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Abstract: A central challenge in generative design is the exploration of vast number of solutions.
In this work, we extend two major density-based structural topology optimization (STO) methods
based on four classes of exploration algorithms of reinforcement learning (RL) to STO problems,
which approaches generative design in a new way. The four methods are: first, using ε-greedy policy
to disturb the search direction; second, using upper confidence bound (UCB) to add a bonus on
sensitivity; last, using Thompson sampling (TS) as well as information-directed sampling (IDS) to
direct the search, where the posterior function of reward is fitted by Beta distribution or Gaussian
distribution. Those combined methods are evaluated on some structure compliance minimization
tasks from 2D to 3D, including the variable thickness design problem of an atmospheric diving suit
(ADS). We show that all methods can generate various acceptable design options by varying one or
two parameters simply, except that IDS fails to reach the convergence for complex structures due
to the limitation of computation ability. We also show that both Beta distribution and Gaussian
distribution work well to describe the posterior probability.

Keywords: generative design; structural topology optimization; reinforcement learning; exploration;
solid isotropic microstructure with penalization; bi-directional evolutionary optimization

1. Introduction

Artificial intelligence (AI) has developed rapidly and been applied to structural topology
optimization (STO) efficiently in these years. Around 2000, evolutionary algorithms like genetic
algorithm [1,2], as well as swarm intelligence algorithms like ant colony algorithm [3,4] and particle
swarm optimization [5], were used in STO. Some conventional machine learning algorithms such as
linear regression, support vector machine [6], and shallow neural network [7] were also tried to solve
STO problems. Since 2012, fast-developing computing power has enabled deep learning with deeper
networks and stronger learning ability to become a popular tool.

Reinforcement learning is another branch of AI, whose samples are created during the learning
process rather than prepared in advance. It can solve all sequential decision problems in theory.
Although it has hardly ever been used in STO, its value has been proven in various research areas
including robotics, games, recommendation system, neural architecture design, music generation, and
so on [8].

Generative design is the process of exploring the variants of a design and assessing the performance
of output designs [9,10]. Instead of focusing only on one optimal design like traditional design
optimization, generative design is aimed at providing different designers with suitable designs, and
these variant designs are useful to meet the demand of some practical usages which are hard to
describe mathematically. Also, aesthetics is an important factor for customers and should be balanced
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with the view of engineers [11]. With the development of cloud computing power, the variables in
generative design change from simple general design parameters to complex structural topology,
which can generate more complicated and diverse structures. The generative design technique
has been implemented in Autodesk [12] and applied in wide areas like aircraft, automobile and
architecture [13,14]. Furthermore, the rapid advancements in additive manufacturing make generative
design more and more practical in engineering.

1.1. Design Exploration in Generative Design

Exploration is the soul of generative design, however, traditional generative design only varies
some parameters of geometry [14] or problem definition [10], the diversity of optimized structures
is limited. Recently, deep learning approaches—including convolutional neural network (CNN),
generative adversarial network (GAN), and their variations—are applied in STO. For instance,
Sosnovik [15] proposed a convolutional encoder-decoder architecture, which generates the final
optimized structure from intermediate structural inputs so as to accelerate the topology optimization
process of SIMP. Rawat [16] used limited samples of quasi-optimal planar structures to train the
conditional Wasserstein GAN (CWGAN), which gets some quasi-optimal structures efficiently. Yu [17]
used a CNN-based encoder and decoder to generate a low-resolution structure firstly, and used the
conditional GAN (cGAN) to transform it to a high-resolution structure without FEA in topology
optimization. Oh [18] proposed the framework where a large number of designs are generated from
limited previous design data by integrating topology optimization and Boundary Equilibrium GAN
(BEGAN), then used anomaly detection to evaluate the novelty of generated designs, thus providing
designers with various design options. In a word, those methods can construct an end-to-end map
from raw data or intermediate design to final design, but as a kind of supervised method, the quality
and adaptability of designs are highly dependent on the training data, which is hard to get and needs a
lot of computation space. Moreover, mechanical analysis is not included for some methods during
execution, the engineering performance is hard to guarantee.

Reinforcement learning (RL) is achieved based on the interaction between agent and environment.
If using RL in STO, the iteration of structural update can be viewed as the learning process, but
the limitation lies in the requirement for dealing with such a large-scale combinatorial optimization
problem. In this paper, RL works as an auxiliary tool with the help of density-based methods like Solid
isotropic microstructure with penalization (SIMP) [19] and Bi-directional evolutionary optimization
(BESO) [20,21], which use the density of elements for the development of the optimal topology. Then,
design exploration can be solved as a multi-disciplinary problem through the experience in the
well-known exploration and exploitation dilemma of RL.

