Research Database

To extract data necessary, the research was done in many databases from the Google
Scholar website which has 90% of the scientific publications written in English [7]. Harzing’s
Publish or Perish (HPP) (http://www.harzing.com (accessed on 13 November 2020))
program was used to group the data and export it in processable form.

• Rejection Criteria

The following criteria were set, with criterion S1 occurring during the execution of
the research.

K1: Publications must be written between the year 2016 and 2020 i.e., the last five
years.
K2: Citations per year must be more than 4.
K3: Citations must be over 20.

• Quality Criterion
K4: The publication should refer to mobile robots.

• Acceptance Criterion
K5: Publications should refer the company or IMU model used in their research.

http://www.harzing.com
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• Special Criterion
S1: After the K1 through K5 application the number of publications per publisher
should be at least 2.

2.2. Research Execution

Based on the above criteria and questions a query was designed in the HPP
database. A time period from 2016 to 2020 was chosen. The title should include the
word “Robot”. With this title, robots are secured as the core element of the experiment.
Then the keywords selected were: (IMU OR Inertial Measurement Unit) AND Mobile
Robot. With the OR we ensure that no matter how the word is abbreviated or para-
phrased it will appear. With AND we make it mandatory for the publication to be in
the realm of mobile robots.

The execution of the above conditions in HPP took place on 13 November 2020, with a
limit of 1000 results. At the end of the search, the data was integrated into a worksheet, and
filters were applied to group them. In total we had 995 publications so K2 was implemented
and 263 publications emerged. The average of references in the total data was 20.7, so K3
was applied and resulted in 65 publications. These were analyzed to apply the K5 criterion.
There has been a phenomenon of some publications using the IMU to cite it as material
but avoiding specifying the model. This resulted in 50 publications and 23 different IMU
manufacturers. Therefore, it was deemed appropriate to include the S1 criterion so that
the number of publications is at least 2. The final results of 36 publications are presented
in Figure 1. Lastly, after applying the above-mentioned criteria the research showed the
7 IMU manufacturers that were mentioned the most in the last five years. Then the models
of each manufacturer were researched from its website and any model that had at least
one reference to a publication from 2016 to 2020 were analyzed in Tables 1 and 2 with their
features. The final outcome was 42 models that have been used in recent years in mobile
robots by the 7 selected manufacturers.
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Table 1. Features of IMU’s models. (1/2) ([Gyr] = Gyroscope, [Acc] = Accelerometer, [Mag] = Magnetome-
ter, [Bar] = Barometer, [TS] = Temperature Sensor, [PS] = Pressure Sensor, [AS] = Attitude Sensor.]).
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Xsens

Mti-1 2.19–3.6 ≤2000 ±2000 ±16 - <100 Gyr, Acc,
Mti-10 4.5–3.4 ≤2000 ±450 ±20 ±8 400–550 Gyr, Acc, Mag
Mti-100 4.5–3.4 ≤2000 ±450 ±20 ±8 450–950 Gyr, Acc, Mag

