
Article

Model Testing of Complex Embedded Systems Using
EAST-ADL and Energy-Aware Mutations

Eduard Paul Enoiu * and Cristina Seceleanu *

Mälardalen University, Department of Networked Embedded Systems, 722 20 Västerås, Sweden
* Correspondence: eduard.paul.enoiu@mdh.se (E.P.E.); cristina.seceleanu@mdh.se (C.S.)

Received: 18 November 2019; Accepted: 13 February 2020; Published: 19 February 2020 ����������
�������

Abstract: Nowadays, embedded systems are increasingly complex, meaning that traditional testing
methods are costly to use and infeasible to directly apply due to the complex interactions between
hardware and software. Modern embedded systems are also demanded to function based on
low-energy computing. Hence, testing the energy usage is increasingly important. Artifacts produced
during the development of embedded systems, such as architectural descriptions, are beneficial
abstractions of the system’s complex structure and behavior. Electronic Architecture and Software
Tools Architecture Description Language (EAST-ADL) is one such example of a domain-specific
architectural language targeting the automotive industry. In this paper, we propose a method for
testing design models using EAST-ADL architecture mutations. We show how fault-based testing
can be used to generate, execute and select tests using energy-aware mutants—syntactic changes
in the architectural description, used to mimic naturally occurring energy faults. Our goal is to
improve testing of complex embedded systems by moving the testing bulk from the actual systems to
models of their behaviors and non-functional requirements. We combine statistical model-checking,
increasingly used in quality assurance of embedded systems, with EAST-ADL architectural models
and mutation testing to drive the search for faults. We show the results of applying this method
on an industrial-sized system developed by Volvo GTT. The results indicate that model testing of
EAST-ADL architectural models can reduce testing complexity by bringing early and cost-effective
automation.

Keywords: model testing; mutation testing; energy consumption; EAST-ADL

1. Introduction

Embedded products are widely used in many industries. For example, embedded systems
are used in automotive companies in the implementation of vehicle functions (e.g., ABS, electronic
stability) [1]. Such functions contribute to the complexity of developing the entire vehicle system [2],
making the verification and validation of new functions more problematic due to the interconnections
between both functional and non-functional requirements posed on the whole system. For instance,
a structural or behavioral update in the software or the replacement of a software or hardware
part can influence the consumption of resources [1]. In this case, just showing the overall system’s
functional correctness is not enough. One would need to verify that the system meets its non-functional
(also known as extra-functional) requirements, such as energy consumption, memory allocation
and real-time perfomance. In addition, although testing is arguably the most used verification and
validation technique, for these complex systems testing is highly expensive when performed on the
actual system. Given the increasing demand in embedded systems for low-energy computing [3],
early testing the energy consumption becomes an increasingly important issue. To ensure the quality
of service of embedded systems and to estimate its performance early in the development process,

Designs 2020, 4, 5; doi:10.3390/designs4010005 www.mdpi.com/journal/designs

http://www.mdpi.com/journal/designs
http://www.mdpi.com
http://dx.doi.org/10.3390/designs4010005
http://www.mdpi.com/journal/designs
https://www.mdpi.com/2411-9660/4/1/5?type=check_update&version=2


Designs 2020, 4, 5 2 of 18

testing the behavior of the system with respect to its supplied energy budget as well as testing for the
worst-case energy consumption is very important.

In this paper we outline a method that targets these challenges by bringing extra-functional
testing of these complex embedded systems by moving the creation, execution of test cases earlier in
the development process at an abstract architectural modelling level. Architectural models are used to
represent relevant aspects of system behavior, environment, structure, and properties and are used as
a basis for test generation, performance, and analysis. Briand et al. [4,5] refers to such techniques as
model testing, since this kind of approaches aim to identify faults by executing test cases on models
and sampling the input space. This in contrast to other verification and validation techniques such as
model checking that attempt to exhaustively explore the model state space and check the correctness of
the models against some given properties. Our goal is to tackle the challenges of testing such complex
systems by developing an approach that provides, early-on in the development process, confidence
about the system resource consumption by identifying and executing a selected set of test cases, from
the whole test execution space, where faults are more likely to lie. In the automotive domain, modelling
the architectural aspects including the resource consumption of complex embedded systems at high
levels of abstraction is necessary. Architectural description languages such as EAST-ADL (EAST-ADL
stands for Electronic Architecture and Software Tools-Architecture Description Language.) [6] are
used to represent both hardware and software functions and extra-functional information (e.g., timing
properties and resource consumption). If we assume energy as the resource of interest, the annotations
of energy consumption in EAST-ADL models can be used to create test cases for feasibility and
worst-case energy consumption that can be useful in the detection of faults.

This article is an extended version of a conference paper [7] in which we have demonstrated
how architectures described in the EAST-ADL language can integrated into a testing approach in
order to evaluate energy properties. Based on this previous work, in this study we present a novel
mutation-based approach for model testing and evaluate its efficiency and effectiveness on an industrial
use case. In particular, by selecting test cases using mutation testing [8], we propose a method for
automatically generating and selecting test cases based on the concept of energy-aware mutants–small
architectural model syntactic modifications designed to mimic real energy faults. Test cases where a
certain behavior can be distinguished from its mutations are sensitive to changes in the architectural
model and are therefore considered good at detecting faults.

We apply this method on an embedded system modeled in EAST-ADL after transforming it into
a network of priced timed automata [9]. In particular, we select test suites based on random model
executions that show the energy cost using UPPAAL SMC [10], the statistical extension of the UPPAAL
model checker. We show how to seed faults in the EAST-ADL model and evaluate each generated test
suite’s energy-related fault detection capability. To illustrate the efficiency and effectiveness of our test
generation method, we carry out an evaluation, using an industrial system modeled in EAST-ADL
architectural language. The results of this study suggest that model testing is efficient in terms of test
generation time and number of generated and selected test cases.

To summarize, the main contributions of this paper are:

• The identification of energy-aware mutation operators for mutation testing of EAST-ADL models.
• An approach for mutation test generation of EAST-ADL models using a statistical model checker.
• An evaluation of the method on a Brake-by-Wire industrial system.

The rest of the paper is organized in the following sections. In Section 2 we overview the
preliminaries needed to comprehend our contribution, including architecture-based testing and
mutation testing, the EAST-ADL architectural language, UPPAAL SMC and priced timed automata.
The main contribution of the paper is our method for automatically generating energy-aware test cases
using EAST-ADL models described in Section 3, and its application on the Brake-by-Wire system as
well as the experimental results presented in Section 4. We conclude the paper and present the future
work in Section 7.



Designs 2020, 4, 5 3 of 18

2. Background

Major aspects of architecture-based and mutation testing, the language of EAST-ADL and
UPPAAL SMC will be discussed in this section. These aspects are put in the scope of the contributions
of this study.

2.1. Architecture and System-Level Testing

Architectural models are created during system development using components and connectors
representing the whole system and its high-level structure [11]. The aim of testing using architectural
designs as input is to verify whether the system meets its design specifications. This type of testing
is also known as system-level testing [12] and its main purpose is to discover early-on architectural
design problems, but also the overall system behaviour. Testing, at this level, aims to address such
test goals as overall functionality, real-time properties, robustness and performance [11]. Testing
extra-functional properties (e.g., bandwidth, energy and memory) [13] are crucial aspects during
development and need to be addressed continuously when testing. Specifically, we focus on testing for
energy consumption based on architectural models. Due to the intertwining of software and hardware
and the complex interactions with the external environment, it is challenging to apply conventional
testing methods directly to the real embedded systems. When testing for extra-functional properties at
the software architecture level, models are annotated with energy consumption properties.