1.2. Exploration Methods in Reinforcement Learning

In the area of reinforcement learning, many algorithms have been proposed to solve exploration
/exploitation problems such as the multi-armed bandit problem. The progress in reinforcement learning
can be seen obviously during these years, the size of state space and action space grows dramatically
from simple Atari games [22] to the game of Go [23], then to more complex Starcraft II [24]. As for
the strategies of exploration, the simplest idea is adding a random disturbance to change the search
direction, whose representative methods are ε-greedy policy [8] and Boltzmann policy [25]. Due to its
simplicity (just adding a uniform noise), it is called naïve exploration. Another popular algorithm is
Upper Confidence Bound or UCB [26,27], belonging to optimistic exploration, it is prone to choose those
uncertain actions by adding a weighted term in the action-value function. Probability matching is a less
known family of algorithms, in which its most famous method is called Thompson sampling (TS) [28].
It can search more efficiently using posterior probability. Although its theoretical analysis is hard, the
convenience of coding is not affected. A new approach to help explore is named information-directed
sampling (IDS), which utilizes the information gain to make decisions. For some simple multi-armed
bandit problems, it performs better than popular approaches but has high computation demand [29].
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1.3. Research Purpose

In this work, we extended four representative exploration methods of RL to direct the update
of SIMP and BESO for structural topology optimization problems, which can generate a bunch of
meaningful design options considering both aesthetics and engineering performance, and evaluated
those results by some attributes such as compliance and novelty.

The proposed framework consists of traditional SIMP and BESO, iterative design exploration and
final design evaluation. The traditional part involves the process of finite element analysis, sensitivity
analysis, as well as filters. Iterative design exploration means to change the value of sensitivity or
the scheme of element density updating. Design evaluation includes quantifying the novelty and
mechanical performance of generated structures compared with previous designs. In the end, our
proposed framework is demonstrated on some 2D and 3D structural compliance minimization cases.

The rest of the paper is structured as follows. Section 2 briefly describes the density-based method.
Section 3 introduces and explains how to use the exploration methods in SIMP and BESO. Section 4
demonstrates and discusses case study results. In the end, Section 5 summarizes the conclusions and
introduces future work.

2. Density-Based Structural Topology Optimization

SIMP is the mostly used STO approach in major commercial software, and BESO is called “the
discrete SIMP” by Sigmund [30], because it is very similar to SIMP, the different part is that the variable
is discrete in BESO, while it is continuous in SIMP. In this section, we describe the procedures of SIMP
and BESO in detail.

2.1. Problem Statements

As the most typical STO problem, the structure compliance minimization problem is usually
under a certain constraint of volume based on the density-based methods, which is defined as

Min : C = 1
2 f Tu,

Subject to : V∗ =
∑N

e=1 Vexe,
xe = xmin or 1 (BESO),
xe ∈ [xmin, 1] (SIMP).

(1)

in which C represents the structure compliance, also called the strain energy, the force vector f = Ku,
and the global stiffness matrix K =

∑
e

xp−1
e Ke, where Ke is the element stiffness matrix, p means the

penalty exponent in SIMP and u denotes the displacement vector. xe denotes the density of an
individual element e, xe = 1 means that the element is full of material and xe = xmin means void,
typically we set xmin = 0.001 so as to avoid the possible singularity of the equilibrium problem [31]. V∗

is the prescribed total structural volume and Ve is the volume of the element e. N is the sum of the
elements inside the design domain.

2.2. Sensitivity Analysis and Filter Schemes

In density-based methods, the sensitivity of an element is equal to the change of the total
compliance when deleting this element from the structure [32], which is calculated as

αe = −0.5pxp−1
e uT

e Keue, (2)

in which ue is the element displacement vector of the eth element.
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The filter scheme is implemented by averaging elemental sensitivity numbers

αe =

∑N
j=1 Hejxeα j

xe
∑N

j=1 Hej
(SIMP),

αe =

∑N
j=1 Hejα j∑N

j=1 Hej
(BESO),

(3)

where the weight factor Hej is defined as

Hej = rmin − rej,
{
e ∈ N

∣∣∣ rej
}
, (4)

where rej is the distance between the centers of element e and element j and rmin denotes the filter
radius.

Furthermore, in BESO, the discrete variables change sharply between 1 (solid) and xmin (void),
which make the objective function and topology hard to converge. To solve the problem, element
sensitivity numbers should be smoothed by the information of the last iteration [33].

αt
e =

αt
e + αt−1

e
2

, (5)

in which t represents the current iteration number.

