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Abstract: The present work deals with the development of a finite element methodology for obtaining
the stress distributions in thick cylindrical HK40 stainless steel pipe that carries high-temperature
fluids. The material properties and loading were assumed to be random variables. Thermal
stresses that are generated along radial, axial, and tangential directions are generally computed
using very complex analytical expressions. To circumvent such an issue, probability theory and
mathematical statistics have been applied to many engineering problems, which allows determination
of the safety both quantitatively and objectively based on the concepts of reliability. Monte Carlo
simulation methodology is used to study the probabilistic characteristics of thermal stresses, and was
implemented to estimate the probabilistic distributions of stresses against the variations arising due to
material properties and load. A 2-D probabilistic finite element code was developed in MATLAB, and
the deterministic solution was compared with ABAQUS solutions. The values of stresses obtained
from the variation of elastic modulus were found to be low compared to the case where the load alone
was varying. The probability of failure of the pipe structure was predicted against the variations in
internal pressure and thermal gradient. These finite element framework developments are useful
for the life estimation of piping structures in high-temperature applications and for the subsequent
quantification of the uncertainties in loading and material properties.

Keywords: probabilistic finite element method; HK40 stainless steel; axisymmetric finite elements;
random variables; material and load variability; Monte Carlo simulation

1. Introduction

Axisymmetric pressurized thick cylindrical pipes are widely used in chemical, petroleum, and
military industries, in fluid transfer plants and power plants, as well as in nuclear power plants due to
ever-increasing industrial demand. These pipes are generally introduced to excessive pressures and
temperatures that are either steady or continuous. In general, it is very difficult to exactly estimate
the thermal stresses generated on structural components such as thick pipe due to pressure and
temperature changes. Therefore, probability theory and mathematical statistics have been applied,
which allows the safety to be determined both quantitatively and objectively based on the concepts of
reliability. The stress distribution in nuclear power plant piping systems remains a main concern, and
deterministic structural integrity assessment needs to be combined with probabilistic approaches in
order to consider uncertainties in material and load properties. The deterministic finite element method
for a defined problem can be transformed to a probabilistic approach by considering some of the
inputs as random variables. The uncertainty associated with the strength prediction can be calculated
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by simulation techniques such as Monte Carlo simulation, which allow the values for basic stiffness
variables to be generated based on their statistical distributions (i.e., probability density functions).
A relevant strength variable for pipe is the elastic modulus, and load variables include internal pressure
and temperature change. The objective herein was to compile statistical information and data based on
literature review regarding both strength and load random variables relevant to thick pipe structure for
the quantification of the probabilistic characteristics of these variables. The quantification of random
variables of loads and material properties in terms of their means, standard deviations, or coefficients
of variation and probability distributions can be achieved by data collection and analysis. The initial
step is to gather as much as data in order to consider what is appropriate for the unarranged variables
under study. The second step is concerned with the statistical analysis of the data to determine the
probabilistic characteristics of these variables.

Zhou and Tu [1] carried out a work to estimate the service life of a high-temperature furnace,
which is very difficult due to the variability of creep data. To study the random nature of service life,
a new stochastic creep damage model is proposed in their work. A comparison with results calculated
using the Monte Carlo method verified the creep damage model. The randomness of the creep damage
was demonstrated with a calculation on HK40 furnace tubes, providing an effective means of assessing
the reliability of the furnace tubes. In the present work, the material parameters of the HK40 were
adapted from Zhou and Tu [1]. SM Rehman et al. [2] investigated the natural frequencies and bulking
loads for cylindrical shells with and without cracks. Chanylew Taye and Alem Bazezew [3] studied the
creep analysis of boiler tubes by finite element method. In their work, an analysis is developed for the
determination of the creep deformation of an axisymmetric boiler tube subjected to axisymmetric loads.