Mti-600 4.5–24 400–2000 ±450 ±20 ±8 450–950 Gyr, Acc, Mag,
Bar

InvenSense

MPU-9150 2.4–3.5 8000 ±250, ±500,
±1000, ±2000

±2, ±4, ±8,
±16 ±12 0.24–0.35 Gyr, Acc, Mag

MPU-9250 2.4–3.5 8000 ±250, ±500,
±1000, ±2000

±2, ±4, ±8,
±16 ±48 1.8–2.62 Gyr, Acc, Mag

MPU-6050 2.4–3.5 1000 ±250, ±500,
±1000, ±2000

±2, ±4, ±8,
±16 - 9.5–13 Gyr, Acc

ICM-20948 1.71–1.95 9000 ±250, ±500,
±1000, ±2000

±2, ±4, ±8,
±16 ±49 2.5 Gyr, Acc, Mag

ICM-42605 1.7–3.6 8000
±125, ±250,
±500, ±1000,
±2000

±2, ±4, ±8,
±16 - 1.1–2.3 Gyr, Acc

ICM-20602 1.7–3.6 8000 ±250, ±500,
±1000, ±2000

±2, ±4, ±8,
±16 - 1.1–2.3 Gyr, Acc

ITG-3050 2.1–3.6 - ±250, ±500,
±1000, ±2000 - - 12.4–21.2 Gyr

ITG-3200 2.1–3.6 8000 ±2000 - - 13.65–23.4 Gyr

MPU-3050 2.1–3.6 3.9–8000 ±250, ±500,
±1000, ±2000 - - 13 Gyr

MPU-3300 2.37–3.46 3.9–8000 ±225, ±450 - - 13 Gyr

ICM-20608-G 1.71–3.45 4–8000 ±250, ±500,
±1000, ±2000

±2, ±4, ±8,
±16 - - Gyr, Acc

Microstrain

3DM-GX5-10 4–36 1–1000 ±75, ±150,
±300, ±900

±2, ±4, ±8,
±20, ± 40 - 300 Gyr, Acc, TS

3DM-CX5-10 3.2–5.2 1–1000 ±75, ±150,
±300 ±900

±2, ±4, ±8,
±20, ±40 - 300 Gyr, Acc, TS

3DM-CV5-10 3.2–5.2 1–1000 ±250, ±500,
±1000 ±2, ±4, ±8 - 360 Gyr, Acc, TS

Pixhawk

Pixhawk 4 4.75–5.2 - ±250, ±500,
±1000, ±2000

±2, ±4, ±8,
±16 ±16 (x,y), 25y 360 Gyr, Acc, Mag

Pixhawk 3 Pro 3.3 - ±250, ±500,
±1000, ±2000

±2, ±4, ±8,
±16

±4, ±8, ±12,
±16 825 Gyr, Acc, Mag,

Bar

Pixracer - - ±250, ±500,
±1000, ±2000

±2, ±4, ±8,
±16 ±8 - Gyr, Acc, Mag,

Bar

Pixhawk - - ±245, ±500,
±2000

±2, ±4, ±8,
±16

±2, ±4, ±8,
±12 - Gyr, Acc, Mag,

Bar

ADIS

ADIS16475 3–3.6 2000 ±125, ±450,
±2000 ±8 - 132–158 Gyr, Acc

ADIS16495 3–3.6 4500 ±125, ±500,
±2000 ±8 - 267–320 Gyr, Acc

ADIS16465 3–3.6 2000 ±125, ±500,
±2000 ±8 - 450–950 Gyr, Acc

ADIS16490 3–3.6 4250 ±100 ±8 - 267–320 Gyr, Acc

ADIS16488 3.15–3.45 819 ±450 ±18 ±2.5 240–262 Gyr, Acc, Mag,
Bar

ADIS16445 3.15–3.45 820 ±62, ±125,
±250 ±5 - 1.8–2.62 Gyr, Acc, Mag,

Bar

ADIS16448 3.15–3.45 819 ±250, ±500,
±1000 ±18 ±1.9 239–262 Gyr, Acc, Mag,

Bar

ADIS16480 3–3.6 2460 ±450 ±10 ±2.5 841 Gyr, Acc, Mag,
PS

ADIS16485 3–3.6 2460 ±450 ±5 - 650 Gyr, Acc

ADIS16362 4.75–5.25 819.2 ±75, ±150
±300 ±1.7 - 245 Gyr, Acc

ADIS16365 4.75–5.25 819.2 ±75, ±150
±300 ±18 - 120 Gyr, Acc
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Table 1. Cont.
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SparkFun

