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Abstract: This paper proposes a deep deterministic policy gradient (DDPG) based nonlinear integral
backstepping (NIB) in combination with model free control (MFC) for pitch angle control of variable
speed wind turbine. In particular, the controller has been presented as a digital twin (DT) concept,
which is an increasingly growing method in a variety of applications. In DDPG-NIB-MFC, the pitch
angle is considered as the control input that depends on the optimal rotor speed, which is usually
derived from effective wind speed. The system stability according to the Lyapunov theory can be
achieved by the recursive nature of the backstepping theory and the integral action has been used
to compensate for the steady-state error. Moreover, due to the nonlinear characteristics of wind
turbines, the MFC aims to handle the un-modeled system dynamics and disturbances. The DDPG
algorithm with actor-critic structure has been added in the proposed control structure to efficiently and
adaptively tune the controller parameters embedded in the NIB controller. Under this effort, a digital
twin of a presented controller is defined as a real-time and probabilistic model which is implemented
on the digital signal processor (DSP) computing device. To ensure the performance of the proposed
approach and output behavior of the system, software-in-loop (SIL) and hardware-in-loop (HIL)
testing procedures have been considered. From the simulation and implementation outcomes, it can
be concluded that the proposed backstepping controller based DDPG is more effective, robust,
and adaptive than the backstepping and proportional-integral (PI) controllers optimized by particle
swarm optimization (PSO) in the presence of uncertainties and disturbances.

Keywords: pitch angle control; DDPG algorithm; backstepping controller; digital twin (DT); DSP;
software-in-loop; hardware-in-Loop

1. Introduction and Preliminaries

Nowadays, renewable energy sources have been playing a significant role in the achievement
of reliable, efficient and affordable energy and they have good business development prospects.
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In a comparison to these energy sources, wind energy is one of the fastest growing, economically
cost-effective and most promising energy sources, and its development has progressed tremendously
worldwide. Generally, the kinetic energy conversion of the wind into the electrical energy is done
by wind turbine (WT). The operating region of every WT is mainly classified into two key areas:
below and above-rated wind speed. The control objective at below-rated wind speed is to capture
the maximum available power from the wind flow, using variable speed operation of WT. The pitch
angle control is used to maintain the rated power at above-rated wind speed, while minimizing the
load stress on the drive-train shaft at the same time [1]. Although the majority of WTs are fixed speed,
numerous variable speed WTs are being increased because of this fact that they maximize the energy
capture by functioning turbine at the maximum power coefficient.

A wide range of classical and modern control methods have been suggested to design pitch angle
controllers at above-rated wind speed [2–4]. As highly sophisticated technologies, modern controllers
can also increase the efficiency and performance of WTs, while keeping maintenance costs low [5,6].
In the last decades, the backstepping control strategy has been amply investigated and developed to
access the stability goal of the whole system and state estimation obstacles. This control technique
suggests good performance in both steady-state and transient operations, even in the presence of
uncertainties, parameter variations, and load torque disturbances. The backstepping control laws are
easily constructed and associated with Lyapunov functions [7,8]. Nonlinear integral backstepping
(NIB), due to its recursive nature is the completely efficient controller, showed a great deal in stabilizing
the nonlinear fixed-model WT systems with the presence of perturbations, and besides the integral
action has been used to compensate the steady-state error [9]. On the other hand, 1111nonlinear
characteristics of WTs lead to tough and almost impossible efforts to extract an exact model of a system.
Furthermore, plant dynamics can be intensively changed with output disturbances, therefore we have
no way to go through model-free controllers (MFCs). M. Fliess and C. Join in [10] have proposed
an accurate definition of the MFC technique and its application in nonlinear systems to compensate
modeling error.

Another key issue in NIBs is tuning its parameters to achieve the best outputs from the controller
actions. Numerous studies have been done to find suitable optimization algorithms that are applicable
to wind power generation systems [11,12]. Among other types of optimization and tuning methods,
reinforcement learning (RL) has been increasingly developing [13]. There are lots of different
online model-free value-function-based RL algorithms that use the deducted future reward criterion.
Q learning [14], state–action–reward–state–action (SARSA) [15,16], and Actor-Critic (AC) methods [17]
are well known, and there are also two more recent algorithms: QV learning [18] and AC learning
automaton (ACLA) [18]. Furthermore, many policy search and policy gradient algorithms have been
proposed [19,20], and there exist model-based [21] and batch RL algorithms [22]. Recently, the deep
deterministic policy gradients (DDPG) algorithm has been widely using in a plethora of applications
because of its strong learning ability and stability [23]. In this algorithm, there are two major neural
networks (NNs): an actor NN (ANN) and a critic network (CNN). ANN is used to approximate
the policy function and CNN is used to approximate the value function and besides, it works on
approximation with deep neural networks for both the action-value function and the policy [24].