Heat flux determination finds it application in the field of materials processing [4–6]. Holm
Altenbach et al. [7] presented a creep model to reflect the basis features of creep in structures including
the evaluation of inelastic deformations, relaxation and redistribution of stresses, as well as the
local reduction of material strength. The solutions were compared with the finite element solutions
of ANSYS and ABAQUS finite element codes with user creep model subroutines. The geometric
parameters and loading conditions for the present work were adopted from Holm Altenbach [7].
Finally, Oliver C. Ibe [8] presented a study of the fundamentals of applied probability and random
processes. The present work follows the probabilistic equations, and a comprehensive review on the
contour method has already been carried out by Prime and DeWald [8]. Node correction in a control
volume mesh is not possible because the mesh needs to be regular. That weakness is not present in the
finite element based finite volume method (FEMFVM).

The stress induced by thermal gradient through the wall is given by [9]:
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2. Analytical Solution

The Stresses for Thick-Walled Cylinder Pipe under Internal Pressure (P) and Thermal Gradient (∆T)

Radial stress is given by [10]:
σr = σP

r + σT
r , (6)
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Circumferential stress is given by:
σθ = σP
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Axial stress is given by:
σz = σP

z + σT
z , (11)
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Finally, von Mises stress is given by:

σe =
1√
2

√
(σr − σθ)

2 + (σθ − σz)
2 + (σz − σθ)

2, (13)

where σP
θ is the hoop stress induced by pressure (MPa); σP

z is the axial stress induced by pressure
(MPa); σP

r is the radial stress induced by pressure (MPa); P is the pressure in (MPa); r0 is the outer
radius (mm); and ri is the inner radius (mm); a is the ratio of outer to inner radius:

a = r0/ri, (14)

r is the radius at any position of the tube wall (mm); and µ is Poisson’s ratio. σT
θ is the hoop stress

induced by thermal stress (MPa); σT
z is the axial stress induced by thermal stress (MPa); σT

r is the radial
stress induced by thermal stress (MPa); E is the elastic modulus of the material (MPa); α is the thermal
expansion coefficient of the material (1/◦C); ∆T is the thermal gradient of the outer wall, and the inner
wall temperature is:

∆T = Ti − T0. (15)

A thick-walled cylinder pipe carrying high-temperature liquid is considered. The fluid inside the
pipe was assumed to completely fill the pipe and exert a constant pressure P. The analysis was carried
out in the 2-D plane of the cross section of the pipe (see Figure 1).
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Figure 1. Schematic diagram of the axisymmetric pipe section.

The pipe was made up of material HK40 as per Zhou and Tu [1]. It was stressed to a pressure
of 40 MPa. The temperature of the fluid flowing inside the pipe Ti was 500 ◦C, and the outside
temperature T0 was 420 ◦C (i.e., the pipe was subjected to a thermal gradient ∆T of 80 ◦C [11].

The dimensions of the thick pipe section were taken as L of 100 mm, ri of 25 mm, and r0 of 50 mm.
The material properties of HK40 are given as follows: elastic modulus E of 1.38× 105 Pa, Poisson’s
ratio µ of 0.313, thermal expansion coefficient α of 1.5× 10−5 (1/◦C). The obtained values of the radial
stress, circumferential stress, axial stress, and von Mises stress are shown in Table 1. Graphs of different
stresses vs. radius are shown in Figures 2 and 3.

Table 1. Analytical results of the pipe.

Radius (mm) Radial Stress (σr)
(MPa)

Circumferential
Stress (σθ) (MPa)

Axial Stress (σz)
(MPa)

Von Mises Stress
(σv) (MPa)

26.25 −35.04 61.70 8.34 83.93
28.75 −26.99 53.66 8.34 70.02
31.25 −20.80 47.46 8.34 59.33
33.75 −15.93 42.59 8.34 50.93
36.25 −12.03 38.70 8.34 44.21
38.75 −8.86 35.53 8.34 38.77
41.25 −6.25 32.92 8.34 34.29
43.75 −4.08 30.74 8.34 30.57
46.25 −2.24 28.91 8.34 27.44
48.75 −0.69 27.35 8.34 24.80

Figure 2. Variation of radial, circumferential, and axial stresses.
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Figure 3. Von Mises stress vs. radius.