2.3. Adding and Removing Elements

The difference between SIMP and BESO is large when updating the design variables, where the
former usually uses highly efficient algorithms like the optimality criteria (OC) methods or the method
of moving asymptotes (MMA). A standard OC updating scheme is used in this paper, which can be
formulated as [31]

xt+1
e =


max

(
xmin, xt

e −m
)

if xt
eB
η
e ≤ max

(
xmin, xt

e −m
)

min
(
1, xt

e + m
)

if min
(
1, xt

e + m
)
≤ xt

eB
η
e

xt
eB
η
e otherwise

, (6)

where xt
e means the value of the design variable at iteration t, η is a numerical damping coefficient

(equal to 0.5 in this paper), m is the positive move limit, and Be is given by the optimality condition as

Be = λ−1pxp−1
e uT

e Keue, (7)

in which λ is a Lagrangian multiplier that can be determined using the bisection method.
As for BESO, in each iteration, the volume is evolved by

Vt+1 = max(V∗, Vt(1− ER)) (8)

where ER means the evolutionary volume ratio. Another parameter called maximum volume addition
ratio (AR) is usually used to guarantee that not too many elements are added in a single iteration,
but it does not matter in our method, so we ignore it. The elements are removed according to their
sensitivity numbers from low to high strictly until reaching the prescribed volume in this iteration, just
like a kind of greedy heuristic search algorithm.
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2.4. Convergence Criterion

The convergence criterion is defined by the change of the objective function. After reaching the
volume constraint V∗, the update process will not end unless the difference between the compliance in
the past few iterations is little enough∣∣∣∑M

i=1(Ct−i+1 −Ct−M−i+1)
∣∣∣∑M

i=1 Ct−i+1
≤ τ, (9)

here, M is an integral number, and τ is a little constant representing the convergence tolerance.
Considering that the exploration will hamper the convergence, it will not be used when the volume of
the topology decreases near the limited value.

2.5. Evaluation

To guarantee the engineering performance and the novelty of results, two metrics are calculated
to evaluate the final structure in each episode:

First, the difference of performance (like compliance) between the current design and the reference
design is considered. Those structures with low performance will be rejected.

Another metric named IoU (intersection-over-union) is from a common evaluation metric for
the object detection (Figure 1), which represents the similarity of the current structure and previous
structures. It is calculated as the ratio of the intersection to the union of two rectangles called candidate
bound CB and ground truth bound GB

IoU =
area(CB)∩ area(GB)
area(CB)∪ area(GB)

. (10)
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Figure 1. Calculation of IoU.

Furthermore, IoU can be extended to 3D flexibly if changing ‘area’ to ‘volume’.

3. Using Exploration Approaches of Reinforcement Learning in STO

The exploration–exploitation dilemma is a fundamental problem of reinforcement learning.
Exploitation means making the best decision based on current information, while exploration indicates
gathering more information, which helps make the best overall decision at the expense of efficiency.

Figure 2 shows how to combine those exploration approaches with STO briefly. ε-greedy helps
disturb the search direction when adding and removing elements; UCB adds a bonus when calculating
the sensitivity; TS and IDS replace sensitivity functions by posterior reward distributions and update
the density of elements by sampling. Among them, UCB is used both in SIMP and BESO, while the
remaining exploration strategies are only used in BESO because of their inconvenience in dealing with
continuous variables. In this section, we describe the procedures in detail.
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3.1. Naïve Exploration

In reinforcement learning, ε-greedy policy is a common method of exploration and mostly used
for discrete action spaces. As in this book [8], ε-greedy policy is defined as

π(a|s)←

 1− ε+ ε
|A(s)|

if a = a∗

ε
|A(s)|

if a , a∗
(11)

where a∗ denotes the best action for maximizing the predicted value, and
∣∣∣A(s)

∣∣∣ is the total number
of actions in the state. By choosing an appropriate value of ε, the balance between exploration and
exploitation can be well achieved. In general, a decay schedule for ε is added as the algorithm running.

There are many variants of ε-greedy, one is called ‘greedy with optimistic’, which initializes the
action-value function to high value, then almost every action will be tried theoretically, but it can still
lock on to sub-optimal actions. Another is called ‘decaying εt-greedy policy’, εt will decrease as the
iteration and gap (difference in the value of the current action and the optimal action) increase. The
regret of this method is lower, but advanced knowledge of gaps is required, which seems not realistic
in practice. Moreover, there is another approach named Boltzmann exploration procedure based on
thermology, using temperature to control the choice of actions, where the temperature is equivalent to
ε in ε-greedy.