The aim of testing at architectural level based on the energy consumption is to find faults in the
performance of an actually developed system in terms of its subsystems and interactions before the
actual code implementation. The use of such architectural models for testing enables the execution of
a large number of test cases and increases the chances of uncovering faults.

2.2. Mutation Testing

Mutation testing is the technique used for creating a faulty implementations (usually in an
automated way) to examine a test-suite’s ability to detect faults [8]. A mutant is a new version of a
program created by making in the original program a small change. For instance, a mutant is created
in a program by replacing an operator with another, negating a variable, or changing a constant’s
value. The execution of a test suite on the resulting mutant will produce a different output than the
original program, in which case the test suite kills the mutant. In order to measure the mutant detection
capability of the written test suite, a mutation score is calculated using the automatically seeding all
mutants and executing the test cases on each mutant. One can compute a mutation score based on an
output-only oracle (i.e., expected outputs) against all the generated mutants by calculating the ratio of
mutants killed to the total number of mutants. Just et al. [14] showed that if a test suite can detect or
kill most mutants, it can also detect real software faults, thus providing evidence that the mutation
score is a fairly good proxy for real fault detection ability. Mutation testing has been widely used at
lower levels of testing and mostly on implementation models. Even if there are some studies that have
applied this technique on specification models [15–18] for designing behavioral faults, there is a lack
of methods that target architectural models and extra-functional aspects for model mutation testing.
No attempt has been made to propose and evaluate mutation testing for EAST-ADL models. This
motivated us to develop an automated approach to test generation and model testing using mutations
aimed at this kind of architectural model.

2.3. EAST-ADL Architectural Language

EAST-ADL [6] is an AUTOSAR-compatible (AUTOSAR is a standard for AUTomotive Open
System ARchitecture and was developed by several manufacturing companies.) architectural
description language intended to be used in the development of automotive embedded systems.
A system can be described at four levels of abstraction, as follows: (i) the Vehicle Level describes
the external features at the highest level of abstraction, (ii) the Analysis Level describes the abstract



Designs 2020, 4, 5 4 of 18

functionality of the system, (iii) the Design Level describes more details in the functional representation
of the architecture and the hardware allocation of these onto the platform, and (iv) the Implementation
Level provides the AUTOSAR-compliant code.

At each level of abstraction, the model is composed using components (i.e., FunctionType) which
describe the functionality of the system. Each FunctionType contains: (i) Ports that receive and provide
data, (ii) a trigger (i.e., time-based or event-based), and (iii) an internal behavior. Each of these
components is instantiated as a FunctionPrototype. The execution of each FunctionPrototype uses
the “read-execute-write” semantics, and the internal behavior is defined using different languages
(e.g., Simulink, UML, UPPAAL PORT timed automata [19,20]). In this study we use the models
at the design level, containing the Functional Design Architecture (FDA) and Hardware Design
Architecture (HDA) annotated with non-functional properties. The design model can be annotated
with a GenericConstraint property representing the energy utilization.

2.4. UPPAAL SMC and Priced Timed Automata

UPPAAL SMC [10] is an extension of UPPAAL, that supports the analysis of non-functional
properties for networks of priced timed automata with stochastic semantics. Statistical model-checking
is used to generate stochastic simulations and estimate probabilities and probability distributions over
time with a certain level of confidence, so the analysis scales better than symbolic model-checking in
verification of realistic industrial models. Specifically, statistical model checking samples executions
using statistical inference methods to decide whether the model executions satisfy a property given a
certain confidence. In this paper we use statistical model checking and UPPAAL SMC in a black-box
manner for execution of models as well as producing probabilistic estimates about the correctness of
the generated models.

Priced timed automata (PTA) are used in UPPAAL SMC and are extensions of timed automata
with cost variables that can evolve at integer rates (also 6= 1). These are used for representing the
energy consumption. The energy usage is modeled using a function P : (L ∪ E) → N, where L is
a finite set of locations, and E is the set of edges, which assigns costs to both locations and edges.
A network of PTA (NPTA) is described as a composition of n PTA over clocks and actions; the PTA
use send–receive actions (i.e., send b! is complementary to receive b?) and shared variables are used
in guards.

Let X be a finite set of clocks and B(X) the set of guards, which are finite conjunctions of atomic
guards of the form x ./ n, where x ∈ X, n ∈ N, and ./ ∈ {<,≤,=,≥,>}. A (Linear) PTA over clocks
X and actions Act is a tuple (L, l0, X, V, I, Act, E, P) where L is a finite set of locations, l0 is the initial
location, X is set of clocks, V is a set of data variables, I : L → B(X) assigns invariants to locations,
Act is a set of actions, E ⊆ L× B(X, V)× Act× R× L is the set of edges (where R denotes the reset
set, i.e., assignments to manipulate clock- and data variables), and P : (L ∪ E) → N assigns costs to

both locations and edges. In the case of (l, g, a, r, l′) ∈ E, we write l
g,a,r−−→ l′.

The semantics of PTA is defined as a transition system over states (l, u), with the initial state
(l0, u0), where u0 assigns all clocks in X to zero. There are two kinds of transitions:

(i) Delay transitions: (l, u)
d,p−→ (l, u ⊕ d), where u ⊕ d is the result obtained by incrementing

all clocks of the automata with the delay amount d, and p = P(l) ∗ d is the cost of performing the
delay, and

(ii) discrete transitions: (l, u)
d,p−→ (l′, u′), corresponding to taking an edge l

g,a,r−−→ l′ for which the
guard g is satisfied by u. The clock valuation u′ of the target state is obtained by modifying u according
to updated r. The cost p = P(l, g, a, r, l′) is the priced associated with the edge.

A network of PTA A1 ‖ ... ‖ An is expressed as a composition of n PTA over X and Act, using
synchronization actions and shared variables that can be used in guards and transitions. UPPAAL
SMC uses an extended Weighted Metric Temporal Logic (WMTL) [21] for performing hypothesis



Designs 2020, 4, 5 5 of 18

testing, which checks if the probability to reach a state φ within cost x ≤ C is greater or equal to a
certain threshold p : Pr(♦x≤Cφ) ≥ p.

A trace σ of a PTA is a sequence of delays, actions, and transitions:

σ = (l0, u0)
a1,p1−−→ (l1, u1)

a2,p2−−→ ...
an ,pn−−−→ (ln, un), where the cost of performing σ is Σn

i=1 pi.

3. A Model Testing Method for Energy-Aware Testing Using EAST-ADL

In this section we introduce our model testing method which uses energy consumption objectives
to select test suites using a statistical model checker based on the created simulations. The framework
is based on the transformation of the EAST-ADL model into a network of priced timed automata
(PTA) [22]. It is composed of several steps, mirrored in Figure 1:

Energy-Aware
Mutation

Operators

EAST-ADL
Architectural

Model

EAST-ADL
Mutated
Models
EAST-ADL

Mutated
Models
EAST-ADL

Mutated
Models

EAST-ADL
Mutated
Models
EAST-ADL

Mutated
Models

Mutated
Priced Timed

Automata

MATS
Original

Priced-Timed
Automata

UPPAAL SMC

Mutant
Detection

Mutant
DetectionTest Suite

1

2

2

3

4

Figure 1. An overview of the test suite generation and evaluation method for energy consumption
based on Electronic Architecture and Software Tools Architecture Description Language (EAST-ADL)
architectural models and mutation testing.