3. Axisymmetric Finite Element Analysis Using ABAQUS Software

A pipe made up of HK40 material was considered with a pipe length L of 100 mm, inner radius
ri of 25 mm, and outer radius r0 of 50 mm. The material properties are elastic modulus (E) of
1.38 × 105 MPa, Poisson’s ratio µ of 0.313, coefficient of thermal expansion (α) of 1.5 × 10−5 (1/◦C).
The model was meshed with element type CAX4R, a four-noded bilinear quadrilateral element, and
the mesh grid was 10 × 10 elements and was fixed in the axial direction U2 of 0, as shown in Figure 4.
The loading conditions were internal pressure P = 40 MPa, inside temperature Ti of 500 ◦C, outside
temperature T0 of 420 ◦C, thermal gradient ∆T of 80 ◦C. Figure 4 shows the model with meshing and
applied boundary conditions in ABAQUS. Analysis on the sweep of different stress elements before
and after analysis is shown in Figures 5–8 below, along with comparisons of various stresses which are
shown in Figures 9–11. Tables 2 and 3 show the comparisons of analytical and finite element analysis
(FEA) using ABAQUS results by using von Mises stress.

Figure 4. Meshing, boundary conditions, internal pressure, and thermal gradient of axisymmetric
thick pipe.
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Figure 5. Analysis on sweep of radial stress elements: (a) before, (b) after.
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Figure 6. Analysis on sweep of axial stress elements: (a) before, (b) after.
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Figure 7. Analysis on sweep of circumferential stress elements: (a) before, (b) after.
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Figure 8. Analysis on sweep of von Mises stress elements: (a) before, (b) after.
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Table 2. Comparison of analytical and finite element analysis (FEA) using ABAQUS results by using
von Mises stress.

Radius
(mm)

Analytical Results FEA Using ABAQUS

σr (MPa) σθ (MPa) σV (MPa) σr (MPa) σθ (MPa) σV (MPa)

26.2500 −35.0416 61.7082 83.9361 −35.1470 61.7910 84.0936
28.7500 −26.9943 53.6610 70.0273 −27.0669 53.7178 70.1337
31.2500 −20.8000 47.4667 59.3306 −20.8515 47.5068 59.4038
33.7500 −15.9305 42.5972 50.9312 −15.9679 42.6262 50.9821
36.2500 −12.0333 38.7000 44.2184 −12.0611 38.7214 44.2537
38.7500 −8.8658 35.5324 38.7720 −8.8868 35.5485 38.7961
41.2500 −6.2565 32.9232 34.2951 −6.2727 32.9354 34.3109
43.7500 −4.0816 30.7483 30.5730 −4.0942 30.7578 30.5825
46.2500 −2.2498 28.9165 27.4476 −2.2597 28.9239 27.4520
48.7500 −0.6925 27.3592 24.8000 −0.7004 27.3650 24.8004

3.1. Comparison of Analytical and FEA using ABAQUS

Several examples were solved to show the accuracy of the analyticalsolution in comparison
with the FEA analysis. Both stress distributions such as the circumferential and radial stresses were
obtained.Circumferential stress gradually decreases and radial stress, von mises increases as shown in
the Figure 9.

Figure 9. Radial and circumferential stress and von Mises stress.
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Table 3. Comparison of analytical and FEM using MATLAB results.

Radius
(mm)

Analytical Results FEM Using MATLAB

σr (MPa) σθ (MPa) σV (MPa) σr (MPa) σθ (MPa) σV (MPa)

26.250 −35.041 61.708 83.936 −34.950 61.883 81.636
28.750 −26.994 53.661 70.027 −26.926 53.768 68.244
31.250 −20.800 47.466 59.330 −20.748 47.532 57.917
33.750 −15.930 42.597 50.931 −15.890 42.635 49.789
36.250 −12.033 38.700 44.218 −12.002 38.720 43.280
38.750 −8.865 35.532 38.772 −8.841 35.540 37.990
41.250 −6.256 32.923 34.295 −6.237 32.923 33.636
43.750 −4.081 30.748 30.573 −4.067 30.742 30.010
46.250 −2.249 28.916 27.447 −2.238 28.906 26.963
48.750 −0.692 27.359 24.800 −0.684 27.346 24.378

Figure 10. Radial and circumferential stress, and von Mises stress.