One of the newest concepts of information technology is known by digital twin (DT), which is
increasingly applied in wind energy conversion systems. The term digital twin “means an integrated
multi-physics, multi-scale, probabilistic simulation of a complex product, which functions to mirror
the life of its corresponding twin” [25]. The combination of physical and virtual data has many
advantages. On one hand, the physical product can be made more intelligent to actively adjust its
real-time behavior according to the recommendations made by the virtual product. On the other hand,
the virtual product can be made more factual to accurately reflect the real-world state of the physical
product [26]. Nevertheless, we gathered evidence during our research that digital twin in a wind
turbine is still in the early stages of development. A new concept of a digital twin has been considered
in this paper. Firstly, two separate tests, software-in-loop (SIL) and hardware-in-loop (HIL), have been
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considered to show the abilities of the controller in real-time applications. Secondly, with a unique
combination of these tests, it has been shown a new concept of digital twin, which is clearly efficient
and effective.

In this paper, a new DDPG-based NIB-MPC controller has been proposed, to achieve the
aforementioned key points for the promotion of pitch angle control of a variable speed wind turbine
in above-rated wind speed. The parameters of the proposed controller have been tuned adaptively
by the DDPG algorithm with the actor-critic structure. In this controller, there is no need for a
system dynamics model and the system uncertainties have been estimated by ultra-local model and
compensated via feedback signal. In NIB-MPC structure, NIB gains have been chosen as control
parameters and then they have tuned adaptively by the DDPG algorithm. To highlight the capabilities
of the proposed approach and achievement of similarity between output behavior of the system in
software-in-loop (SIL) and hardware-in-loop (HIL) testing, a digital twin (DT) of proposed controller
has been presented. This DT is implemented with presenting a novel strategy, on a TI digital signal
processor (DSP) computing device.

This paper is organized as follows. Section 2 presents the nonlinear model of the variable speed
wind turbine. Then, Section 3 introduces the proposed controller with detail. Section 4 focuses on the
digital twin concept for implementing of the proposed controller and its SIL and HIL testing. The results
of simulation in the Matlab/Simulink platform and also the implementation of the controller on TI DSP
hardware has been presented in Section 5. Finally, Section 6 summarizes the main contributions and
describes some additional avenues for continuing research.

2. Variable Speed Wind Turbine Nonlinear Model

As well known, wind energy is electricity produced by using mechanical components and electrical
generators. A two-mass model is commonly used in the literature [27] to describe the variable speed
wind turbine nonlinear dynamics. The use of a two-mass model is motivated due to this fact that
the control laws derived from this model are more general and can be applied for wind turbines of
different sizes. Particularly, these controllers are more adapted for high-flexibility wind turbines that
cannot be properly modelled with a one mass model. In fact, it is also shown in [28] that the two-mass
model can report flexible modes in the drive train model that cannot be highlighted with the one mass
model. Full structure of a typical horizontal-axis wind turbine has been shown in Figure 1.
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Lift and exerting a turbine force are generating. In nacelle, the rotating blades turn a shaft that
goes into a gearbox. Wind power extract from the wind by the rotor which is limited by the Betz limit
(maximum 59%). Therefore, the mechanical power is expressed in Equation (1) [3,27].

Pa =
1
2
·ρ·Cp(λ .β)·A·V(t)3 (1)

In this case, ρ is the air density (kg/m3), CP is the power coefficient, A is the swept area of the
turbine (m2) and V is the wind speed (m/s). Cp denotes the power coefficient of wind turbines, which is
a nonlinear function of pitch angle β and tip-speed ratio λ. λ is calculated by the blade tip speed and
wind speed upstream of the rotor as [29]:

λ =
Rωr

V
(2)

With ωr being the rotor angular speed. Furthermore, the power coefficient can be obtained by:

Cp(λ .β) = 0.5176
(

116
λi
− 0.4β− 5

)
e−21/λi + 0.0068λ (3)

The parameter λi can be calculated as follow:

1
λi

=
1

λ+ 0.08β
−

0.035
β3 + 1

(4)

Nonlinear wind turbine model is shown in a generalized nonlinear form as follows:

.
X = G(X) + Bu =



Pr(x1.x4.V)
x1 Jr

−
x1Ds

Jr
+ x2Ds

Ng Jr
−

x3Ks
Jr

x1Ds
Ng Jg
−

x2Ds
N2

g Jg
+ x3Ks

Ng Jg
−

Tg
Jg

x1 −
x2
Ng

−
1
τβ

x4


+


0
0
0
1
τβ

u (5)

In Equation (5) model nonlinear vector is G(X), X is state vector (Equation (6)), u is control input
(Equation (6)). The system output (Y) is as Equation (7).