1. Mutant Generation. This first step (described in detail in Section 3.1) is used for generating small
syntactic changes (mutants) to the architectural description based on a set of mutation operators
(e.g., mimicking architectural energy errors). The output of this step is a set of new versions of
the original EAST-ADL model, each one containing an inserted change. When implementing this
step, a set of operators needs to be available based on the desired types of mutants. Different set of
operators were proposed in the scientific literature for both models and code [18,23] for mutation
testing using the UPPAAL model checker. We show how mutant generation is implemented for
the EAST-ADL language as an input for MATS and UPPAAL SMC.

2. EAST-ADL to PTA Transformation. The second step (described in detail in Section 3.2) is used for
transforming the EAST-ADL model to PTA. The output of this step are PTA models containing
the original structure and behavior of the EAST-ADL together with all inserted mutants and
annotated with energy consumption information to be used by UPPAAL SMC for test-case
generation and selection.

3. Test Suite Generation. The third step (described in Section 3.3) uses the MATS tool to generate a
set of test cases by using the UPPAAL SMC ability to generate simulations. We show how a test
simulation is obtained using a property expressed as a UPPAAL SMC simulation property.

4. Mutant Detection. The fourth step (described in Section 3.4) involves the instrumentation of the
model with detection instructions for each mutant. This means that the monitor for mutation
detection is used to record the execution and detection of each mutant.



Designs 2020, 4, 5 6 of 18

We discuss these steps in further detail in the following sections by applying this approach to
running examples.

Overall, we use an EAST-ADL system architectural model and mutation testing to automatically
generate test suites for model testing the energy consumption. Our test generation method aims to
use mutations in energy consumption in EAST-ADL to select test suites automatically using various
random simulations.

3.1. Energy-Aware Mutant Generation

In this paper we assume a resource r for an EAST-ADL component represents the accumulated
resource usage up to some point in time. By using this assumption, resources of this kind are
categorized as discrete or continuous [24] . Energy in EAST-ADL is a continuous resource that can
evolve linearly in time (energy(t) = n × t, where n ∈ N and t is the time elapsed during system
execution). In EAST-ADL components the resource usage is defined as the total energy consumption
of the system as energytotal(t) = ∑m

i=1 energyi(t), where m is the number of components. Based
on a predefined set of mutation operators, faults are injected. These mutants should represent
naturally-occurring faults influencing the energy consumption. The general principle underlying
mutation analysis is that the faults generated using the operators described in Table 1 represent the
mistakes that architects often make while modelling in EAST-ADL that directly influence the energy
consumption.

We propose a set of mutation operators and they are applied on all the EAST-ADL model elements
that could influence the energy consumption in the following three categories:

• EAST-ADL resource annotation (i.e., Energy Replacement Operator (ero)). In this case, we insert a
fault in the generic constraint of a function prototype by changing the original annotation. These
types of mutations intend to model the errors in the energy consumed by each component.

• Timing Behavior of an EAST-ADL component (i.e., Period Replacement Operator (pro), Execution
Time Replacement Operator (etro)) can be modified by changing the period and execution time
constraints. The period and execution time value stand as integer values in the constraint.

• Functional Architecture Structure (i.e., Component Removal Operator (cro), Component Insertion
Operator (cio), and Triggering Pattern Replacement Operator (tro)). We change the architectural
elements in EAST-ADL by removing or inserting components that influence the energy
consumption as well as modifying the triggering of each component.

In the case of the CRO mutation operator, a component is directly removed when we encounter
an entry, computation and exit function prototype. An entry function prototype in an EAST-ADL
model is a component that has at least one port receiving inputs externally. The computation function
prototype has all input and output ports connected with other function prototypes in the same level of
system abstraction. An exit function prototype has at least one output port sending data flows out
of the actual system. When a component is removed, the connections must also be removed so the
system remains well formed (compilable).



Designs 2020, 4, 5 7 of 18

Table 1. Description of each mutation operator and the elements in EAST-ADL that are modified.

Mutation Operator Description EAST-ADL
Element

Energy Replacement Operator
(ero)

The operator is applied where an energy value
occurs occurs, i.e., as an annotation of each
component. The operator is applied by replacing
a value of an energy constraint connected to a
component (e.g., replacing a value (value = 3)
with its boundary values (e.g., value = 2)).

GenericConstraint

Period Replacement Operator
(pro)

The operator applies the mutations in each period
constraint value. The operator is only applied in
the components triggered periodically. The
operator is applied by replacing a value of the
period constraint connected to a component (e.g.,
replacing a value (value = 20) with its boundary
values (e.g., value = 19)).

PeriodConstraint

Execution-Time Replacement
Operator (etro)

The operator applies the mutations in each
execution time constraint value. The operator is
applied by replacing a value of the execution time
constraint connected to a component (e.g.,
replacing a value (value = 3) with its boundary
values (e.g., value = 4)).

ExecTimeConstraint

Component Removal Operator
(cro)

This operator models errors related with missing
components. This operator removes each
component together with its constraints and
connects the inputs of this component to the next
component in the system.

FunctionPrototype

Component Insertion Operator
(cio)

This operator models errors related with
duplicated components. This operator adds a
duplicated component together with its
constraints and connects this component in the
same configuration as the original one.

FunctionPrototype

Triggering Replacement Operator
(tro)

The operator applies the mutations in each
component triggering pattern. The operator is
applied by replacing the periodic pattern with a
event pattern connected to a component and
vice versa.

FunctionPrototype,
PeriodConstraint

In Figure 2 we show examples of mutations for each mutation operator in Table 1. For each
category of mutations, a mutant operator was chosen to provide a small-scale example of the
application to a EAST-ADL model. For example, in Figure 2d for the CRO operator changing the
structure of the model within a system is a likely operation within an EAST-ADL project. Depending
on how the mutation operator is used, the other inports and connections have to be updated. In this
case, CRO removes FP2 and the connection between FP1.Port2 and FP3.Port1. To avoid compilation
problems a component is removed together with its control and connection structures.

These mutation operators are systematically applied to the entire EAST-ADL model (i.e.,
components, ports, connections) each simulating one syntactic change resulting in a set of energy-aware
mutants. During the execution of a test, energy consumption can be measured by the use of a
statistical model checker, and represented as a consumption of a continuous resources where the rate
of consumption over time is constant. A temporal sequence of energy values can have different shapes,
depending on the sampling rate of the measurement and the energy consumption behavior.



Designs 2020, 4, 5 8 of 18

FunctionPrototype1: FunctionType1

Port1 Port2

value=20

Period Constraint

FunctionPrototype1: FunctionType1

Port1 Port2

value=21

Period Constraint

b) PRO

FunctionPrototype1: FunctionType1

Port1 Port2

energy: value=3

Generic Constraint

FunctionPrototype1: FunctionType1

Port1 Port2

energy: value=4

Generic Constraint

a) ERO

FunctionPrototype1: FunctionType1

Port1 Port2

value=3

ExecTime Constraint

FunctionPrototype1: FunctionType1

Port1 Port2

value=2.9

ExecTime Constraint

c) ETRO
d) CRO

FP1: FT1

Port1 Port2

FP2: FT1

Port1 Port2

FP3: FT2

Port1 Port2

FP1: FT1

Port1 Port2

FP2: FT1

Port1 Port2

e) CIO

FP1: FT1

Port1 Port2

FP1:FT2

Port1 Port2

FP2: FT2

Port1 Port2

FP1: FT1

Port1 Port2

FP1:FT2

Port1 Port2

FP2: FT2

Port1 Port2

FP2: FT1

Port1 Port2

FunctionPrototype1: FunctionType1

Port1 Port2

value=20

Period Constraint

FunctionPrototype1: FunctionType1

Port1 Port2

minvalue=1
maxvalue=5

Event Constraint

f) TRO

Figure 2. Examples of mutations for each mutation operator for EAST-ADL architectural models.