VR IMU
Breakout—

BNO080
1.65–3.6 - ±2000 ±8 - 45 Gyr, Acc, Mag

IMU
Breakout—
LSM9DS1

3.3 - ±245, ±500,
±2000

±2, ±4, ±8,
±16

±4, ±8, ±12,
±16 14.85 Gyr, Acc, Mag

SparkFun
MPU-6050 2.4–3.5 1000 ±250, ±500,

±1000, ±2000
±2, ±4, ±8,
±16 - 9.5–13 Gyr, Acc

ESP32 Thing
Motion Shield 3.3 80 ±245, ±500,

±2000
±2, ±4, ±8,
±16

±4, ±8, ±12,
±16 13.2 Gyr, Acc, Mag

SparkFun
LSM6DS3 1.71–3.6 1600

±125, ±245,
±500, ±1000,
±2000

±2, ±4, ±8,
±16

±2, ±4, ±8,
±12, ±16 2.1–4.5 Gyr, Acc

VectorNav

VN-100 3.2–3.5 (WOC)
12–34 (WC) 800 ±2000 ±16 ±2.5 185 (WOC),

200 (WC)
Gyr, Acc, Mag,

PS

VN-110 3.2–3.5 (WOC)
12–34 (WC) 800 ±490 ±15 ±2.5 <1000 (WOC),

<2000 (WC)
Gyr, Acc, Mag,

PS, AS

VN-200 3.2–5.5 (WOC)
3.3–17 (WC) 800 ±2000 ±16 - 445 (WOC),

500 (WC) Gyr, Acc, PS

VN-300 3.2–5.5 (WOC)
3.3–14 (WC) 400 ±2000 ±16 ±2.5 <1250 (WOC),

1250 (WC) Gyr, Acc, PS

Table 2. Features of IMU’s models (2/2).
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Xsens

Mti-1
±0.1% fs,

0.001◦/s/g,
0.007◦/s/

√
Hz

±0.5% fs,
-,

0.12 mg/
√

Hz
<1 12.1 × 12.1 ×

2.55
I2C, SPI,

UART, Xbus

MT Software
Suite

135

Mti-10
±0.03% fs,
0.006◦/s/g,

0.03◦/s/
√

Hz

±0.1% fs,
-,

0.06 mg/
√

Hz

11 (WOC)
52 (WC)

37 × 33 × 12
(WOC)

57 × 42 × 23.5
(WC)

RS232, RS485,
RS422, UART,

USB, Xbus
800

Mti-100
±0.01% fs,
0.003◦/s/g,

0.01◦/s/
√

Hz

±0.1% fs,
-,

0.06 mg/
√

Hz

11 (WOC)
52 (WC)

37 × 33 × 12
(WOC)

57 × 42 × 23.5
(WC)

RS232, RS485,
RS422, UART,

USB, Xbus
1470

Mti-600
±0.1% fs,

0.001◦/s/g,
0.007◦/s/

√
Hz

±0.1% fs,
-,

0.06 mg/
√

Hz

11 (WOC)
52 (WC)

37 × 33 × 12
(WOC)

57 × 42 × 23.5
(WC)

CAN, RS232,
UART, Xbus 450
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Table 2. Cont.
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InvenSense