In a word, exploration in these naïve exploration methods is achieved by randomization. While in
BESO, elements are deleted based on the rank of sensitivity numbers completely like greedy algorithm.
To use naïve exploration in BESO, a random perturbance during the process of adding and removing
elements is needed. In order to prevent the whole structure from collapsing suddenly, we divide the
elements into two classes based on the ranking of sensitivity numbers, which is inspired by the genetic
algorithm used in BESO [2], the proportion of the higher class is V∗/2, and this mechanism is also used
in all the other algorithms in Section 3. When deploying the ε-greedy policy, after sorting the elements
by their sensitivity numbers, the elements are divided into lower class and higher class, and the bottom
(1 − ε) of the total elements which need deleting in this iteration are firstly removed as BESO, while the
other ε portion are removed randomly from the lower class.

Moreover, ε is declined by iteration to make solutions convergent like the decaying ε-greedy
policy, the scheme is formed as

ε← ε0 − ε0(t/t0)
3, (12)

in which ε0 means the value of ε at the beginning of the episode, and t0 denotes the number of iteration
when the volume fraction just reaching the minimum.

For some structures with detailed meshes, the effect of removing just one element is not obvious.
Therefore, we use ‘search window’ (Figure 3) when removing the elements, which means deleting one
element as well as its neighbors at the same time. The size of the search window is controlled by two
parameters: winx, winy, and it can be expanded to 3D cases easily.
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3.2. Optimistic Exploration

Optimistic exploration means those uncertain actions are more likely to be chosen. To measure
the uncertainty, the frequency of each action is calculated as an additive term, namely bonus when
choosing actions

At = argmax
a

[Qt(a) + cB(a)], (13)

in which Qt is the action-value function, and c is a positive parameter that controls the degree of
exploration, a bigger c means more exploration.

Upper confidence bound, or UCB [26,27], is the most popular algorithm for this kind, where the
bonus is

B(a) =

√
2 ln t
N(a)

, (14)

in which N(a) is the number of times the action a has been selected, and t means the number of
iterations. There are also some variants of UCB, but the main difference between those methods and
greedy exploration is the bonus, no matter what the bonus is. In a word, the key point of optimistic
exploration is keeping the balance between the uncertainty and optimality.

In STO, the idea of UCB is adopted in the process of calculating the sensitivity

αe
t = αe

t − c

√√
ln(t)

2N
(
ae

t

) , (15)

where N
(
ae

0

)
= 1 in the beginning. In SIMP, N(a) is calculated as the increment of the density

N
(
ae

t+1

)
= N

(
ae

t

)
+ max

(
0, xe

t+1 − xe
t

)
, (16)

As for BESO, because the initial elements are all solid and their density is discrete, N(a) is updated
by their times of keeping solid states

N
(
ae

t+1

)
= N

(
ae

t

)
+ 1 i f xe

t+1 = 1 (17)

In this way, these elements with low probability to be removed are more likely to be deleted now,
and the probability will increase as the value of c increases. Normally, c should be chosen to make the
magnitude of sensitivity and bonus similar.

3.3. Probability Matching

Probability matching, also called posterior sampling, uses posterior probability to achieve
exploration based on Bayesian theory, whose idea is also to encourage the exploration of uncertain
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actions. This scheme is also called Thompson Sampling [28], which chooses each action according to
its probability of being optimal

π(a|ht) = P[Q(a) > Q(a′), ∀a′ , a
∣∣∣ht] = ER|ht [1(a = argmax

a∈A
Q(a))] (18)

where ht is the history sequence of action and reward, π(a|ht) means the probability to choose action a
under ht, Q(a) represents the action-value function and R means reward function. The brief steps of
Thompson sampling are below:

• Sample the reward R from the posterior reward distribution P
• Compute the action-value function Q(a) = E[Ra]

• Take the optimal action by Equation (18)
• Execute the chosen action in actual environment and get the reward rt

• Update the posterior distribution P by Equations (19) and (20)

As the learning process going on, the confidence interval of each action will be narrower and
narrower towards convergence.

In BESO, like exploring the multi-armed bandit problems, elements are just like the arms of the
bandit, and those exploration methods help decide which arm to be chosen (deleted). Reward is
defined as the rank of the sensitivity numbers of elements, 0 to 1 from higher sensitivity to lower
sensitivity, then elements with higher reward (lower sensitivity) are more likely to be chosen (removed).
The actual reward distribution of each action is gained by previous ranks. To describe the reward
distribution, there are two frequently used patterns named Beta distribution and Gaussian distribution
shown in Figure 4. Beta distribution is a kind of binomial distribution with two parameters Beta(α, β).
Despite its proofs are a bit complex, its update scheme is simple and can describe the sampling process
well, which is

(α, β ) = (α, β ) + (rt, 1− rt) (19)
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For example, the initial distribution is Beta(1, 1) without any prior knowledge, each action has the
same reward. Then α and β increase as the number of sampling increases. As a result, the distribution
function will be narrower and narrower near the mean value.