3.2. EAST-ADL to Priced-Timed Automata Transformation

We transform an EAST-ADL model (with annotations of energy consumption) into a PTA
model. We use a small-case example in Figure 3 to show the transformation for a generic EAST-ADL
FunctionPrototype. Every component in EAST-ADL is automatically converted into a network of
two PTAs: An interface automaton representing the component interface, and a behavior automaton
representing the internal behavior. The PTA interface contains the triggering of each component,
timing information and energy annotations.

FunctionPrototype1: FunctionType1

Port1 Port2

value=20

Period_Constraint

value=3

ExecTime_Constraint

energy: value=3

GenericConstraint

(a) A generic FunctionPrototype. (b) The interface timed automaton. (c) Behavior template.

Figure 3. An example of a generic interface timed automaton and a behavior template for an
EAST-ADL component.

In practice, each FunctionPrototype is translated into a network of two syncronized automata (as
shown in Figure 3): An interface automaton containing the ports of each EAST-ADL component and a
behavior automaton representing the internal discrete and continuous behavior. Each FunctionPrototype
is defined as an automaton with four locations: (i) Idle, (ii) a Read location used for updating the internal
variables according to the values on the input ports, (iii) a Exec location used for triggering the internal
Behavior, and (iv) a Write location allowing the update of output ports based on the internal variables
values. Each interface is triggered based on the triggering annotation Trigg associated with each
EAST-ADL FunctionPrototype. The energy starts to be consumed when information from the input
ports is read until the component writes the information to the output ports. The energy consumed
by each component increases with time during execution and is modeled as a cost “c” in the PTA
(c(t) = nc × t, where nc ∈ N is the rate of consumption over time t). When the component is
idle (c′(t) = 0) energy is not consumed. In order to calculate the overall consumed energy we



Designs 2020, 4, 5 9 of 18

use an automaton to compute the energy used by the system based on the energy consumed by
each component.

The GenericConstraint is used in the EAST-ADL model for annotating the energy consumption.
By using energy in the GenericConstraint annotation for the behavior of the PTA model, we can
measure the energy consumption inside each component. Specifically, we use a monitor automaton
that includes all of the EAST-ADL model’s energy annotations. This monitor is a PTA that supervises
the system execution by using two synchronization channels: FunctionPrototype_beh_start and
FunctionPrototype_beh_stop.

3.3. Test Suite Generation

To create executable test cases, we use traces obtained during simulation. At each predefined time
unit, test values are obtained by extracting the input parameters and energy values from the these
simulations. The generation of test suites is essentially the creation of signals using the generated
simulations. Since the input signal search space is very large, we randomly select input signals that
change over a certain predefined period of time using ordered signal sequences.

Extra-functional aspects in EAST-ADL, such as the energy consumption, are often more difficult
to generate test than for functional properties. Embedded systems often require large amounts of
energy to be consumed. Irregular and heavy use of energy could result in inadequate functionality of
the system that keeps essential components running. The estimation of the allocated energy budget
can be calculated using the energy consumption annotated in EAST-ADL. The system will complete its
execution if the actual energy consumption of the system does not exceed its energy budget. Otherwise,
the budget has been exhausted during the execution of the system. As a result, we concentrate on test
queries that simulate the nominal but also the worst-case energy consumption for a EAST-ADL model.

While UPPAAL SMC’s is used to provide statistical guarantees based on a series of system
simulations, it is also suitable to use the input parameters and the consumed energy as values in
test cases during individual system simulations. The simulation depends on the number of runs (n)
and the upper time limit for the number of runs (bound). By extracting the input parameters and the
energy values from these simulation traces, we create executable test cases using the MATS tool [25].
In practice, we use UPPAAL SMC’s ability to generate simulation traces, which we transform into
executable test cases using the MATS tool [25], by extracting the parameters and the energy values
at predefined time points. Each test input is a vector of signals where the model’s time-dependent
behavior is executed using an ordered signal sequence. UPPAAL SMC is used by MATS to obtain
traces of simulations over a predefined number of system model runs. A simulation can be formulated
in UPPAAL SMC as the property:

simulate n[bound]{E1, .., Ek},

where n is the number of simulations to be performed, bound is the time bound on the simulations,
and E1, .., Ek are the monitored expressions.

We execute the generated test cases on each mutant and collect the simulation traces containing
the energy values. On both the original model and its mutated versions, each test case is executed.
We exclude test cases that do not contribute to the mutation score in order to minimize the final set of
test cases [25]. The generated simulation traces are transformed into executable test cases sampling
the simulation trace (as shown in the small-scale example in Figure 4a). Based on the generated data
points we use intermediate values at predefined sample points and split the simulation trace in two:
A set of sampled inputs used to trigger the system under test and a set of sampled expected energy
consumption output.

In addition, during this phase we can generate test case with the worst-case energy consumption.
Using UPPAAL SMC for statistical analysis we can obtain the peak energy value which eventually



Designs 2020, 4, 5 10 of 18

reaches a certain behavior in time. This problem is reduced to trying to maximize the energy cost
function to satisfy the following property:

E[bound; n](max : energy)

where bound is the time bound of these simulation traces, n is the number of runs, and energy
represents energy cost. The worst-case energy consumption analysis calculates the simulation cost for
reaching a predefined system behavior. At this stage, feasibility analysis is used to verify whether the
energy consumption is still within the maximum energy value provided by the worst-case analysis.
The verification is accomplished by evaluating the energy distribution as a probability evaluation,
as follows:

Pr[bound](ψ)

where bound is the time bound in all the simulation runs, and ψ is a property in the form “Eventually
p”, where p is a state predicate. We can select the required test suites based on this analysis. Since
the tester may have limited time in practice to test all scenarios, one can choose from the randomly
generated test cases the significant and potentially problematic simulations.

(a)

Mutated Model Energy OutputOriginal Model Energy Output

EM1

EO1EM1 - > threshold

EO1

(b)

Figure 4. Test Generation and mutant detection for energy consumption. (a) An example of a sampled
simulation trace obtained from UPPAAL SMC. (b) An example of applying mutation detection on two
traces based on a predefined threshold.

3.4. Energy-Aware Mutant Detection

A fault is considered to be detected by a test suite if at certain time points the energy values differ
drastically. In this way we increase the likelihood of evaluating a certain energy-related behavior
(e.g., if the energy differs significantly from the expected result). We assume in this study that small
deviations from the specified energy values can be acceptable, test engineers are likely to identify a
fault if the energy deviations are substantial.

From the generated test cases, inputs and output values are extracted and used for mutation
detection. The sequence of inputs in each test case is automatically inserted in a set of generated
mutated models. The mutated models are simulated with the extracted inputs to obtain sets of outputs.
The actual outputs extracted from these mutated models for each test case are compared to the expected
outputs in order to determine the test case ability to kill (detect) any difference between the mutated
models and the original one.

To exemplify this step, we show an example of a test suite that detects a mutant if the energy signal
varies significantly from the expected energy values at certain time points (as shown in Figure 4b).
In practice, we use a quantitative measure of mutant detection to measure the mutant-revealing
capability of a test suite. Let a test case TC be created for a mutated system model M, and let
EM = EM1, ..., EMN be the set of energy signals generated by simulating M for the inputs in TC and
sampled at N time points. Let EO = EO1, ..., EON be the corresponding expected energy signals. We use



Designs 2020, 4, 5 11 of 18

a threshold to verify if the distance is greater than this threshold between each value of EO and EM
at each time point. If there is at least one energy value in EM for which the distance is greater than
the expected threshold, we say that we can detect the mutant M. Otherwise, the injected fault is not
detected by TC.