MPU-9150
±0.2% fs,

0.0076◦/s/LSB,
0.005◦/s/

√
Hz

±0.5% fs,
0.061 mg/LSB,
0.4 mg/

√
Hz

- 4 × 4 × 1 I2C

SmartRobotics

17

MPU-9250
±0.1% fs,

0.0076◦/s/LSB,
0.01◦/s/

√
Hz

±0.5% fs,
0.061 mg/LSB,
0.3 mg/

√
Hz

- 3 × 3 × 1 I2C, SPI 11.5

MPU-6050
±0.2% fs,

0.0076◦/s/LSB,
0.005◦/s/

√
Hz

±0.5% fs,
0.061 mg/LSB,
0.4 mg/

√
Hz

- 4 × 4 × 0.9 I2C 5

ICM-20948
±0.1% fs,

0.0076◦/s/LSB,
0.015◦/s/

√
Hz

±0.5% fs,
0.061 mg/LSB,
0.23 mg/

√
Hz

- 3 × 3 × 1 I2C, SPI 13.5

ICM-42605
±0.1% fs,

0.061◦/s/LSB,
0.0038◦/s/

√
Hz

±0.1% fs,
0.488 mg/LSB,
0.07 mg/

√
Hz

- 2.5 × 3 × 0.91 I2C, SPI 6

ICM-20602
±0.1% fs,

0.0076◦/s/LSB,
0.004◦/s/

√
Hz

±0.3% fs,
0.061 mg/LSB,
0.1 mg/

√
Hz

- 3 × 3 × 0.75 I2C, SPI 5

ITG-3050
±0.2% fs, 0.0076

o/s/LSB,
0.001 o/s /

√
Hz

- - 4 × 4 × 0.9 I2C 2.5

ITG-3200
±0.1% fs, 6.95 ×

10−5◦/s/LSB,
0.003◦/s/

√
Hz

- - 4 × 4 × 0.9 I2C 10.5

MPU-3050
±0.2% fs,

0.0076◦/s/LSB,
0.01◦/s/

√
Hz

- - 4 × 4 × 0.9 I2C 7

MPU-3300
±0.2% fs,

0.0068◦/s/LSB,
0.005◦/s/

√
Hz

- - 4 × 4 × 0.9 I2C, SPI 35

ICM-20608-G
±0.1% fs,

0.0076◦/s/LSB,
0.008◦/s/

√
Hz

±0.5% fs,
0.061 mg/LSB,
0.25 mg/

√
Hz

- 3 × 3 × 0.75 I2C, SPI 6.5

Microstrain

3DM-GX5-10
±0.02% fs,

-,
0.005◦/s /

√
Hz

±0.02% fs,
-,

0.02 mg/
√

Hz
16.5 36 × 36.6 × 11 RS232, LXRS

Protocol

SensorConnect

710

3DM-CX5-10
±0.02% fs,

-,
0.005◦/s/

√
Hz

±0.02% fs,
-,

0.02 mg/
√

Hz
8 38 × 24 × 9.7 RS232, LXRS

Protocol 710

3DM-CV5-10
±0.06% fs,

-,
0.0075◦/s/

√
Hz

±0.04% fs,
-,

0.1 mg/
√

Hz
11 38 × 24 × 9.7 TTL serial,

LXRS Protocol 710

Pixhawk

Pixhawk 4
±0.1% fs,

0.0076◦/s/LSB,
0.006◦/s/

√
Hz

±0.5% fs,
0.61 mg/LSB,
0.15 mg/

√
Hz

15.8 44 × 84 × 12 PWM, SBUS,
I2C, SPI, CAN

Open Source
Autopilot

230

Pixhawk 3 Pro
±0.1% fs,

0.0076◦/s/LSB,
0.004◦/s /

√
Hz

±0.3% fs,
0.061 mg/LSB,
0.1 mg/

√
Hz

45 71 × 49 × 23
PWM, SBUS,

I2C, SPI,
SUMD, PPM

260

Pixracer
±0.1% fs,

0.0076◦/s/LSB,
0.008◦/s/

√
Hz

±0.5% fs,
0.061 mg/LSB,
0.25 mg/

√
Hz

10.5 36 × 36

UART, USB,
PWM, SBUS,

I2C, SPI, JTAG,
PPM, ST24

265

Pixhawk
±0.2% fs,

0.0076◦/s/LSB,
0.005◦/s/

√
Hz

±0.5% fs,
0.061 mg/LSB,
0.4 mg/

√
Hz

38 50 × 15.5 ×
81.5

UART, PWM,
SBUS, I2C, SPI,

PPM, USB,
ST24, SUMD

230
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Analog
Devises

ADIS16475

±0.2% fs,
0.00625◦/s/LSB,
0.003◦/s /

√
Hz

rms

±0.25% fs,
3.8 × 10−6

mg/LSB,
0.023 mg/

√
Hz rms

1.3 11 × 15 × 11 SPI

CoolVision
SDK

860

ADIS16495

±0.2% fs,
9.53 ×

10−8◦/s/LSB,
0.002◦/s/

√
Hz rms

±0.25% fs,
3.8 × 10−6

mg/LSB,
0.017 mg/

√
Hz rms

42 47 × 44 × 14 SPI 2500

ADIS16465
±0.2% fs,

0.00625◦/s/LSB,
0.002◦/s/

√
Hz rms

±0.25% fs,
3.8 × 10−6

mg/LSB,
0.023 mg/

√
Hz rms

- 22.4 × 22.4 × 9 SPI 630

ADIS16490