Gaussian distribution also has two parameters N(µ, σ2), which are updated by

µt+1, a =

(
µt, a

σ2
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+
Yt, a

σ2
0

)
/( 1

σ2
t,a
+ 1

σ2
0
)

σt+1, a =

(
1
σ2

t,a
+ 1

σ2
0

)−1 (20)
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in which Yt is the observation drawn independently from the actual reward distribution N(µ0, σ2
0).

The variance σ2 will decrease as the number of sampling increases, then the distribution function will
more and more concentrate on the mean value µ.

3.4. Information State Search

Information state search views information as a part of state. The idea of this kind of method
is choosing the action with the most information gain. The most representative approach is called
information-directed search (IDS) [29], in which action is sampled by minimizing the ratio of squared
expected single-period regret and information gain

a = argmin
a

∆(a)2

g(a)
(21)

where ∆(a) = E[r(a∗) − r(a))] represents the difference of the rewards earned by the optimal action and
the actual action, g(a) is the information gain of a and equal to the expected reduction in the entropy H
of γt due to the observation, γt means the posterior distribution of A∗:

gt(a) = E[H(γt) −H(γt+1)
∣∣∣ht, At = a]

γt(a) = P(A∗ = a
∣∣∣ht)

(22)

To calculate ∆ and g, some approximated methods must be utilized, because the integrals
in posterior distribution should be computed over high-dimensional spaces. First, near-exact
approximations can be gained by calculating integrands at discrete gird of points. Another attempt is
replacing integrals with sample-based estimates, which reduces the time complexity especially when
calculating the integration over high-dimensional spaces. We prefer the latter method in this paper.
The brief steps are below:

• Get the samples for estimation by interacting with the actual environment in the first iteration,
and by the updated posterior reward distribution P in the following steps

• Compute ∆, g and the information gain ratio
• Take the optimal action by Equation (21)
• Execute the chosen action in actual environment and get the reward
• Update the posterior reward distribution by Equations (19) and (20)

In BESO, the definition of the reward is the same as that in Section 3.3, but the number of actions
must be down because of its high time complexity. Thus, we proceed the STO by BESO in the first
episode, then divide the elements by the rank of sensitivity numbers into 10 to 20 groups, and each
group is corresponding to one action which can be chosen (deleted) for a certain times equal to the
number of solid element it contains. In the following episodes, the number of elements that need
deleting in each group will be allocated by IDS first, after that, the elements in each group are chosen
by sampling according to the actual reward function of each element.

4. Cases and Discussion

This section applies different exploration methods above combining with SIMP and BESO to
several well-known 2D and 3D minimum compliance problems, and then filters these final structures
by evaluation. After that, a bunch of design options and stacked views are generated, and the degree
of variation can be controlled by one parameter for each method simply, when improving ε of ε-greedy
policy, c of UCB, as well as the variance of the posterior distribution of TS and IDS, more novel
structures will be created, but at higher risk of divergence.
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4.1. Cantilever Beam

A 2D cantilever beam is given to demonstrate the performance of different exploration algorithms.
Figure 5 shows the design domain of the structure with its load and boundary conditions. Young’s
modulus E = 1MPa and Poisson’s ratio υ = 0.3 are assumed. The objective volume fraction is set to
50% of the total area of the design domain. Other BESO parameters are shown below: the evolution
volume ratio ER = 0.04, the filter radius rmin = 4mm, the minimum design variable xmin = 0.001,
M = 5, τ = 0.1% for the convergence criterion and the penalty exponent p = 3.0. Parameters of SIMP
are m = 0.2, rmin = 4mm, and τ = 1%. Moreover, the evaluation standards are those designs whose
compliance is below twice of that of the benchmark structure and whose IoU is below 0.9.
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Figure 5. Design domain of a cantilever beam.

First, the decaying ε-greedy policy is used. The first result is calculated by BESO, and the rest are
got by setting ε = 0.05 or ε = 0.1 with winx = winy = 3. By the way, it is worth mentioning that the
structures tend to be asymmetric. Therefore, to keep the diversity, the symmetry constraint is added
for getting some symmetric results.

Second, UCB algorithm is applied with BESO. Four results satisfying the demand are got when
c = 1 in 10 episodes, and the rest 16 results are generated by varying c from 1 to 1000.

Third, TS is utilized based on two distributions. The diversity of the topologies can be controlled
by zooming the variance of the posterior distribution of reward. For beta distribution, diverse final
topologies can be gained from varying the increment of α and β from 0.1* to 10*. For gaussian
distribution, diverse final topologies can be gained by varying σ of the model from 1* to 100*.