X =
[
ωr ωg δ β

]T
. u = βr (6)

Y = ωr (7)

With δ is twist angle, ωg is generator speed and ωr is rotor speed. In Equation (5), τβ is time
constants of pitch actuator and βr is the pitch angle control. Tg is generator torque, Jr and Jg are
the rotor and generator inertia, Ng is gear ratio, Ds and Ks are drive-train damping and spring
constant, respectively.

3. Design of Proposed Controller

3.1. Nonlinear Integral Backstepping Model-Free Control (NIB-MFC)

In this section, the method of nonlinear backstepping model-free control (NIB-MFC) and system
stability will be proposed. The wind turbine dynamics can be illustrated by the following nonlinear
system [30]:

x(n) = f (x) + bu (8)

where u and f (x) are the system input and model system dynamics respectively. Equation (8) can be
written as:

x(n) = f (x) + fe(·) + βu (9)
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where β is the estimate of the unknown gain of parameter b and fe(·) is the un-modeled and uncertainties
dynamics of WT, therefore fe(·) can be formulated as:

fe(·) = Model Uncertainties + (b− β)u (10)

To reduce the error of certain state variables, the ultra-local model can be used for the known and
modeled nonlinear dynamics of WT.

x(n) = f (x) + F + βu
F = x(n) − f (x) − βu

(11)

u =
F− x(n)d − uc

β
(12)

x(n) = f (x) + x(n)d + uc (13)

The state variable of the wind turbine can be formulated as follows:

x1 = ωr (14)

x2 =
.
x1 (15)

But in practice, the actual and desired values of state variable (x1) is not the same so the error
between them is represented by:

e1 = x1 − xd
1 = x1 − xd (16)

The position tracking and velocity tracking error can be convergence to a certain variable by using
the theory of NIB-MFC. The block diagram of this control loop has been illustrated in Figure 2 [30,31].
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The Lyapunov function is chosen to guarantee the convergence stability of the nonlinear WT
system for this purpose. The Lyapunov function V(e1) will be defined to be positive definite around
the state variable and can be written as:

V1(e1) =
1
2

e2
1 (17)

The derivative of this function is shown as follows:

.
V1(e1) = e1

.
e1 = e1

(
x2 −

.
xd

)
(18)
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Since, x2 is not our control input, there will be a dynamic error between it and its desired value,
xd

2. Therefore, the velocity tracking error can be offered to compensate for the dynamics error:

e2 = x2 − xd
2 (19)

The error will go to zero if the Lyapunov function is chosen semi-negative. The implicit input x2

can be written as:
xd

2 =
.
xd − k1e1 (20)

e2 = x2 −
.
xd + k1e1 (21)

The modeling error and uncertainties lead to steady-state error. This error can be eliminated by
using the integral term to the system as shown in below:

x2 =
.
xd − k1e1 − k3

∫
e1 (22)

e2 = x2 −
.
xd + k1e1 + k3

∫
e1 (23)

As a result, the derivative of velocity and position tracking can be described as:

.
e1 =

.
x1 −

.
xd = e2 + x∗ −

.
xd = e2 − k1e1 − k3

∫
e1 (24)

.
e2 =

.
x2 −

..
xd + k1

.
e1 − k3e1 =

.
x2 −

..
xd + k1e2 − k2

1e1 − k1k3

∫
e1 − k3e1 (25)

The Lyapunov function V1(e1.
∫

e1) and V2(e1.e2.
∫

e1) will be defined for the position and velocity
tracking error and formulated as [31]:

V1

(
e1.

∫
e1

)
=

1
2

e2
1 +

k3

2
(

∫
e1)

2
(26)

.
V1

(
e1.

∫
e1

)
= e1

.
e1 + k3e1

∫
e1 = e1e2 − k1e1

2 (27)

V2

(
e1.e2.

∫
e1

)
=

1
2

e2
1 +

1
2

e2
2 +

k3

2
(

∫
e1)

2
(28)

.
V2

(
e1.e2.

∫
e1

)
= e1

.
e1 + e2

.
e2 + k3e1

∫
e1

= e1e2 − k1e1
2 + e2(

.
x2 −

..
xd + k1e2 − k2

1e1 − k1k3
∫

e1 − k3e1)
(29)

To guarantee the convergence of the e2 to zero the
.