4. An Experimental Evaluation on the Brake-By-Wire System

We experimentally evaluate this model testing method by applying on an industrial system
provided by Volvo Group Trucks Technology in Sweden. We perform experiments on a Brake-by-Wire
(BBW) industrial system and evaluate the applicability of model testing in creating test cases based on
energy-aware mutation testing. Additionally, by using automatically seeded faults, we examine the
energy-related detection capability of the generated test suites. We start by injecting a set of faults into
the original model to facilitate the assessment of fault detection. For the creation of faults, we rely on
energy consumption mutation operators shown in Table 1.

Specifically, we use a PTA model, run the created test suites and collect the traces from simulations
containing the energy values for each faulty model. Each test suite is executed on both the original
model and its faulty counterpart to calculate the fault detection score. A fault is considered to be
detected when energy results differ between executions. As an additional step, we can use the analysis
result by removing the test cases that do not contribute to the mutation score of the entire test suite.

4.1. Case Description

The work proposed in this evaluation targets the Design Level in EAST-ADL (i.e., Functional
Design Architecture (FDA) and Hardware Design Architecture (HDA) system aspects). The model
can be extended with a GenericConstraint annotation, which allows the architect to model the energy
consumption. Figure 5 presents a part of the BBW system at Design Level which is allocated to a
pedal ECU. This model is extended with annotations for energy consumption as a GenericConstraint.
The BBW system is a braking system that contains an anti-lock braking (ABS) feature and no mechanical
connections between the brake pedal and the brake actuators. A brake pedal-mounted sensor reads
its position, which is used to calculate the desired global brake torque. At each wheel, sensor values
are used to calculate the wheel speed used by the ABS algorithm along with the brake torque and the
approximate speed of the vehicle to determine the real brake torque to be sent to the actuators.

FunctionalDesignArchitecture

pBrakePedalLDM:
BrakePedalLDM

pBrakeTorqueMap:
BrakeTorqueMap

pGlobalBrakeController:
GlobalBrakeController

pLDM_Sensor_FL:
WhlSpdSensorLDM

pABS_FL: ABS pLDM_Brake_FL:
BrakeActuatorLDM

ElSignalIn
PositionPercentOut

BrakePedalPos_percentIn
DriverReqTorqOut

WheelSpeed_FLIn

TorqRef_FLOut

WheelSpeedOutTicksIn

RequestedTorqueIn

WheelSpeedIn

DriverReqTorqueIn

ABSBrakeTorqueOut TorqCmdIn ElSignalOut

WheelSpeed_FRIn
TorqRef_FROut

VehicleSpeedIn

pLDM_Sensor_FR:
WhlSpdSensorLDM

pABS_FR: ABS pLDM_Brake_FR:
BrakeActuatorLDM

WheelSpeedOutTicksIn

RequestedTorqueIn

WheelSpeedIn

ABSBrakeTorqueOut TorqCmdIn ElSignalOut
VehicleSpeedIn

pBrakePedalSensor:
BrakePedalSensor

PositionIn ElSignalOut

pHW_Encoder_FL: Encoder

RotationIn TicksOut

pHW_Encoder_FR: Encoder

RotationIn TicksOut

pVehicleSpeedEstimator:
VehicleSpeedEstimator

WheelSpeed_FRIn

WheelSpeed_FLIn

VehicleSpeedEst

pLDM_Sensor_RL:
WhlSpdSensorLDM

WheelSpeedOutTicksIn

pHW_Encoder_RL: Encoder

RotationIn TicksOut

pLDM_Sensor_RR:
WhlSpdSensorLDM

WheelSpeedOutTicksIn

pHW_Encoder_RR: Encoder

RotationIn TicksOut

WheelSpeed_RLIn

WheelSpeed_RRIn

TorqRef_RLOut

TorqRef_RROut

WheelSpeed_RLIn

WheelSpeed_RRIn

pHW_Brake_FL:
BrakeActuator

ElSignalIn BrakeTorqueOut

pHW_Brake_FR:
BrakeActuator

ElSignalIn BrakeTorqueOut

pABS_RL: ABS pLDM_Brake_RL:
BrakeActuatorLDM

RequestedTorqueIn

WheelSpeedIn

ABSBrakeTorqueOut TorqCmdIn ElSignalOut
VehicleSpeedIn

pHW_Brake_RL:
BrakeActuator

ElSignalIn BrakeTorqueOut

pABS_RR: ABS pLDM_Brake_RR:
BrakeActuatorLDM

RequestedTorqueIn

WheelSpeedIn

ABSBrakeTorqueOut TorqCmdIn ElSignalOut
VehicleSpeedIn

pHW_Brake_RL:
BrakeActuator

ElSignalIn BrakeTorqueOut

energy: value=7
memory: value=20

BrakePedalLDM_GenericConstraint
energy: value=7
memory: value=45

BrakeTorqueMap_GenericConstraint

energy: value=19
memory: value=35

GlobalBrakeController_GenericConstraint
energy: value=5
memory: value=25

LDM_Sensor_GenericConstraint
energy: value=13
memory: value=30

ABS_GenericConstraint
energy: value=9
memory: value=25

LDM_Brake_GenericConstraint

energy: value=12
memory: value=3

BrakePedalSensor_GenericConstraint

energy: value=12
memory: value=3

Encoder_GenericConstraint
energy: value=12
memory: value=8

BrakeActuator_GenericConstraint

energy: value=15
memory: value=27

VehicleSpeedEstimator_GenericConstraint

Figure 5. An overview of the Brake-by-Wire (BBW) system and its resource allocation.



Designs 2020, 4, 5 12 of 18

The ABS algorithm calculates the slip rate s using the following equation:

S = (V −W × R)/V,

where V is the vehicle speed, W is wheel speed, and R is the wheel radius. This coefficient has a
nonlinear relationship with the slip rate: When s is increasing, the friction coefficient is also increasing,
and its peak value is reached when s is 0.2. Further increase in s reduces the wheel friction coefficient.
In this case, if s is greater than 0.2 the brake is released.

To exemplify the transformation of the BBW system modeled in EAST-ADL, we show a small-case
example in Figure 6 that depicts the translation of the brake pedal sensor FunctionPrototype into a
network of two synchronized PTA. For each component, the energy is calculated according to the rate
of consumption monitored in the interface PTA (pBrakePedalSensor_e′ == 2), and a constant value
is used in the behavior automaton (pBrakePedalSensor_e = pBrakePedalSensor_e + 0.1). The energy
consumed by the entire system is computed using the sum of the energy consumed by each component.

(a) (b)

Figure 6. The network of Priced Timed Automata (PTA) for the brake pedal sensor component
FunctionPrototype showing the transformed EAST-ADL architectural interface and behavior. (a) The
interface timed automaton for the brake pedal sensor component. (b) The behavior timed automaton
for the brake pedal sensor component.

4.2. Experimental Evaluation

We performed an experimental evaluation considering the creation of energy-aware mutations
and model testing for the BBW system. We collected data for the following metrics: Generation time as
a proxy for test efficiency, mutation score as a proxy for fault detection and the number of selected test
cases as a measure of model testing cost reduction. In order to calculate the fault detection score, each
test suite is executed on the faulty versions of the original EAST-ADL model to evaluate whether it
detects the injected energy faults or not.