±0.3% fs,
7.63 ×

10−8◦/s/LSB,
0.002◦/s/

√
Hz rms

±0.1% fs,
7.63 × 10−6

mg/LSB,
0.016 mg/

√
Hz rms

42 47 × 44 × 14 SPI 3170

ADIS16488

±0.01% fs,
3.052 ×

10−7◦/s/LSB,
0.0059◦/s/

√
Hz

rms

±0.1% fs,
1.221 × 10−5

mg/LSB,
0.063 mg/

√
Hz rms

- 24.1 × 37.7 ×
10.8 SPI 1800

ADIS16445
±0.1% fs,

0.01◦/s/LSB,
0.011◦/s/

√
Hz rms

±0.2% fs,
0.25 mg/LSB,

0.105 mg/
√

Hz rms
- 24.1 × 37.7 ×

10.8 SPI 550

ADIS16448

±0.1% fs,
0.04◦/s/LSB,

0.0135◦/s/
√

Hz
rms

±0.2% fs,
0.833 mg/LSB,

0.23 mg/
√

Hz rms
- 24.1 × 37.7 ×

10.8 SPI 650

ADIS16480

±0.01% fs,
3.052 ×

10−7◦/s/LSB,
0.0066◦/s/

√
Hz

rms

±0.1% fs,
1.221x10−6

mg/LSB,
0.067 mg/

√
Hz rms

48 47 × 44 × 14 SPI 2960

ADIS16485

±0.01% fs,
3.052 ×

10−7◦/s/LSB,
0.0066◦/s/

√
Hz

rms

±0.1% fs,
3.815x10−5

mg/LSB,
0.055 mg/

√
Hz rms

48 47 × 44 × 14 SPI 1600

ADIS16362
±0.1% fs,

0.05◦/s/LSB,
0.044◦/s/

√
Hz rms

±0.1% fs,
0.333 mg/LSB,

0.23 mg/
√

Hz rms
16 23 × 23 × 23 SPI 460

ADIS16365
±0.1% fs,

0.05◦/s/LSB,
0.044◦/s/

√
Hz rms

±0.1% fs,
0.333 mg/LSB,

0.5 mg/
√

Hz rms
16 23 × 23 × 23 SPI 605

SparkFun

VR IMU
Breakout—

BNO080

±0.05% fs,
0.0625◦/s/LSB,

-

±0.5% fs,
1 mg/LSB,

0.19 mg/
√

Hz
- 26 × 31.2 UART, I2C,

SPI, SHTP

Arduino IDE

30

IMU
Breakout—
LSM9DS1

-,
0.00875 o/s/LSB,

-

-,
0.061 mg/LSB,

-
- 23 × 23 UART, I2C,

SPI, SHTP 14

SparkFun
MPU-6050

±0.2% fs,
0.0076◦/s/LSB,
0.005◦/s/

√
Hz

±0.5% fs,
0.061 mg/LSB,
0.4 mg/

√
Hz

- 25.5 × 15.2 ×
2.48 I2C 25

ESP32 Thing
Motion Shield

-,
0.00875◦/s/LSB,

-

-,
0.061 mg/LSB,

-
- - SPI, I2C,

microSD 20

SparkFun
LSM6DS3

-,
-,

0.007◦/s/
√

Hz

-,
0.061 mg/LSB,
0.09 mg/

√
Hz

- 2.5 × 3 × 0.83 SPI, I2C 10
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VectorNav

VN-100
-,
-,

0.0035◦/s/
√

Hz

-,
-,

0.14 mg/
√

Hz rms

3.5 (WOC)
15 (WC)

24 × 22 × 3
(WOC)

36 × 33 ×
9(WC)

TTL serial, SPI
(WOC),

RS-232 (WC)

VectorNav
Control Center

700

VN-110
-,
-,

0.0138◦/s/
√

Hz

-,
-,

0.04 mg/
√

Hz rms

12 (WOC)
125 (WC)

31 × 31 ×
11(WOC)
56 × 56 ×

23(WC)

Serial TTL
(WOC),

RS-422 (WC)
-

VN-200
-,
-,

0.0035◦/s/
√

Hz

-,
-,

0.14 mg/
√

Hz rms

4 (WOC)
16 (WC)

24 × 22 ×
3(WOC)

36 × 33 ×
9.5(WC)

TTL serial, SPI
(WOC),

RS-232 (WC)
2300

VN-300
-,
-,

0.0035◦/s/
√

Hz

-,
-,

<0.14 mg/
√

Hz rms

4 (WOC)
16 (WC)

24 × 22 ×
3(WOC)

45 × 44 ×
11(WC)

TTL serial, SPI
(WOC),

RS-232 (WC)
-

3. IMU Models Description

The result shows 7 different IMU manufacturers and 42 IMU models. This section
has two parts. The first one is the description of the IMU manufacturers and the second
is the two Tables with the entire models, features, structure, cost, connectivity, and their
communication protocols grouped by manufacturer.