Fourth, IDS is also used on two distributions. The rate for beta distribution varies from 0.1 to 10,
and the rate for gaussian distribution varies from 1 to 100.

Finally, UCB is combined with SIMP, and the range of c is from 0.05 to 0.1 to get the designs.
All topologies are shown in Figure 6, we can see that all the seven methods can generate diverse

acceptable structures successfully. UCB can keep the symmetry of origin structure, while ε-greedy
policy cannot keep the symmetry of structures without the symmetry constraint, the results of TS
and IDS can be symmetric randomly. Furthermore, IDS needs more computation resource. The good
phenomenon is that UCB, TS, and IDS usually generate divergent structures in the first one or two
episodes because of the exploration, but after that the quality of the structures is improved as the
shrink of the search space. As for the difference of SIMP and BESO, the former sometimes generates
intermediate densities (gray elements), which make the solutions unable to be adopted directly.
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topologies directly. The color for each pixel is easy to get by calculating the average color at that pixel 

Figure 6. Generated options and stacked views of the cantilever beam by (a) decaying ε-greedy policy,
(b) UCB algorithm with BESO, (c) TS method with beta distribution, (d) TS method with Gaussian
distribution, (e) VIDS method with beta distribution, (f) IDS method with Gaussian distribution and (g)
UCB algorithm with SIMP.

To enable a clear visualization of the exploration process, we also show a stacked mode for all
results in Figure 6. With this view, users can see discrepancies as well as common features in different
topologies directly. The color for each pixel is easy to get by calculating the average color at that pixel
for all individual designs, so the stacked view is equal to the average of generative designs. In those
stacked views, the importance of different parts is shown obviously, we can see that the main frame is
invariant for those designs, while the inner microstructures always change.

The details of the design by UCB with BESO are presented as an example. The information about
compliance, IoU and iterations of the design in each episode is listed in Table 1. The compliance and
IoU of all topologies satisfy evaluative criteria, which means that enough engineering performance and
diversity of the designs can be guarantee. Furthermore, the numbers of iterations of most episodes are
similar to that of BESO, meaning that the computation cost is acceptable. The evolutionary histories of
the objection function of five episodes are shown in Figure 7. The curves are usually not monotonous
with one or more peaks, and the corresponding iteration and the amplitude of peaks are different in
different episodes, representing various search directions.
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Table 1. Calculation results of the cantilever beam by UCB with BESO.

Nth Episode C (105 N·mm) IOU ITER Nth Episode C (105 N·mm) IOU ITER
BESO 1.873 26 11 1.923 0.736 43

2 1.891 0.600 28 12 1.878 0.851 34
3 1.918 0.779 24 13 1.873 0.740 46
4 1.885 0.794 55 14 1.912 0.801 34
5 1.883 0.856 24 15 1.876 0.896 29
6 1.883 0.695 37 16 1.881 0.858 26
7 1.877 0.746 31 17 1.913 0.866 75
8 1.867 0.859 41 18 1.900 0.894 42
9 1.878 0.870 28 19 1.963 0.719 100

10 1.891 0.868 30 20 1.886 0.893 40
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4.2. L-Shaped Beam

In the second example, we demonstrate the design problem for a L-shaped beam sketched in
Figure 8, which is loaded at the center of the rightmost free end by F = −1N. The beam is discretized into
1600 quadrilateral elements with 40% maximum volume fraction. Material properties are E = 1MPa
and υ = 0.3. The parameters of BESO are set to ER = 0.03, rmin = 2mm, xmin = 0.001, M = 5, τ = 1%,
and p = 3.0. SIMP parameters are m = 0.2, rmin = 1.5mm, and τ = 0.01%. Evaluation standards are
the same as those in Section 4.1.Designs 2020, 4, x FOR PEER REVIEW 12 of 19 
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Figure 8. Dimensions of the design domain with loading and boundary conditions for a L-shaped beam.

The parameters of the exploration approaches are below: first, ε = 0.05, 0.10, and 0.15 with
winx = winy = 1 is used for ε-greedy policy. Then, in UCB, c = 1, 10, and 100 for BESO, and
c = 0.3 to 10 for SIMP. As for TS and IDS, we test 0.1* to 10* for beta distribution, and 1* to 100* for
gaussian distribution.
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Figure 9 shows all the final topologies generated by five methods except IDS, because IDS almost
always creates divergent results for this case, the reasons may be the fragile structure around the corner
and the low filter radius make the structure more likely to be disconnected. Results of other methods
seem no problems, what is not perfect is that some results has mall holes, it does not matter as the
number of results increases, or the problem can be solved by rising the filter radius.
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From the stacked views in Figure 9, we can see that there is a same clear main frame for structures
of each method, and the changeable parts concentrate on the bottom.