4.2.1. Test Suite Generation Results

As input for test generation, the method requires a standard EAST-ADL model. The generation
stops searching for test inputs when it achieves the number of simulation runs. The MATS tool
automatically runs the test cases on the BBW model and compares the expected outputs with the
actual ones. We used different number of simulations (i.e., 25, 50, 100, 200, 400, 1000) to assess the
test generation efficiency and effectiveness. As simulation time we used 64, value based on the BBW
model and its full system execution and the calculated end-to-end deadline. In addition, we use 0.05
as the sample size for detecting the differences in the energy signal and 5 as the threshold delta. These
values are selected based on our experience with verifying and analyzing the BBW system, as this is a
realistic scenario and the values show significant differences in the energy consumption upon manual
inspection of traces.

In Table 2, we present the results of applying model testing to the BBW case. As mentioned
previously, in this experiment, we assume that the time is bounded to 64 time units. Table 2 lists—for
each test suite and query to be checked—the time for test generation, as well as the mutation score



Designs 2020, 4, 5 13 of 18

achieved by each test suite. Regarding the generation of simulations for energy consumption, UPPAAL

SMC is able to generate test cases between 17.2 s for 50 simulations and 563.4 s for 1000 simulations of
the model.

In addition, to create a test suite demonstrating the worst-case energy consumption, we can use
UPPAAL SMC’s capacity to generate the maximum energy value. In this case, we generate simulations
of the system over 200 runs, trying to maximize the energy during these simulations, with the query
E[t<=64, 200](max : energy). The mean value generated by UPPAAL SMC is 447.2 energy units. Using
this estimation, we use can use feasibility analysis for obtaining the probability for the energy value
to remain within the threshold. For example, on the BBW system we are able to demonstrate, after
86 runs, that the energy consumption is lower than 447.2 with a 0.9 probability, and a confidence of
0.9. Given these results, an engineer can select test cases from the generated test suites showing the
worst-case energy consumption and which can be executed on the actual system.

These results show the applicability of statistical model checking, for model testing the energy
consumption using real architectural descriptions from an industrial system. We conclude that
we have obtained experimental evidence that this is an efficient method for model testing applied
on a real-world embedded system using its energy consumption information at the EAST-ADL
architectural level. These results suggest that model testing is computationally inexpensive when used
for mutation testing.

Table 2. Overall results showing the efficiency of the energy consumption test generation and mutant
detection score for all generated test suites. In addition, we show the results of the test case (TC)
selection based on mutation analysis.

Test Suite SMC Query Generation
Time (s)

Mutation
Score (%)

Selected TCs
| Total TCs

TS1 simulate 25[<=64]{inputs[], energy} 17.2 30% 8|25

TS2 simulate 50[<=64]{inputs[], energy} 36.4 57% 15|50

TS3 simulate 100[<=64]{inputs[], energy} 72.1 75% 42|100

TS4 simulate 200[<=64]{inputs[], energy} 137.8 87% 59|200

TS5 simulate 400[<=64]{inputs[], energy} 277.5 100% 123|400

TS6 simulate 1000[<=64]{inputs[], energy} 563.4 100% 130|1000

4.2.2. Fault Seeding and Mutation Detection Results

The fault seeding procedure, results in 223 mutations (i.e., 50 ERO-based mutants, 48 PRO-based
mutants, 50 ETRO-based mutants and 25 mutants for each CRO, CIO and TRO-based mutant operators).
All mutants are versions of the original EAST-ADL model containing a single fault (i.e., each fault
assumes one change in the system). All 223 faults are the result of applying all mutation operators.
On each of the faulty versions and their original counterparts, the generated test suites are executed
so that a fault detection score can be calculated. A mutant is deemed to be detected by a test suite
if at some time points the energy values vary significantly. This is performed in order to increase
the likelihood of detecting if the energy varies considerably from the expected result. Based on our
experience in verifying and analyzing the BBW system, we set the threshold to 5 energy units.

The results in Table 2 show that for all test suites (i.e., TS1 to TS6) the achieved mutation score
ranges from 30% for a test suite with 25 test cases to 100% for TS5 and TS6. Our results suggest that for
test suites containing over 400 test cases all mutants are detected. Test suites TS5 and TS6 are assumed
to be good at detecting faults in comparison to the other generated test suites. Even so, executing
all 400 test cases is costly when performing testing on the actual BBW system and not all test cases
contribute directly to the overall mutation score. This is extremely expensive from a computational
point of view when considering using model testing on a complex embedded system. Therefore, we
use the results of mutation analysis when executing test cases on the actual model to find the minimum



Designs 2020, 4, 5 14 of 18

number of test cases achieving the overall mutation score. In Table 2 we show the number of selected
test cases out of the total number of test cases generated for each test suite (e.g., a subset of eight test
cases can achieve a 30% mutation score). For all test suites, regardless of the number of generated
test cases, one can reduce the number of test cases achieving the desired mutation score by over 40%.
For TS5, 123 test cases are needed for achieving 100% mutation coverage with the rest of the test cases
in TS5 not improving the overall score. This shows, that some test cases overlap in their exercised
behavior of the BBW system and an improved generation strategy is needed to select the necessary
test cases during model testing.

5. Validity Evaluation

Here we present a validity evaluation using the guidelines proposed by Runeson and Höst [26].

5.1. Construct Validity

Proper construct validity investigates the phenomenon that the researchers intended to study.
The development of the method and the design of our experimental evaluation was based on certain
assumptions. We have seeded energy-aware mutants automatically to calculate the ability of the
selected test cases to detect energy errors. This process is carried out before test cases are generated
in order to avoid a potential bias. It is possible that a larger number of naturally-occurring faults
would yield different results. Adding real faults from previous projects should be employed in order
to control the results more objectively early in the development process.

5.2. Internal Validity

For an experimental study as ours, internal validity relates to how credible the testing results and
the mutation detection are. Detection of faults is based on a threshold of the energy budget and the
time points selected to check the difference in the signal. This requirement is specific to the system
and will not be enough to draw any strong conclusions. The effectiveness of this criterion depends
on the energy difference interpretation and would clearly differ from one system to another. Because
differences are characterized by the features of the signal shapes, we have checked at certain points
in time whether the energy values differ substantially. This is a realistic situation with test engineers
likely to find faults based on the measured energy consumption and the manual visual inspection.

5.3. External Validity

External validity relates to the study generalizability. Our method aims at designing and selecting
a proper test suite based on a generic evaluation of the architectural model and the mutant detection
score to reveal energy-related problems. However, unlike functional testing, which can use various
metrics (e.g., code coverage, input space partitioning) for test generation, mutation testing for energy
consumption is not as well studied. There is a need to develop and evaluate metrics capturing aspects
of test effectiveness of energy consumption (such as those suggested in this paper) that can be used for
test generation and selection.

6. Related Work

Recently, there has been a growing interest [27] in developing testing techniques focusing
on architectural designs in software engineering. Testing based on software architectures has
been explored in a considerable amount of work [28–32], leading to contributions in system and
integration testing [28–30], criteria for architectural-based testing [31], and regression test selection [32].
Jiang et al. [33] compared several techniques that are used in performance and load testing of software
intensive systems. For example, Zhang et al. [34,35] proposed the use of load testing of timing
and resource requirements using system-level models. Compared to this work, we focus on energy



Designs 2020, 4, 5 15 of 18

consumption and we provide an efficient and effective model testing method; this aspect has received
little attention in the literature.

Testing software based on extra-functional properties at the architectural level has received less
attention [7,36–40] than the functional testing of such models. In our previous work [7], we explored
the use of statistical model checking for analysis and performance testing of EAST-ADL models and
used manually injected faults to measure test effectiveness. In this work, we build upon these results
and consider how to automatically select and generate test suites for testing the energy performance of
a system based on its architectural model and mutation testing.