V2(e1.e2.
∫

e1) should be semi-negative definite.
This can be satisfied by choosing the Equation (30).

e1e2 + e2

(
.
x2 −

..
xd + k1e2 − k2

1e1 − k1k3

∫
e1 − k3e1

)
= −k2e2

2 (30)

Consequently,
.
x2 can be written as:

.
x2 = f (x) +

..
xd + uc =

..
xd +

(
k2

1 + k3 − 1
)
e1 − (k1 + k2)e2 + k1k3

∫
e1 (31)

uc =

[(
k2

1 + k3 − 1
)

e1 − (k1 + k2)e2 + k1k3

∫
e1

]
− f (x) (32)
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3.2. Reinforcement Learning

Reinforcement learning (RL), due to its generality, is studied in many areas such as control
theory, operations research, simulation-based optimization, multi-agent systems, statistics, and genetic
algorithms [32]. The problems of interest in RL have also been studied in the theory of optimal control,
which is concerned mostly with the existence and characterization of optimal solutions, particularly in
the absence of a mathematical model of the environment. Therefore, in wind turbine plant, where the
system is nonlinear and has huge complexities, RL is a powerful and practical tool to estimate controller
parameters which control wind turbine blade pitch angle and consequently rotor speed under the
various level of wind speed variations.

RL is employed by various software and machines to find the best possible behavior or path it
should take in a specific situation. But to implement RL operationally which are mainly continuous
control problems, there are many problems including the divergence of learning, continuous nature of
inputs and outputs and temporal correlation of data.

Recently, deep Q-network (DQN) has introduced a new set of features to solve most of the problems
mentioned. However, a number of these challenges such as continuous states which are especially
related to practical applications, cannot be resolved by this algorithm. In this regard, deep deterministic
policy gradients (DDPG) had been proposed by Lillicrap et al. [33] based on the significant progress in
DQN and the new approach named actor-critic paradigm expressed in [34] as a method which tackles
continuous control issues.

3.3. The Learning Process

Firstly, the following concepts which are related to RL are explained below:

• Markov decision process (MDP): It is the form in which the RL environment is typically stated,
and it is because many RL algorithms for this context utilize dynamic programming techniques.

• Agent: The agent receives rewards by performing correctly and penalties for performing incorrectly.
The agent learns without intervention from a human, by maximizing its reward and minimizing
its penalty.

• Environment: The environment is the physical world in which the agent operates. The agent’s
current state and action are considered as its input, and the agent’s reward and its next state are
its output.

• State: State s is the current situation of the agent in the environment, and S is the set of all possible
states of the agent.

• Policy: Policy π is the method by which the agent’s state is mapped to an appropriate action
leading to the highest reward.

• Action: A is the set of all possible moves a, that the agent can make.
• Reward: This value is the feedback from the environment as an evaluation criterion that determines

the success or failure of an agent’s actions in a given state.
• Value function: The value function Vπ is defined as the long term expected to return with a

discount. The discount factor (γ ε (0, 1]) dampens the rewards’ effect on the agent’s choice of
action to make future rewards worth less than immediate rewards. Roughly speaking, the value
function estimates “how good” it is to be in a given state.

• Q-value: Q-value or action value is used to measure how effective taking an action at a state is.

From the practical point of view, the interaction between an active decision-making agent and its
environment happens in all RL applications. On the other words, the agent tries to achieve a goal,
through maximizing reward, despite uncertainty about its environment.
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The standard reinforcement learning theory expresses that an agent obtains a policy, which maps
every state s ε S to an action a ε A. It maximizes the expectation of a long-term discounted reward
as below:

J = Eri.si∼E.ai∼ π[R1] (33)

where Rt =
∑
∞

k=0 γ
krt+k is the total long term discounted reward at each step.

A value function Vπ which is formulated in Equation (34), depicts the total discounted reward Rt

for each s ε S.
Vπ(s) = Eπ[Rt|st = s] (34)

The value function, Vπ can be recursively described as Equation (35) according to the
Bellman Equation:

Vπ(s) = Eπ[rt + γVπ(st+1)
∣∣∣st = s] (35)

An equivalent of the value function is represented by the action-value functionQ π in Equation (36),
given as [35]:

Q
π(s. a) = Eπ[rt + γQπ(st+1.at+1)

∣∣∣st = s.at = a] (36)

The policy shall be chosen in such a way that it maximizes the action-value function. On the other
hand, π∗ = argmax

a
Q
∗(s.a).