4.3. 3D Cantilever Beam

Those proposed exploration approaches can be extended to three dimensions straightforwardly, a
STO problem for a 3D cantilever beam is shown in Figure 10. The design domain is 50× 20× 10 mm in
shape and discretized using 10,000 eight node cubic elements. Only 10% volume of the design domain
is available. The material has E = 1MPa and υ = 0.3. BESO parameters ER = 0.03, rmin = 1.5 mm,
xmin = 0.001, M = 5, τ = 1%, and p = 3.0 are used. SIMP parameters are m = 0.2, rmin = 1.5 mm,
and τ = 1%. The evaluation for compliance is the same as above but the maximum IOU is set to 0.7,
because IOU of the generated designs is usually lower in 3D cases.Designs 2020, 4, x FOR PEER REVIEW 13 of 19 
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Figure 10. Design domain of a 3D cantilever beam with dimensions and boundary and loading conditions.

Due to the time consuming nature of complex 3D cases, only 10 designs are shown for each
method in Figure 11, and beta distribution need not be considered because it has shown the same
effect as gaussian distribution. Four exploration methods are used, ε-greedy policy with ε = 0.10
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and winx = winy = winz = 1, UCB with c = 1 to 10 for both BESO and SIMP as well as TS with 1*
and 10* increment for beta distribution are chosen, Diverse design options are generated successfully.
As shown in Figure 11d, the phenomenon of gray elements is more severe for the case with low volume
fraction, but the good thing is SIMP needs less computation time than BESO. Results by IDS are below
our expectation, which are always divergent, the reason is that IDS tends to disconnect the structure
easily under small volume constraints.
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Figure 11. Generated options and stacked views of the cantilever beam by (a) ε-greedy policy, (b) UCB
algorithm with BESO, (c) TS method with beta distribution and (d) UCB algorithm with SIMP.

4.4. Upper Body of an Atmospheric Diving Suit

The final case is based on a practical engineering problem of China Ship Scientific Research
Center, which is the design of an atmospheric diving suit (ADS), seen in Figure 12a. We chose its
upper body as an example to test our exploration algorithm. To simplify the problem, stability, gravity,
hydrodynamics, and the minor parts—such as holes or lugs—are not considered.
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Figure 12. The structure of ADS. (a) The front view of ADS. (b) The front view of the upper body.

The main dimensions are shown in Figure 12b, and the structure is set to be fixed on the connections
of head, arms, and the lower part. The maximum working depth is 500 m and the calculation pressure
is set to 9 Mpa after considering the safety. Material properties are E = 68.9 Gpa, υ = 0.3, and the
allowable stress is 208 Mpa.

Because the thickness is much lower than the size of the shape, the size of the structure must be
large enough to guarantee enough elements to be deleted, which needs huge computation source.
To avoid this problem, we transferred it to a variable thickness design problem, which means changing
the density of elements on the outer surface instead of removing them, it can be simply achieved by
setting p = 1 in SIMP, then the thickness can be represented by density. The goal is optimizing the
distribution of thickness without changing the weight.

Because the code is written in MATLAB, the geometric model should be imported from Solidworks
first as shown in Figure 13. The upper body is discretized using 8-node hexahedral element, whose
size is 20× 20× 20 mm. The density of elements are all initialized to 0.5 and varying between 0.2 and 1,
which means the thickness of outer elements varies between 8 and 40 mm. In order to avoid the case
that the thickness declines to 0 in some region, which may cause the structural failure by leakage or
corrosion, the minimum thickness is set to 40× 0.2 = 8mm. Figure 14 shows the stress contour of the
origin structure, the value of stress is higher near the inner surface of neck as well as the connections of
body and arms. The maximum stress is 96.1Mpa, and the total compliance is 230.2 N·m.Designs 2020, 4, x FOR PEER REVIEW 15 of 19 
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Figure 14. The stress contour of the upper body (before optimization).

The design domain is only the outer surface (not including the connected parts). SIMP parameters
are m = 0.2, p = 1, rmin = 40 mm, M = 3, τ = 1%. The evaluation for compliance is the same as above
but maximum IOU is set to 0.95 because the space of optimization is limited for this case, in addition,
the maximum element stress is also a metric of evaluation, which cannot exceed the allowable stress.