3.1. Manufacturers

The first company on the list was Xsens (https://www.xsens.com/ (accessed on
13 November 2020)) with 9 papers and 4 different models [8–16]. The company was
founded in 2000 in The Netherlands and specializes in the creation of motion tracking
sensors. For this technology, it has created its own IMU sensors. The next company
was Invensense (https://invensense.tdk.com/ (accessed on 13 November 2020)) with
7 reports and 11 models respectively [17–23]. The company based in California was
founded in 2003 and specializes in integrated circuits with integrated sensors. Microstrain
(https://www.microstrain.com/ (accessed on 13 November 2020)) is the next manufacturer
with 7 papers and 6 models [24–30]. The company was founded in the USA in 1987 and
produces sensors for industry and research.

Furthermore, the Pixhawk (PX4) was the next manufacturer. It is an open-source
system used primarily for flying robots as all its functions are geared towards them. The
company doesn’t manufacture IMUs but assembles components. PX4 had 4 publications
and one model per publication 4 in total [31–34]. Fifth in order was VectorNav (https:
//www.vectornav.com/ (accessed on 13 November 2020)) with 4 publications and 4 models
also [35–38]. The company was founded in 2008 in the USA and deals mainly with IMU
systems for aerial robots. Next was Sparkfun (https://www.sparkfun.com/ (accessed
on 13 November 2020)), a retail company founded in 2003 and based in the USA. It also
manufactures, among other things, IMUs by integrating individual components from third
parties and presented under the company name and has 3 references for 4 models [39–
41]. The last company on the list was Analog Devices (ADIS) (https://www.analog.
com/ (accessed on 13 November 2020)) with 2 publications [42,43]. Founded in 1965 and
specializes in designing and manufacturing precision electronic equipment including IMUs.
The models analyzed were 11 in total.

https://www.xsens.com/
https://invensense.tdk.com/
https://www.microstrain.com/
https://www.vectornav.com/
https://www.vectornav.com/
https://www.sparkfun.com/
https://www.analog.com/
https://www.analog.com/
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3.2. IMU Features Tables

This section contains IMUs with features (Tables 1 and 2) extracted from the official
website of manufacturers described in Section 3.1. Table 1 includes the input voltage,
output data rate, gyroscope—accelerometer—magnetometer range, power consumption,
and structure. Table 2 includes three basic features (nonlinearity, sensitivity and noise
density) of the two main sensors of each IMU (gyroscope and accelerometer). It includes
also the weight, dimensions, connectivity protocols, supporting software, and cost of IMUs.
The cost feature in Table 2 was calculated in € with fixed exchange rates (1€ = 0.84 £ = 1.12$).
Also, response speed and operational temperature range were extracted but the importance
of these features was low. At first, only 6 of the 42 models (14%) had response speed
data. The Mti-series had the faster response speed (2 ms) and the SparkFun LSM9DS1 and
BNO080 had the slower one (6.6 ms). The operating temperature had only two values,
30 models had operating temperature from −40 ◦C to +85 ◦C, which indicates that they are
categorized as an industrial range. The ADIS (Analog Devises) models (11 in total) had
from −40 ◦C to 105 ◦C. Furthermore, ADIS, because of the aforementioned difference at
the maximum range (20 ◦C), has categorized their products as AEC-Q100 Level 2, which
corresponds to a higher grade than the industrial range.

4. Features Comparative Presentation and Analysis

First feature examined was the input voltage. In case where there was a range of
values, the average value was calculated to easily compare the results and in models with
two case options (case and without case) the input voltage without a case was chosen. The
Mti-10 and Mti-100 models had the highest input voltage, 21.5 Volts. The lower voltage,
2.6 Volts belongs to the ICM-20608-G and SparkFun VR IMU Breakout. The 77.5% of
models had a voltage less than or equal to 5 Volts (Figure 2).
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Figure 2. The input Voltage statistics divided in two classes.

Most of the models had output data rate below 8000 Hz (26 models, 72.2%). The ESP32 Thing
Motion Shield model of SparkFun had the lower value at 80 Hz. Among the others, 9 models
(25%), had exactly 8000 Hz. Finally, the ICM-20948 was the only one with 9000 Hz (Figure 3).
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Figure 3. Data Output rate.