The DDPG algorithm having a great ability to solve continuous problems consists of two neural
networks (NNs) µ(st

∣∣∣θµ) and Q(st.at
∣∣∣θQ) named actor NN (ANN) and critic network (CNN), where θQ

and θµ are the weights of the CNN and ANN, respectively. According to the stochastic gradient
descent, the CNN is updated by minimizing the loss function below [36,37]:

L

(
θQ

)
= E(s.a)

[(
yt −Q

(
st. at

∣∣∣θQ))2
]

(37)

where
yt = rt(st. at) + γQ

(
st+1.µ(st

∣∣∣θµ) ∣∣∣θQ) (38)

Based on the policy of Equation (39), the coefficients of ANN are updated.

∇θµ Jθ
µ
≈ Est∼ρβ

[
∇θµQ

(
s.a

∣∣∣θQ)∣∣∣∣a=µ(s|θµ)∇θµµ(s|θµ)]
= Est∼ρβ

[
∇aQ(s.a

∣∣∣∣θQ)∣∣∣∣a=µθ(s)∇θµµ(s|θµ)] (39)

In the above equation, β is a specific policy to the current policy π and ρ is the
discounted distribution.

Due to correlations existing in the input experiences, a replay bufferD is used to weaken that in the
DDGP algorithm. To enable a robust learning DDPG agent, two separate NNs µ′(s

∣∣∣θµ′) and Q′(s.a
∣∣∣θQ′)

named target NNs (TNNs) are utilized in addition to the main ANN and CNN. The additional NNS
are same in shape to the main NNs but have distinct coefficient weights θ′ [38–40].

4. Digital Twin Controller of WT System

4.1. The Concept of Digital Twin

Nowadays, modeling and simulation is a standard process in system development. The digital
twin (DT) concept refers to the accurate reproduction of a physical wind turbine in a computational
system to facilitate understanding and study its behavior [41,42]. This digital twin can empower wind
asset owners and turbine manufacturers operating wind turbines to predict and plan for faults and
optimize the performance of their assets. The technology involves creating a digital copy or “twin” of
physical assets, processes, systems, and devices to allow real-time remote monitoring that can save the
wind industry significant downtime and maintenance costs while increasing production. Real-time
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data from sensors is fed into the digital twin and compared to simulated theoretical parameters under
the same working conditions. Then similarities and discrepancies are analyzed to diagnose the health
of the asset.

In this paper, to achieve the mentioned purposes, it has been illustrated how a digital twin of the
pitch angle controller implements on a TMS320F28379D Dual-Core Delfino™Microcontroller device in
Texas Instrument (TI). The hardware-in-loop (HIL) idea develops a controller algorithm to diagnose
the health of its behavior on the wind turbine. However, the software-in-the-loop (SIL) idea permits
the test of the algorithms but neglects the test of the controller hardware. In this paper, it provides
some strategies for HIL and SIL model with DT concept that it is outlined in the list below:

• Define the system and simulation of closed-loop control in software;
• Implementation of the proposed controller on a TI microcontroller board;
• Upgrade the controller coefficients and achieving the desired output using the DDPG-NIB method

in HIL mode with real-time data;
• Optimization of control coefficients of SIL controller reusing NIB-DDPG method (criteria: similarity

of SIL and HIL outputs).

It would appear logical to conclude that these strategies refer to the outputs and performances
of the two systems are similar. It is possible to estimate the behavior of the system in HIL mode by
changing its parameters in SIL mode. At the first step, the NIB-MFC of the HIL setup is regulated to
reduce the rotor speed deviations in the WT system. Following this, the NIB-MFC of SIL is designed
in such a way that it minimizes the difference between the outcome of the WT in the HIL and SIL
environments. Thus, the design of the DT controller for the WT plant is carried out in two distinct
steps which are illustrated in Figure 3.
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Figure 3. A proposed strategy for the combination of hardware-in-loop (HIL) and software-in-loop
(SIL) testing.

4.2. The Proposed DDPG Tuned Backstepping Control Method

The parameter estimation accuracy of the backstepping controller highly affects the quality
of its output actions. Therefore, the proposed DDPG algorithm is used to design the coefficients
embedded in the NBI controller structure to offers a new as an adaptive tuner mechanism (instead of
tuning manually). In the backstepping controller, the NIB block has a nonlinear attitude, especially in
temporary variable variations which leads to controller performance deterioration. Thus, the best
solution to tackle this issue is to adaptively calculate the NIB gains (k1, k2 and k3) based on the DDPG
algorithm. The structure of the proposed DDPG backstepping method leading to have a constant
output rotor angular velocity is represented in Figure 4. In this structure, the DDPG algorithm provides
tuner signals to adjust the NIB-MFC gains adaptively.
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Figure 4. Illustration of an actor–critic network.