Designs 2019, 3, 9 12 of 26

3.2. Comparison of Analytical Results and FEA Results Using Abaqus and FEM Using MATLAB

Several examples were solved to show the accuracy of the analyticalsolution in comparison with
the FEA usign MATLAB analysis. Both stress distributions such as the circumferential and radial
stresses were obtained.Circumferential stress gradually decreases and radial stress, von mises increases
as shown in the Figure 10.

Figure 11. Radial and circumferential stress, and von Mises stress.

4. Probabilistic Study

4.1. Monte Carlo Simulation

The Monte Carlo method involves randomly sampling the distributed input variables many
times so as to build a statistical picture of the output quantities. This method has a wide range of
applicability, with engineering applications being only one. The Monte Carlo method is particularly
appropriate when there is a large number of independent variables that can influence the outcome. The
Monte Carlo method is being used increasingly in structural integrity applications. The probabilistic
simulation uses a Monte Carlo method with Latin hypercube sampling [12]. This is an efficient
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technique that permits a large number of distributed variables to be addressed. Each variable takes
a finite number of values, each representing a range of values (i.e., a “bin”). All bins are of equal
probability. The Latin hypercube algorithm ensures that all variable bins are sampled in the minimum
number of trails (though not, of course, in all possible combinations). Moreover, because all bins are of
equal probability, it follows that all trails are of equal probability, thus ensuring that all trails are of
equal weight in the simulation [13].

4.2. Distributed Structural Parameters

The parameters that are required to calculate thermal stresses and which are taken as distributed
in simulations are: elastic modulus, internal pressure, and temperature change. Normal distributions
were used for stresses and lognormal distribution was used for material properties.

4.3. Lognormal Distribution

A random variable X is considered to have a lognormal distribution if Y = ln(X) has a normal
probability distribution. The density function of the lognormal distribution is given by:

fX(x) =
1

xσ
√

2π
exp

[
−1

2

(
ln x− µ

σ

)2
]

, 0 < x < ∞. (16)

The notations X∼ LN
(
µ, σ2) provide an abbreviated description of a lognormal distribution.

The notation states that X is log-normally distributed with mean µ and variance σ2.

4.4. Input Distribution

4.4.1. Due to Variability in Material Property

The lognormal distribution for the Young’s modulus of elasticity (E) is:

fX(E; µ, σ) =
1

xσx
√

2π
exp

[
−1

2

(
ln x− µx

σx

)2
]

. (17)

Lognormal distribution for E = 1.38 × 105 Pa.
Monte Carlo simulations (MCSs) N = 1000 runs were carried out to estimate the stress distribution

for the number of elements in the radial direction.

Coefficient of variance = 0.2 =
σ

µ
=

σ

E
, (18)

Mean = (µx) = log
µ2√

σ2 + µ2
, (19)

Standard deviation = (σx) =

√
log

σ2

µ2 + 1
. (20)

The elastic modulus was lognormally distributed with standard deviation as 1.38 × 105 Pa. Figure 12
represents Young’s modulus due to the variation of the material properties.
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Figure 12. Young’s modulus due to the variation of the material properties.

4.4.2. Due to Load Variability

Normal Distribution

This distribution is the basis for many statistical methods. The normal density function for a
random variable X is given by:

fX(x) =
1

σ
√

2π
exp

[
− (x− µ)2

2σ2

]
,−∞ < x < ∞. (21)

It is common to use the notation X∼ N
(
µ, σ2) to provide an abbreviated description of a normal

distribution. The notation states that X is normally distributed with mean µ and variance σ2.
In this study, P and ∆T are random variables in r-radial and z-axial directions. The normal

distribution is of the form:

fX(x;µ,σ) = fX(P, ∆T;µ,σ) =
1

σ
√

2π
exp

[
− (x− µ)2

2σ2

]
, where −∞ < x < ∞. (22)

Normal Distribution for Pressure

Mean = P, variance = σ2, coefficient of variance = 0.1 = σ
µ = σ

P , standard deviation = (σx) =
√

V,
pressure (P) = x ∗ σx + µ.

Pressure was normally distributed with mean and standard deviation of 40 and 4, respectively.
The nominal distribution of pressure is represented in Figure 13 below.