UCB with c = 30, 000 is used to generate four topologies (Figure 15), whose information is shown
in Table 2 and contour distribution can be seen in Figure 16. According to the first design calculated
by SIMP, the material accumulates around the neck, back and chest, meaning these parts need to be
thickened. And from Figure 16a–d, more uniform the thickness is, higher compliance the structure has.
In addition, the maximum and distribution of stress are almost invariant, which means our proposed
method can decrease the compliance by controlling the thickness distribution without changing the
weight and stress distribution of the structure.
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Table 2. Calculation results of the upper body of ADS.

Nth Episode C (N·m) ∆C IOU Maximum
Stress (Mpa) ITER

SIMP 214.9 — — 96.3 7
2 218.6 1.7% 0.860 96.1 9
3 220.9 2.8% 0.940 96.0 9
4 226.4 5.3% 0.936 95.9 6

The stress calculated by our code in MATLAB is not highly precise, because the size of the element
is large and the hexahedral elements can’t fit the curved surface very well. Thus, the results focus more
on providing guidance for designers during the conceptual design.
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5. Conclusions and Future

In this paper, we focus on adding the features of the exploration approaches in reinforcement
learning to the procedures of SIMP and BESO, so as to increase the search ability of structural topology
optimization methods to generate multiple solutions. Then, the capability of those combined methods
is demonstrated on three minimum compliance STO problems, including 2D and 3D cases, and the
degree of exploration can be controlled with one parameter easily. The source code can be found at
https://github.com/Nick0095/STO_exploration.

By comparison, ε-greedy policy with random search is easy to deploy, but to get satisfying
designs, additional schemes are necessary sometimes, such as the search window for dense mesh
and the symmetric constraint for symmetric structures. UCB is used as a bonus when calculating
the sensitivity numbers, which encourages exploration of less-exploited elements, and it is able to
create acceptable results without adding the computation complexity dramatically. TS is a method
based on Bayesian theory and needs a little more computation resource, it estimates the value of
elements by updating the posterior probabilities, which is more accurate compared with random
search and heuristic rules. Finally, IDS is a new information-directed sampling method, but limited
in its high demand for computing capacity. When dealing with STO problems, an approximation
step is added to decrease the number of design variables, which maybe hampers its performance. In
our cases, it can work for the simple cantilever beam, but the divergence always occurs when facing
more complex structures. We believe it has potential as the computation ability increases in the future.
Furthermore, beta distribution as well as gaussian distribution have similar functions and both work
well in describing the posterior reward distribution of elements.

As for SIMP and BESO, although the solving algorithm of BESO is not so precise, it is not a big
problem for generative design, and the discrete variables make it easier to be combined with various
exploration approaches. SIMP can be solved by more efficient algorithms, but the gray problem cannot
be neglected for designs with low volume fraction, on the other hand, that makes SIMP suitable for
variable thickness design problems.

Low efficiency is still the bottleneck of the development of reinforcement learning, a highly
efficient exploration approach that keeps the balance of searching ability and computation complexity
is needed. According to the trend of development in RL, more and more experience can be referred
to deal with large-scale combinatorial optimization problems like structural topology optimization.
Furthermore, the compliance minimization problem is only a basic problem to test our proposed
method, after that, we will try it in more kinds of problems with different objection functions and
constraints, so as to make it more widely used. Also, achieving these algorithm in those commercial
softwares with more kinds of elements is another choice to improve the efficiency and accuracy.

https://github.com/Nick0095/STO_exploration
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Nomenclature

Variable Description

A action vector
a action
a∗ best action for maximizing the predicted value
B bonus
Beta(α, β) Beta distribution, α, β: two parameters
C structure compliance (strain energy)
c a positive parameter that controls the degree of exploration in UCB
E[:] operator of calculating the mathematical expectation
ER evolutionary volume ratio
f force vector
g(a) information gain of action a
H(:) operator of the entropy
Hej weight factor of the filter
ht history sequence of action and reward
K global stiffness matrix
Ke element stiffness matrix
M an integral number in the convergence criterion
m positive move limit
N(a) number of times action a has been selected
N(µ, σ2) Gaussian distribution, µ: mean; σ2: variance
P posterior reward distribution
p penalty exponent in SIMP
Q action-value function
R reward function
r sampled reward
rej distance between centers of element e and element j
rmin filter radius
s state
t current iteration number

t0
number of iteration when the volume fraction just reaching the
minimum

u displacement vector
V∗ prescribed total structural volume
xe density of element e
Yt observation drawn independently from the actual reward distribution
αe sensitivity of element e
γt posterior distribution of A∗

∆(a) difference of rewards earned by optimal action and actual action
ε a probability value defined in ε-greedy
ε0 value of ε at the beginning of the episode
π policy
τ a specified little value representing the convergence tolerance
Subscripts
e an individual element
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