The critic network in the proposed structure is responsible for the effectiveness evaluation of the
actor policy, and according to the critic network data, the ANN adjusts the NIB gains to reach the
controller objective. The ANN senses the state variables and then generates three continuous control
signals for tuning of the NIB gains (k1, k2 and k3). After that, the CNN receives the state variables and
turning signals, and then reward signal rt is calculated. Following that, the critic network weights are
trained to lead to an updated DDPG network with adaptive tuning action signals to feed the controller.

The terms of rotor speed, rotor speed error, and rotor speed error integral as are chosen here in
both the HIL and SIL to form a three-dimensional vector of state space, represented as:

st =

{
ωr, e,

∫
edt

}
(40)

where st is the state of the MDP in the HIL and SIL environments.
In this application, the structure of the NNs of the DDPG algorithm for the design of the HIL and

SIL controllers is the same with two hidden layers of 200 and 100 units. The architecture of the ANN
and CNN for online tuning of the HIL and SIL controllers are illustrated in Figure 5, where the rectified
linear unit (ReLU) is chosen as the activation function. As depicted in Figure 5, the inputs of the ANN
are the system states while the ANN output and system states are inserted into the CNN.

Designs 2020, 4, x FOR PEER REVIEW 10 of 19 

 

The critic network in the proposed structure is responsible for the effectiveness evaluation of the 
actor policy, and according to the critic network data, the ANN adjusts the NIB gains to reach the 
controller objective. The ANN senses the state variables and then generates three continuous control 
signals for tuning of the NIB gains (݇ଵ, ݇ଶ and ݇ଷ). After that, the CNN receives the state variables 
and turning signals, and then reward signal ݎ௧  is calculated. Following that, the critic network 
weights are trained to lead to an updated DDPG network with adaptive tuning action signals to feed 
the controller. 

The terms of rotor speed, rotor speed error, and rotor speed error integral as are chosen here in 
both the HIL and SIL to form a three-dimensional vector of state space, represented as: ݏ௧ = ൜߱௥, ݁, න  ൠ (40)ݐ݀݁

where ݐݏ is the state of the MDP in the HIL and SIL environments. 
In this application, the structure of the NNs of the DDPG algorithm for the design of the HIL 

and SIL controllers is the same with two hidden layers of 200 and 100 units. The architecture of the 
ANN and CNN for online tuning of the HIL and SIL controllers are illustrated in Figure 5, where the 
rectified linear unit (ReLU) is chosen as the activation function. As depicted in Figure 5, the inputs of 
the ANN are the system states while the ANN output and system states are inserted into the CNN. 

 
Figure 5. Structure of the actor neural network (ANN) and critic neural network (CNN). 

To determine the optimal control coefficients based on the DT concept, the reward function of 
the DDPG algorithm for the design of HIL and SIL controllers is defined as Equations (41) and (42), 
respectively. ܮܫܪ ݊݅ ݀ݎܽݓ݁ݎ =  ଶ (41)(ݎ݋ݎݎ݁ ݀݁݁݌ݏ ݎ݋ݐ݋ݎ)1

ܮܫܵ ݊݅ ݀ݎܽݓ݁ݎ =  (42) |ܮܫܵ ݀݊ܽ ܮܫܪ ݂݋ ݀݁݁݌ݏ ݎ݋ݐ݋ݎ ℎ݁ݐ ݊݁݁ݓݐܾ݁ ݁ܿ݊݁ݎ݂݂݁݅݀|1

4.3. Implementing the Adaptive NIB Controller Based DDPG 

The training procedure of the DDPG mechanism for online tuning of the NBI controller 
coefficients in the HIL and SIL environments are the same which is described in the following 
manner. 

The ANN and CNN (ఓߠ|௧ݏ)ߤ   and ࣫(ݏ௧, ܽ௧|ߠொ) , with coefficient weights ߠఓ  and ߠொ , 
respectively, are initialized randomly. The TNNs ࣫ߠᇲ and ߠఓᇲ are updated with weights of ࣫ߠᇲ ఓᇲߠ ொ andߠ ←  ఓ, respectively. A replay buffer with the capacity ࣞ is constructed. The initial stateߠ ←
is ݏଵ stored. The action ܽ௧ = ሾ݇ଵ, ݇ଶ, ݇ଷ] =  nosie is chosen based on ANN. The action ܽ௧ + (ఓߠ|௧ݏ)ߤ 
is applied to the system (HIL or SIL controllers) to obtain the next state ݏ௧ାଵ and reward ݎ௧—the 

Input 
layer

Hidden Layer 
(ReLU)

Output 
layer

Input 
layer

Hidden Layer 
(ReLU)

Output 
layer

Actor Network Critic Network

rω

de
dt

 
 
 

e

rω

de
dt

 
 
 

eta ( , )t tQ s a

Figure 5. Structure of the actor neural network (ANN) and critic neural network (CNN).