One of the initial papers on non-functional testing [36] used a software architecture for
selecting the parameters that directly influence the system performance. Among the approaches
for non-functional test generation, only a few [41–44] consider robustness and performance aspects.
Nebut et al. [41] and Shaukat et al. [42] proposed methods for automatic test generation that support
robustness goals expressed in UML models. In contrast to these studies, our approach is tailored to an
architectural language, which is an emerging notation in the automotive domain. We automatically
select test cases that cover energy-aware injected faults on the model level early-on in the development
process. In addition, in this paper we focus on selecting test cases for testing the performance of
an existing Brake-By-Wire system by using the energy consumption information encoded in the
architectural model.

7. Conclusions

In this paper we outline a method for testing EAST-ADL architectural models using energy-aware
mutations. Furthermore this method uses UPPAAL SMC and MATS approaches to select test suites that
contribute to the overall mutation score. The method makes use of energy requirements as expressed in
EAST-ADL architectural models, transforms these requirements into priced timed automata together
with the component interfaces, and uses statistical model checking to identify relevant test cases.
We use simulations to create test suites containing input parameters and energy signals. We select
test cases that maximize the mutation score. An experimental evaluation of this method, using a
Brake-by-Wire system provided by Volvo Group Trucks Technology in Sweden, indicates that model
testing of energy consumption is applicable for the automatic generation and execution of test suites
at architectural level. The evaluation indicates that this method of creating test suites is efficient in
terms of generation time. In this study, we proposed to evaluate the fault detection capability of
these test suites by seeding modeling errors for energy consumption and altering the level of energy
consumption over time. Our results suggest that an approach that selects test cases showing diverse
energy consumption patterns can increase the fault detection ability.

Future work aims to extend our approach to generate tests for other types of resources and to
apply it more thoroughly to real industrial cases to demonstrate its strengths and limitations by using
naturally occurring faults.

Author Contributions: The first two authors contributed equally to the research, approach, study design, analysis
and reporting of the research work. In addition, the first author contributed with tool development and data
collection. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Swedish Research Council (VR) through the “Adequacy—based
testing of extra-functional properties of embedded systems” project. This work is partially funded from the
Electronic Component Systems for European Leadership Joint Undertaking under grant agreement No. 737494,
The Swedish Innovation Agency, Vinnova (MegaM@Rt2 and XIVT), as well as by the Swedish Knowledge
Foundation (KKS), within the DPAC (Dependable Platforms for Autonomous Systems and Control) research
profile.

Acknowledgments: We would like to thank Jonatan Larsson for his support in using the MATS tool and Raluca
Marinescu for her valuable comments on this work.

Conflicts of Interest: The authors declare no conflict of interest.



Designs 2020, 4, 5 16 of 18

References

1. Pretschner, A.; Broy, M.; Kruger, I.H.; Stauner, T. Software engineering for automotive systems: A roadmap.
In Proceedings of the IEEE Computer Society on 2007 Future of Software Engineering, Minneapolis, MN,
USA, 23–25 May 2007; pp. 55–71.

2. Hammond, J.; Rawlings, R.; Hall, A. Will it work?[requirements engineering]. In Proceedings of the
IEEE International Symposium on Requirements Engineering, Toronto, ON, Canada, 27–31 August 2001,
pp. 102–109.

3. Barroso, L.A.; Hölzle, U. The case for energy-proportional computing. Computer 2007, 40. [CrossRef]
4. Briand, L.; Nejati, S.; Sabetzadeh, M.; Bianculli, D. Testing the untestable: model testing of complex

software-intensive systems. In Proceedings of the 38th International Conference on Software Engineering
Companion, Austin, TX, USA, 14–22 May 2016; pp. 789–792.

5. González, C.A.; Varmazyar, M.; Nejati, S.; Briand, L.C.; Isasi, Y. Enabling model testing of cyber-physical
systems. In Proceedings of the 21th ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems, Copenhagen, Denmark, 14–19 October 2018; pp. 176–186.

6. Blom, H.; Lönn, H.; Hagl, F.; Papadopoulos, Y.; Reiser, M.O.; Sjöstedt, C.J.; Chen, D.J.; Tagliabò, F.; Torchiaro,
S.; Tucci, S. EAST-ADL: An Architecture Description Language for Automotive Software-Intensive Systems.
EAST-ADL White Paper 2013, 1.

7. Marinescu, R.; Enoiu, E.; Seceleanu, C.; Sundmark, D. Automatic Test Generation for Energy Consumption
of Embedded Systems Modeled in EAST-ADL. In Proceedings of the 2017 IEEE International Conference
on Software Testing, Verification and Validation Workshops (ICSTW), Toyko, Japan, 13–17 March 2017;
pp. 69–76.

8. DeMillo, R.A.; Lipton, R.J.; Sayward, F.G. Hints on test data selection: Help for the practicing programmer.
Computer 1978, 11, 34–41. [CrossRef]

9. Behrmann, G.; Fehnker, A.; Hune, T.; Larsen, K.; Pettersson, P.; Romijn, J.; Vaandrager, F. Minimum-Cost
Reachability for Priced Time Automata. In Hybrid Systems: Computation and Control; Lecture Notes in
Computer Science; Springer: Berlin/Heidelberg, Germany, 2001.

10. Bulychev, P.; David, A.; Larsen, K.G.; Mikučionis, M.; Poulsen, D.B.; Legay, A.; Wang, Z. UPPAAL-SMC:
Statistical Model Checking for Priced Timed Automata. In Proceedings of the Workshop on Quantitative
Aspects of Programming Languages and Systems, Tallinn, Estonia, 31 March–1 April 2012.

11. Shaw, M.; Garlan, D. Software Architecture: Perspectives on An Emerging Discipline; Prentice Hall Englewood
Cliffs: Englewood Cliffs, NJ, USA, 1996; Volume 1.

12. Ammann, P.; Offutt, J. Introduction to Software Testing; Cambridge University Press: Cambridge, UK, 2008.
13. Malavolta, I.; Lago, P.; Muccini, H.; Pelliccione, P.; Tang, A. What industry needs from architectural

languages: A survey. IEEE Trans. Softw. Eng. 2013, 39, 869–891. [CrossRef]
14. Just, R.; Jalali, D.; Inozemtseva, L.; Ernst, M.D.; Holmes, R.; Fraser, G. Are Mutants a Valid Substitute for

Real Faults in Software Testing? In International Symposium on Foundations of Software Engineering; ACM: New
York, NY, USA, 2014.

15. Black, P.E.; Okun, V.; Yesha, Y. Mutation operators for specifications. In Proceedings of the ASE 2000.
Fifteenth IEEE International Conference on Automated Software Engineering, Grenoble, France, 11–15
September 2000; pp. 81–88.

16. Aichernig, B.K.; Salas, P.A.P. Test case generation by OCL mutation and constraint solving. In Proceedings
of the Fifth International Conference on Quality Software (QSIC’05), Melbourne, Australia, 19–20 September
2005; pp. 64–71.