To compare the power consumption in mW, in some cases, values have been converted
properly. Also, in cases with a range of values, the maximum value was selected. It is
found that the highest consumption was 2000 mW of the Vn-110 model and the lowest one
was 0.35 mW of MPU-9150.

The measurement range of sensors (gyroscope, accelerometer, and magnetometer) is
properly selected according to the measurements required. Some models had more than
one range of values. Unnecessary measurements create problems in data transmission.
The gyroscope measures angular velocity in ◦/s (±). The lowest value was 15.625◦/s
(±) at the ICM-42605 model. The highest value was 2000◦/s (±). The 62% of the IMUs
examined had this value at their highest range. Also, 38% have at least 4 range options
(Figure 4). The accelerometer measures acceleration in g (±) where g is the acceleration of
gravity. The lowest value was 1.7 g at the ADIS16362 model, and the highest was 40 g at
the 3DM-GX5-10 and 3DM-CX5-10 models. 50% of all models had the highest range value
16g and the lowest 2 g (Figure 5). Finally, the magnetometer’s measurement unit is G (±)
that is Gauss. Some of the data needed to be converted from µT to G. The lowest value
was 1.9 G and belonged to the ADIS16448 model while the highest values were 49 G and
corresponded to the ICM-20948 model. Also, 75% had up to 3 different ranges (Figure 6).
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Figure 4. The different ranges of Gyroscopes.
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Figure 5. The different ranges of Accelerometers.
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In Table 2 data from manufacturers’ datasheets for nonlinearity, sensitivity, and noise
density of the two main sensors of each IMU (gyroscope and accelerometer) are provided.
Features as accuracy and resolution are not systematically provided in the manufacturers’
datasheets. However, the accuracy is inversely proportional to the sensitivity and takes
into account the measurement errors due to the noise. Sensors calibration is required to
remove inaccuracies stemming from manufacturing imperfections. Sensors’ resolution
can be calculated from noise density for a specific bandwidth. The nonlinearity concerns
the systematic deviation from the straight line that defines the nominal input-output
relationship. It is typically expressed as a percentage of scale factor (% fs), where fs
stand for full scale. The minimum value of ±0.01% fs was found for Mti-100, ADIS16480,
ADIS16485, and ADIS16488 IMUs, while the maximum one was ±0.3% fs for ADIS16490
IMU. Sensitivity expresses the ratio of change in input to change in the output signal.
Sensitivity units are typically expressed in ◦/s/g and ◦/s/LSB for gyroscopes and in mV/g
for analog-output accelerometers, LSB/g, or mg/LSB for digital-output accelerometers.
The minimum sensitivity values for gyroscopes, 0.001◦/s/g, and 7.63 × 10−8◦/s/LSB were
found in Mti-1 and ADIS16490 IMUs respectively. The maximum sensitivity value has
the Breakout—BNO080 IMU (0.0625◦/s/LSB). For accelerometers, the range of sensitivity
values was between 1.221 × 10−6 mg/LSB (ADIS16480 IMU), and 1 mg/LSB (Breakout—
BNO080 IMU). The more common measure of noise is noise density (power spectral density)
which provides the noise divided by the square root of the sampling rate. Noise density
units are in ◦/s/

√
Hz or ◦/s/

√
Hz rms for gyroscopes, and in mg/

√
Hz or mg/

√
Hz rms

for accelerometers. The range of noise density values for gyroscopes presented in Table 2
is from 0.002◦/s/

√
Hz rms (ADIS16490, ADIS16495, and ADIS16465) to 0.044◦/s/

√
Hz
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rms (ADIS16362, and ADIS16365). Minimum noise density values for accelerometers were
0.02 mg/

√
Hz (3DM-GX5-10, 3DM-CX5-10), and 0.016 mg/

√
Hz rms, for ADIS16490 IMUs.

The maximum noise density is presented in ADIS16365 IMU (0.5 mg/
√

Hz rms).
There are several communication protocols and connectivity methods referred to

models specifications. In summary, different models may have some of the following
protocol-connection methods: I2C, SPI, UART, Xbus, RS232, RS485, RS422, USB, CAN,
I3CSM, LXRS, TTL Serial, PWM, SBUS, Spectrum, SUMD, PPM, ST24, SHTP, microSD.
The main protocols were I2C and SPI with 83.33% of the models having at least one of
them. The Pixhawk and Pixracer models have 9 different protocol-connection methods.
The reason that they were listed together is because most of the times a communication
protocol is the same as the connection method.