Designs 2020, 4, 15 11 of 19

To determine the optimal control coefficients based on the DT concept, the reward function
of the DDPG algorithm for the design of HIL and SIL controllers is defined as Equations (41) and
(42), respectively.

reward in HIL =
1

(rotor speed error)2 (41)

reward in SIL =
1∣∣∣di f f erence between the rotor speed o f HIL and SIL

∣∣∣ (42)

4.3. Implementing the Adaptive NIB Controller Based DDPG

The training procedure of the DDPG mechanism for online tuning of the NBI controller coefficients
in the HIL and SIL environments are the same which is described in the following manner.

The ANN and CNN µ(st
∣∣∣θµ) and Q(st, at

∣∣∣θQ) , with coefficient weights θµ and θQ, respectively,
are initialized randomly. The TNNs θQ

′

and θµ
′

are updated with weights of θQ
′

← θQ and θµ
′

← θµ,
respectively. A replay buffer with the capacityD is constructed. The initial state is s1 stored. The action
at = [k1, k2, k3] = µ(st

∣∣∣θµ) + nosie is chosen based on ANN. The action at is applied to the system
(HIL or SIL controllers) to obtain the next state st+1 and reward rt—the reward is calculated by
Equations (41) and (42) for HIL and SIL, respectively. The term (st, at, rt, st+1), which is the experience
set at each time step, is saved in the R-sized experience memory. During each step of the training
process, a mini-batch of experiences saved previously are uniformly sampled from the memory D
to update the NNs at each time step. yt = rt(st. at) + γQ′

(
st,µ(st

∣∣∣θµ′) ∣∣∣θQ′) is calculated, the CNN is

updated by minimizing the loss L
(
θQ

)
= E(s.a)

[(
yt −Q

(
st, at

∣∣∣θQ))2
]
. The policy of ANN is updated by

using the following policy gradient: ∇θµ Jθ
µ
= Est∼ρβ

[
∇aQ(st, at

∣∣∣∣θQ)∣∣∣∣a=µθ(s)∇θµµ(st|θµ)
]
. The TNN’s

are updated by the following learning mechanism:

θQ
′

← τθQ + (1− τ)θQ
′

and θµ
′

← τθµ + (1− τ)θµ
′

(43)

where τ� 1.

5. Results

The NIB-MFC scheme, which is a model-free scheme with an ultra-local model, offers optimal
performance to compensate system output of the WT plant in the digital twin framework. For this
purpose, the NBI-MFC controller has been adopted in the HIL and SIL environments. The gains of the
NIB-MFC technique, which play a critical role in the pitch angle control of a WT plant, are considered
as the control coefficients which should be adjusted by the DDGP tuner mechanism. The DDPG method
throughout 200 episodes, which is equal to 2500 training steps.

It can be said that the target of using digital twin is the similarity system’s output behaviors in the
SIL and HIL. If this purpose is satisfied, then it is possible to estimate the behavior of the HIL system
by changing the parameters in the SIL system. To achieve similarity behaviors of system output in
the digital twin system, firstly deep deterministic policy gradient (DDPG) based nonlinear integral
backstepping (NIB) in combination with model free control (MFC), (DDPG-NIB-MFC), is used to
obtain optimal controller parameters by reducing differences between reference input and output in
HIL and after that, HIL pitch angle output is applied as reference input in SIL. In the subsequent
section, the performance of the suggested control system is performed by real-time software-in-the-loop
(RT-SIL) MATLAB simulation experiments, as well as real-time hardware-in-the-loop (RT-HIL) TI
board. Moreover, the backstepping and proportional-integral (PI) controllers are also designed by
the particle swarm optimization (PSO) algorithm in the digital twin framework for the comparative
purposes. By minimizing the objective function, the controller coefficients are optimally designed.
In this application, the inverse values of the reward functions for the HIL and SIL controllers (defined
in Equations (41) and (42)) were defined as objective functions.
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5.1. Scenario I