17. Aichernig, B.K.; Jöbstl, E.; Tiran, S. Model-based mutation testing via symbolic refinement checking. Sci.
Comput. Program. 2015, 97, 383–404. [CrossRef]

18. Lindström, B.; Offutt, J.; Sundmark, D.; Andler, S.F.; Pettersson, P. Using mutation to design tests for
aspect-oriented models. Inf. Softw. Technol. 2017, 81, 112–130. [CrossRef]

19. Kang, E.Y.; Enoiu, E.P.; Marinescu, R.; Seceleanu, C.; Schobbens, P.Y.; Pettersson, P. A Methodology for
Formal Analysis and Verification of EAST-ADL Models. Reliab. Eng. Syst. Saf. 2013, 120. [CrossRef]

20. Marinescu, R.; Kaijser, H.; Mikučionis, M.; Seceleanu, C.; Lönn, H.; David, A. Analyzing industrial
architectural models by simulation and model-checking. In International Workshop on Formal Techniques for
Safety-Critical Systems; Springer: London, UK, 2014; pp. 189–205.

http://dx.doi.org/10.1109/MC.2007.443
http://dx.doi.org/10.1109/C-M.1978.218136
http://dx.doi.org/10.1109/TSE.2012.74
http://dx.doi.org/10.1016/j.scico.2014.05.004
http://dx.doi.org/10.1016/j.infsof.2016.04.007
http://dx.doi.org/10.1016/j.ress.2013.06.007


Designs 2020, 4, 5 17 of 18

21. Bulychev, P.; David, A.; Larsen, K.G.; Legay, A.; Li, G.; Poulsen, D.B. Rewrite-Based Statistical Model Checking
of WMTL; Runtime Verification; Springer: London, UK, 2013.

22. Marinescu, R.; Enoiu, E.; Seceleanu, C. Statistical Analysis of Resource Usage of Embedded Systems Modeled in
EAST-ADL; VLSI Symposium; IEEE: Piscataway, NJ, USA, 2015; pp. 380–385.

23. Aichernig, B.K.; Lorber, F.; Ničković, D. Time for mutants—model-based mutation testing with timed
automata. In International Conference on Tests and Proofs; Springer: London, UK, 2013, pp. 20–38.

24. Seceleanu, C.; Vulgarakis, A.; Pettersson, P. REMES: A Resource Model for Embedded Systems.
In Proceedings of the International Conference on Engineering of Complex Computer Systems, Potsdam,
Germany, 2–4 June 2009.

25. Larsson, J. Automatic Test Generation and Mutation Analysis using UPPAAL SMC; Bachelor of Science Thesis
Report; MDH Diva: Ascona, Switzerland, 2017.

26. Runeson, P.; Höst, M. Guidelines for conducting and reporting case study research in software engineering.
Empir. Softw. Eng. 2009, 14, 131. [CrossRef]

27. Bertolino, A.; Inverardi, P.; Muccini, H. Software architecture-based analysis and testing: A look into
achievements and future challenges. Computing 2013, 95, 633–648. [CrossRef]

28. Abdurazik, A.; Jin, Z.; White, L.; Offutt, J. Analyzing software architecture descriptions to generate
system-level tests. In Proceedings of the Workshop on Evaluating Software Architectural Solutions, Irvine,
CA, USA, 9 May 2000.

29. Bertolino, A.; Inverardi, P. Architecture-based software testing. In International Software Architecture Workshop;
ACM: New York, NY, USA, 1996; pp. 62–64.

30. Richardson, D.J.; Wolf, A.L. Software testing at the architectural level. In International Software Architecture
Workshop and International Workshop on Multiple Perspectives in Software Development; ACM: New York, NY,
USA, 1996, pp. 68–71.

31. Jin, Z.; Offutt, J. Deriving tests from software architectures. In Proceedings of the International Symposium
on Software Reliability Engineering, Hong Kong, China, 27–30 November 2001, pp. 308–313.

32. Harrold, M.J. Architecture-based regression testing of evolving systems. In Proceedings of the International
Workshop on the Role of Software Architecture in Testing and Analysis, Marsala, Italy, 30 June–3 July 1998.

33. Jiang, Z.M.; Hassan, A.E. A Survey on Load Testing of Large-Scale Software Systems. IEEE Trans. Softw. Eng.
2015, 41, 1091–1118. [CrossRef]

34. Zhang, J.; Cheung, S.C. Automated test case generation for the stress testing of multimedia systems. Softw.
Pract. Exp. 2002, 32, 1411–1435. [CrossRef]

35. Zhang, J.; Cheung, S.C.; Chanson, S.T. Stress testing of distributed multimedia software systems. In Formal
Methods for Protocol Engineering and Distributed Systems; Springer: London, UK, 1999; pp. 119–133.

36. Weyuker, E.J.; Vokolos, F.I. Experience with performance testing of software systems: issues, an approach,
and case study. IEEE Trans. Softw. Eng. 2000, 26, 1147. [CrossRef]

37. Denaro, G.; Polini, A.; Emmerich, W. Early performance testing of distributed software applications. In ACM
SIGSOFT Software Engineering Notes; ACM: New York, NY, USA, 2004; Volume 29, pp. 94–103.

38. Jiang, Z.M.; Hassan, A.E.; Hamann, G.; Flora, P. Automated performance analysis of load tests.
In Proceedings of the International Conference on Software Maintenance, Edmonton, AB, Canada, 20–26
September 2009; pp. 125–134.

39. Grechanik, M.; Fu, C.; Xie, Q. Automatically finding performance problems with feedback-directed learning
software testing. In Proceedings of the International Conference on Software Engineering (ICSE), Zurich
Switzerland, 2 June 2012; pp. 156–166.

40. Marinescu, R.; Saadatmand, M.; Bucaioni, A.; Seceleanu, C.; Pettersson, P. A model-based testing framework
for automotive embedded systems. In Proceedings of the 2014 40th EUROMICRO Conference on Software
Engineering and Advanced Applications, Verona, Italy, 27–29 August 2014; pp. 38–47.

41. Nebut, C.; Fleurey, F.; Le Traon, Y.; Jezequel, J.M. Automatic test generation: A use case driven approach.
IEEE Trans. Softw. Eng. 2006, 32, 140–155. [CrossRef]

42. Ali, S.; Briand, L.C.; Hemmati, H. Modeling robustness behavior using aspect-oriented modeling to support
robustness testing of industrial systems. Softw. Syst. Model. 2012, 11, 633–670. [CrossRef]

http://dx.doi.org/10.1007/s10664-008-9102-8
http://dx.doi.org/10.1007/s00607-013-0338-9
http://dx.doi.org/10.1109/TSE.2015.2445340
http://dx.doi.org/10.1002/spe.487
http://dx.doi.org/10.1109/32.888628
http://dx.doi.org/10.1109/TSE.2006.22
http://dx.doi.org/10.1007/s10270-011-0206-z


Designs 2020, 4, 5 18 of 18

43. Yue, T.; Ali, S. Bridging the gap between requirements and aspect state machines to support non-functional
testing: industrial case studies. In European Conference on Modelling Foundations and Applications; Springer:
London, UK, 2012; pp. 133–145.

44. Garousi, V.; Briand, L.C.; Labiche, Y. A UML-based quantitative framework for early prediction of resource
usage and load in distributed real-time systems. Softw. Syst. Model. 2009, 8, 275–302. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s10270-008-0099-7
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Architecture and System-Level Testing
	Mutation Testing
	EAST-ADL Architectural Language
	UPPAAL SMC and Priced Timed Automata

	A Model Testing Method for Energy-Aware Testing Using EAST-ADL
	Energy-Aware Mutant Generation
	EAST-ADL to Priced-Timed Automata Transformation
	Test Suite Generation
	Energy-Aware Mutant Detection

	An Experimental Evaluation on the Brake-By-Wire System
	Case Description
	Experimental Evaluation
	Test Suite Generation Results
	Fault Seeding and Mutation Detection Results


	Validity Evaluation
	Construct Validity
	Internal Validity
	External Validity

	Related Work
	Conclusions
	References