Figure 13. Nominal distribution of pressure.
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Normal distribution for thermal gradient ∆T:

Mean = ∆T = Ti(x) − T0 =
σ

µ
=

σ

∆T = (Ti(x) − T0)
, (23)

Standard deviation = (σx) =
√

V, (24)

Thermal gradient (∆T) = x ∗ σx + µ. (25)

Variance = σ2, coefficient of variance = 0.05, inside temperature was varying and outside temperature
was kept constant, and thermal gradient was normally distributed with mean and standard deviation
of 80 and 4, respectively. The nominal distribution of the thermal gradient is represented in
Figure 14 below.

Figure 14. Nominal distribution of thermal gradient.

5. Probabilistic Finite Element Formulation

The development of a probabilistic finite element formulation for the axisymmetric pipe section
was based on an available procedure for determining the finite element analysis of an axisymmetric
pipe section. The axisymmetric section of the pipe used for finite element analysis was discretized into
ten finite elements in the radial direction and 10 elements in the axial direction, and the geometry of
the FE mesh is shown in Figure 15 below.

Figure 15. Finite element mesh for the geometry of an axisymmetric pipe section.

The constitutive equation for the axisymmetric pipe is given by:

σ = C(∈ − ∈0), (26)
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where σ is the resultant stress vector induced due to the combined effect of pressure and temperature
gradient. The components of stress and strain vector are represented as:

σ = (σr σz σθ τrz )
T,∈ = (∈r ∈z ∈θ γrz)

T,

∈0= (α∆T(r, z) α∆T(r, z) α∆T(r, z) 0).
(27)

∈0 is the initial strain vector due to temperature change, α is the coefficient of linear expansion, and
the superscript “T” is the transpose operator. C is the constitutive matrix which is a function of E, the
Young’s modulus of elasticity of the isotropic material, and µ is Poisson’s ratio. E is considered to be a
random variable, and is of the form:

E = E(x) = LN
(
µ,σ2

)
. (28)

Therefore, the material matrix can be expressed as:

C(r, z) =
E(r, z)

(1− 2ϑ)(1 + ϑ)


1− ϑ ϑ ϑ 0

ϑ 1− ϑ ϑ 0
ϑ ϑ 1− ϑ 0
0 0 0 1−2ϑ

2

. (29)

6. Derivation of Stiffness Matrix

In the next process, the four-noded finite element quadrilateral element for axisymmetric
probabilistic finite element analysis with two degrees per node is denoted by δ[u, w], where u(r, z)
is the vector of radial displacement and w(r, z) is the vector of axial displacement. Since it is the
axisymmetric case, displacement in the θ direction is zero. The internal strain energy, U, can be
written as:

U =
1
2

δT
e Keδe, (30)

where δe is the element displacement vector and Ke is the element stiffness matrix of the pipe section,
expressed as:

Ke(r, z) =
∫ r2

r1

∫ z2

z1

[
BC(r, z)BT

]
2πr dr dz. (31)

B are the strain-displacement transfer matrices (derivatives of FE shape functions) and are independent
of material properties. The limits r1 and r2 are the inner and outer radii of the cylindrical pipe, and L is
the length of pipe from z1 to z2. C is considered to be a random variable.

The element load matrix is given by:

Fe(r, z) =
∫ r2

r1

∫ z2

z1

[BC(r, z) ∈o]2πr dr dz. (32)

A Gauss quadrature integration scheme is used to evaluate the above integrals. The global
stiffness matrix K is obtained by assembling all the element stiffness matrices Ke. Subsequently, the
nodal displacements are estimated by solving the finite element governing equation.

The global load vector F and the displacement vector obtained from this governing equation are
used for calculating the strains of each element at the centroid location.

[K(ω)] [δ(ω)] = F(ω), (33)

where ω is a random variable. So, Monte Carlo simulations were used to simulate the stresses for each
element. Finally, the stress contours for each element in the radial direction were obtained.
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Material Specifications

The pipe was made up of material HK40. It was stressed to a pressure P of 40 MPa and subjected
to a thermal gradient ∆T of 80 ◦C. The dimensions of the thick pipe section were L of 100 mm, ri of
25 mm, and r0 of 50 mm, respectively. The material properties of HK40 are given as follows: elastic
modulus (E) of 1.38 × 105 Pa, Poisson’s ratio (µ) of 0.313, thermal expansion coefficient (α) of 1.5 × 105

(1/◦C). For the numerical calculations, the random variable for Young’s modulus of elasticity is E.