At the first stage, a multi-step wind speed variation in the range of [14 m/s, 21 m/s] is applied to
the non-linear WT system. The profile of the wind speed disturbance is depicted in Figure 6 while the
rotor speed curves of the HIL system for the backstepping based DDPG, PSO optimized backstepping
and PI controllers are shown in Figure 7. From the comparative outcomes of Figure 7, the suggested
backstepping controller based DDPG offers a superior dynamic performance having a lesser settling
time and smaller amplitude of fluctuations than the backstepping controller based PSO in the terms.
It is also seen that the outcome of the PI controller based PSO experiences large-angle rotor speed
fluctuation and thus it cannot compensate for the multi-step wind speed variation. The curve of the
average reward for the full-simulated training phase under the wind disturbance is depicted in Figure 8.
Looking at the details, as it regards Figure 8, the reward started at 200,000, then the value goes up
significantly since episode 5, at which point it almost constant. The increasing trend of the reward
measured in HIL is an indicator of the reduction of rotor speed error which confirms the correctness of
the suggested NBI controller designed by the DDPG algorithm.Designs 2020, 4, x FOR PEER REVIEW 12 of 19 
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Similarly, the rotor speed outcomes of the SIL for the backstepping based DDPG, PSO optimized
backstepping and PI controllers are compared as illustrated in Figure 9. Critical observation of the
SIL outcomes reveals that the suggested controller gives a higher quality transient and steady-state
behavior of rotor speed compared to the PSO optimized backstepping and PI controllers. Figure 10
depicts that the DDPG agent is trained over 200 episodes to adaptively tune the backstepping controller
coefficients. From Figure 10, it is clear that the average reward is increased and stabled during the
200 episodes which means the difference between the system outcomes in HIL and SIL is minimized.
This affirms the efficiency of the DDPG agent in tuning the backstepping controller in the digital
twin concept.
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The dynamic specifications of the WT system with the multi-step wind speed in the terms
of settling time, overshoot and error output are noted and furnished in Table 1. For comparison,
the obtained outcomes reached for both HIL and SIL environments are provided in Table 1. From the
statistical analysis, by employing the backstepping controller based DDPG, an improvement in the
dynamic specifications of digital twin-based system is achieved for both the HIL and SIL.

Table 1. Settling time, overshoot and error comparison outcomes according to the Scenario I.

Performance Measurements
DDPG Based NIB-MFC PSO Based NIB-MFC PSO Based PI

HIL SIL HIL SIL HIL SIL

Settling time 0.02 0.03 0.06 0.15 21.6 23.2

Overshoot 0.196% 0.24% 0.28% 0.36% 30.7% 35.1%

Error 0.076 0.16 0.178 0.23 11.21 13.92

5.2. Scenario II

In this case, the applicability of the suggested digital twin controller is explored when the wind
speed is randomly fluctuated within [14 m/s, 22 m/s]. The profile of the random wind speed (which is
numerically produced by an additive Gaussian noise with noise power 0.0003 to DC and slope levels
at different time intervals) is presented in Figure 11 and the comparative dynamic outcomes for the
HIL and SIL controllers are illustrated in Figures 12 and 13, respectively. The outcomes of these figures
prove the superiority of the backstepping controller based DDPG to damp the rotor speed in the HIL
environment. In addition, it is demonstrated that the curves of rotor speed are very close to each other
in both HIL and SIL dynamic outcomes.
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5.3. Scenario III (The Parametric Uncertainty in the Turbine Model)

For an illustration of the robustness ability of suggested backstepping controller based DDPG,
some uncertainties are imposed on the WT model parameters under the following: RB = +30%,
JR = +40% and TB = +50%. Two standard error measurement criteria including the mean square error
(MSE) and the root mean square error (RMSE) are considered, which are defined as:

MSE =
1
n

n∑
i=1

[
e2

i

]
(44)

RMSE =

√√
1
n

n∑
i=1

[
e2

i

]
(45)

The MSE and RMSE values for the HIL and SIL are provided in Figure 14a,b, respectively. From the
bar comparison graphs, it is proved that the backstepping controller based DDPG has less sensitivity
than other controllers to increasing of rotor radius, rotor inertia and pitch actuator time constant. It is
also confirmed that by employing the suggested controller, the behavior of SIL output is the same as
HIL output variations and this means that the concept of the digital twin is fulfilled.
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6. Conclusions

This paper focuses on presenting a novel backstepping controller based DDPG for a pitch angle
control of variable speed WT in the digital twin framework. Initially, the backstepping controller based
DDPG is adopted for control of WT in HIL to damp the rotor speed fluctuations in this environment.
Following this, the digital twin of the WT system is constructed in SIL and DDPG algorithm is employed
to tune the NIB controller coefficients by the measured data from the WT in the HIL environment.
The digital twin realization of the suggested scheme has been implemented on a TMS320F28379D
dual-core Delfino™ microcontroller device in Texas Instrument (TI). The results revealed that the
dynamic responses of the WT speed rotor are improved with the backstepping controller based
DDPG. Moreover, the suggested control scheme can tune the SIL controller coefficients and make the
digital twin WT system has the same operation with the HIL. From the analysis, it is found that the
presented controller is more efficient and reliable than the PSO optimized backstepping and classical
PI controllers.
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