The next characteristic is structure and refers to different combinations of sensors in
each IMU. The basic sensors are gyroscopes, magnetometers, and accelerometers. There
are also IMUs with other sensors such as barometers, temperature, and altitude pressure
sensors. The range of different number of IMU sensors varies from one to five. Figure 7
shows, how many IMUs belong to these five categories. All IMUs had a gyroscope. Even
more, 90% of them had an accelerometer. 40% of them also had magnetometers. All IMUs
that had a magnetometer had also an accelerometer and a gyroscope. The 38% had at
least one barometer, pressure, temperature, or attitude sensor. More specifically, 43% were
barometers, 31.3% were pressure sensors, 18.8% were temperature sensors and only one
sensor was attitude sensor. (6.25%).
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5. Usage Statistics

The following method was designed to derive usage statistics. Initially, the 7 most
dominant companies were searched on the HPP platform, through the Google Scholar
website, the times that they appear in total, with the following criteria: The search space
of time remains from 2016 to 2020 and keywords are the “company name” AND “mobile
Robot”. In the company Analog Devices (ADIS), due to the common name, all the ADIS
models of Table 1 were searched by their name. The overall results in descending order
of use are presented in Figure 8, which displays the number of different IMU model
applications from the 7 companies analyzed in the previous chapters. Xsens and Invensense
are pioneers. They covered 47.19% of total applications.
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Then there was ADIS, Pixhawk, and Microstrain with 55, 54, and 52 distinct applica-
tions respectively which corresponds to a total of 45%. Finally, there were Vector Nav and
SparkFun with much smaller percentages, 5.62%, and 1.97% respectively. Also, Figure 9
shows the same data broken down by year to highlight the trend of each company and
the usage trends of IMU companies per year. Bearing in mind in 2020 that, on one hand,
the date on which the report was written was not nearly at the end of the year, and on
the other hand, that in 2020 there is a health crisis with the COVID pandemic and all
areas such as global research has been affected [44]. This can be seen also from Figure 9
that all companies from 2019 to 2020 showed a decline. In case, taking into account the
year 2019, the companies Xsens, Invensense, Pixhawk, and ADIS had an upward trend,
while Microstrain, VectorNav, and Sparkfun had a downward. The largest increase is
presented by the company Xsens, which managed to surpass Invensense, which also had
an increasing trend but at a slower pace.
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6. Conclusions

The present review of different commercial IMUs, through a systematic way of re-
search, refers to 42 IMU models. The number was obtained through a predefined method,
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described in previous sections, searching applications of the 7 manufacturers, which in turn
emerged through research from 36 publications dealing with the construction of mobile
robots in the last five years. Their selection through 995 publications was made through the
criteria presented. Then, a detailed presentation in the form of a table of the main features,
and data of each model was made. After that, the features were presented comparatively
and analyzed. Also, usage statistics were presented through Figures 8 and 9. In some cases,
the companies didn’t have available information for some features. One such feature was
the response time. Also, in some cases the measurement unit was different and as a result,
the direct comparison of the features between models was not obvious, and conversion
was needed. Conversely, the features were easily available to anyone interested.

During the feature comparison, the necessity of writing the present review was re-
vealed, as there are several differences among the models. Most of the differences were
significant and affected the outcome of making a mobile robot. Large or small range values
do not mean better or worse sensors respectively. Thus, with the aggregate presentation of
the data, the appropriate choice becomes easier. The choice must be made based on the
data to be measured. There were also companies with an integrated IMU such as Pixhawk
and companies that provided only the main sensor at the integrated circuit level. In terms
of usage statistics, the years and companies surveyed showed a trend, with a clear upward
and downward trend of the companies. An exception is the year 2020, which, as mentioned,
due to the COVID-19 pandemic, had a universal downward trend.

The selection criteria of the publications and the models are also mentioned in detail
so that in the future the interested researcher can configure them and be led to additional
companies with more models for further analysis. Even the features presented are specific,
forming a small part of the whole of them and in the future, other major features could be
examined and as a result, different comparatives tables could be created.

Finally, the future design of a prototype feature framework is proposed depending on
the use of IMU in order to be more efficient in comparing the different models.
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