7. Probabilistic Study: Output Distribution

The output distribution is a complete and systematic framework for the probabilistic modeling of
expected material variability and load fluctuations for the fatigue design.

7.1. Output Distribution Due to Material Variability

In order to characterize the material variability on the cyclic stress–strain and strain–life responses
of the various elements under multi-axial fatigue, the various random variables were calculated.
A comparison of various stresses is shown in Figures 16–19.

Figure 16. Comparison of radial stress and circumferential stress for different elements where E is a
random variable.
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Figure 17. Comparison of axial stress and von Mises stress for different elements when E is a
random variable.

Figure 18. Cont.
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Figure 18. Comparison of radial stress and axial stress for different elements when E, P, and ∆T are
random variables.

Figure 19. Comparison of circumferential stress and von Mises stress for different elements when
E, P, and ∆T are random variables.
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7.2. Output Distribution Due to Both Material and Load Variability

The Figures 18 and 19 below show the Output Distribution Due to Both Material and Load
Variability with each different element. In each graph element 10 has the highest amount of stress
when compared to other elements.

8. Probability of Failure of Von Mises Stress with Respect to Yield Strength

The difference in the von Mises stress lies in the selection of the shell face being either positive or
negative, commonly known as SPOS and SNEG in ABAQUS [14].

Probability of failure:
PF = P[σV > SY]= 1− P[σV ≤ SY]. (34)

Yield strength (σY) = 241 MPa for HK40 (austenitic heat-resistant stainless steel) material. Probability
in the failure of von Mises stress is represented in Figure 20 below.

Figure 20. Probability in failure of von Mises stress.

9. Stress Contours

The contour method was used to measure the stress in the component normal to the section
surface for both left and right sides, as shown in Figures 21–24. Generally, in the contour method,
we can study the numerical data in order to verify that it could accurately measure various types of
stresses. In our study, we measured various stresses (i.e., radial, circumferential, axial, von Mises) of
the HK40 material.

Mean Stress Contours for HK40 Material

In designing for the durability, the presence of direction of axial stress with radial distance can
influence fatigue behaviour of materials due to a tensile or compressive normal mean stress as shown
in the Figures 21–24 below.
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Figure 21. (a) Mean and (b) standard deviation of radial stress.
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Figure 22. (a) Mean and (b) standard deviation of circumferential stress.
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Figure 23. (a) Mean and (b) standard deviation of axial stress.
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Figure 24. (a) Mean and (b) Standard deviation of Von-Mises stress.

10. Conclusions

The results were stated and proved with the help of ABAQUS software and FEM using MATLAB,
and a very good match was obtained among all of these findings. The finite element framework
was enhanced to find the effects of uncertainties in pipe structure due to material properties and
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loading. Random variable models were used to model the variabilities in material properties and
load by using Monte Carlo simulations. Monte Carlo simulations were used to study the probabilistic
characteristics of the stress distribution of the pipe structure. The values of thermal stresses obtained
from the variation in material properties (e.g., modulus of elasticity) were found to be low compared
to the case where the load alone was varying.

The present methodology was used to estimate the probabilistic distributions of thermal stresses
against the variations arising due to material properties as well as variations due to thermal loading.
The probability of failure of the pipe structure was predicted against the variations in internal pressure
and thermal gradient, and finally the results in the contour method indicated that it could be very
similar to the results obtained using the analytical formula, when an asymmetrical cut was made,
by averaging the stress components of both sides of the cut. The developed methodology could be
helpful for the life assessment of piping structures used for high-temperature practices against creep
and fatigue failures in further studies.
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Nomenclature

σT
r Radial stress

∆T Thermal gradient
σT

z Axial stress
σT

θ Circumferential stress
σP

θ Hoop stress induced by pressure
σP

z Axial stress induced by pressure
σP

r Radial stress induced by pressure
r0 Outer radius (mm)
ri Inner radius (mm)
a Ratio of outer to inner radius
µ Poisson’s ratio
r Radius at any position of tube wall (mm)
E Elastic modulus of material (MPa)
α Thermal expansion coefficient of material
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