
designs

Article

Optimizing the Design of Airfoil and Optical Buffer
Problems Using Spotted Hyena Optimizer

Gaurav Dhiman *,† ID and Amandeep Kaur †

Department of Computer Science and Engineering, Thapar Institute of Engineering and Technology, Patiala,
Punjab 147004, India; kaur.amandeep@thapar.edu
* Correspondence: gaurav.dhiman@thapar.edu; Tel.: +91-828-884-1068
† These authors contributed equally to this work.

Received: 27 April 2018; Accepted: 27 July 2018; Published: 1 August 2018
����������
�������

Abstract: This paper presents the contemporary metaheuristic optimization algorithm named the
Spotted Hyena Optimizer (SHO). The proposed technique is based on the law of gravitation and
simulates the social behavior of spotted hyenas. The three basic steps of SHO, namely, searching for
prey, encircling, and attacking prey, are mathematically modelled and discussed. The main concept
of this work is to apply the recently developed SHO algorithm to two real-life design problems,
namely optical buffer design and airfoil design. Experimental results reveal the supremacy of the SHO
algorithm for solving the engineering design problems as compared to other competitor algorithms.

Keywords: metaheuristics; constrained optimization; engineering design problems; SHO

1. Introduction

Optimization is the process of determining the decision variables of a function to minimize or
maximize its values. Most of the real world problems [1–3] include nonlinear constraints, non-convex,
complicated, and a large number of solution spaces. Therefore, solving such problems with a large
number of variables and constraints is very tedious and complex. There are many local optimum
solutions that do not guarantee the best overall solution using classical numerical methods.

To overcome such problems, metaheuristic optimization algorithms have been introduced which
are capable of solving such complex problems during the course of iterations. Recently, immense
interest has been focused on the development of metaheuristic algorithms owing to their flexibility
and simplicity by nature.

Metaheuristics are broadly classified into two categories [4] such as single solution and population
based algorithms. Single solution based algorithms are those in which a solution is randomly generated
and improved until the optimum result is obtained, whereas population based algorithms are those
in which a set of solutions are randomly generated in a given search space and solution values are
updated during iterations until the best solution is generated.

However, single solution based algorithms may trap into local optima which may prevent us to find
global optimum as it reforms only one solution, which is randomly generated for a given problem. On the
other hand, population based algorithms have an inherent ability to escape local optima [5]. Due to this,
nowadays, population based algorithms have gained the attention of multitudinous researchers.

The categorization of population based algorithms is done on the basis of theory of evolutionary
algorithms, physics laws based algorithms, swarm intelligence of particles, and biological behavior
of bio-inspired algorithms (see Figure 1). Evolutionary algorithms are inspired by the evolutionary
processes such as reproduction, mutation, recombination, and selection. These algorithms are based
on the survival fitness of candidate in a population (i.e., a set of solutions) for a given environment.
The physics law based algorithms are inspired by physical processes according to some physics rules

Designs 2018, 2, 28; doi:10.3390/designs2030028 www.mdpi.com/journal/designs

http://www.mdpi.com/journal/designs
http://www.mdpi.com
https://orcid.org/0000-0002-6343-5197
http://www.mdpi.com/2411-9660/2/3/28?type=check_update&version=1
http://dx.doi.org/10.3390/designs2030028
http://www.mdpi.com/journal/designs

Designs 2018, 2, 28 2 of 16

such as gravitational force, electromagnetic force, inertia force, heating and cooling of materials. Swarm
intelligence based algorithms are inspired by the collective intelligence of swarms.

Some of the most popular evolutionary algorithms are Genetic Algorithms (GA) [6], Evolution
Strategy (ES) [7], Differential Evolution (DE) [8], and Biogeography-Based Optimizer (BBO) [9].

A well-known algorithm of swarm intelligence technique is Particle Swarm Optimization
(PSO) [10,11]. PSO is inspired by the social behavior of fish schooling or bird flocking. Each particle can
move around the search space and update its current position with respect to the global best solution.
However, Table 1 shows the other popular optimization based techniques.

Table 1. Optimization approaches.

Algorithms Abbreviation

Simulated Annealing [12] SA
Gravitational Search Algorithm [13] GSA

Charged System Search [14] CSS
Black Hole Algorithm [15] BH

Emperor Penguin Optimizer [16] EPO
Artificial Chemical Reaction Optimization Algorithm [17] ACROA

Ray Optimization Algorithm [18] RO
Galaxy-Based Search Algorithm [19] GbSA

Ant Colony Optimization [20] ACO
Cuckoo Search [21] CS

Bat-Inspired Algorithm [22] BA
Firefly Algorithm [23] FA

Spotted Hyena Optimizer [24] SHO
Exchange Market Algorithm [25] EMA

Social-Based Algorithm [26] SBA
Harmony Search [27] HS

Grey Wolf Optimizer [28] GWO
Mine Blast Algorithm [29] MBA

Every optimization algorithm needs to address the exploration and exploitation of a search
space [30] and maintains a good balance between exploration and exploitation. The exploration
phase investigates the different promising regions in a search space, whereas exploitation searches
the close global optimal solutions around the promising regions [31,32]. Therefore, to acquire the
close optimal solutions, fine-tuning of these two phases is required. Despite the significant number of
recently developed optimization algorithms, the question that arises is why do we need to develop
more optimization techniques. The answer lies in a No Free Lunch (NFL) theorem [33]. According to
this theorem, the performance of one optimization algorithm for a specific set of problems does not
guarantee solving other optimization problems because of their different nature. The NFL theorem
allows researchers to propose some novel optimization algorithms for solving the problems in
various fields [34–36].

This paper presents the recently developed bio-inspired metaheuristic algorithm named
the Spotted Hyena Optimizer (SHO) for optimizing constrained problems. As its name implies,
SHO mimics the social behaviors of spotted hyenas in nature. The performance of the SHO algorithm
is evaluated on designs of optical buffer and airfoil problems. The results reveal that the performance
of SHO is more competitive than the existing algorithms.

The rest of this paper is structured as follows: Section 2 presents the fundamental concepts of a
recently developed optimization algorithm. Section 3 presents the constrained handling approach.
The two real-life constrained industrial optimization problems and their comparison are presented in
Sections 4 and 5, respectively. Finally, the conclusions are discussed in Section 6.

Designs 2018, 2, 28 3 of 16

Population-based
Metaheuristics

Swarm Intelligence Algorithms Physics-based Algorithms Bio-inspired AlgorithmsEvolutionary Algorithms

Genetic
Algorithm (GA)

Differential
Evolution (DE)

Biogeography-based
Optimization (BBO)

Evolutionary
Strategy (ES)

Particle Swarm
Optimization (PSO)

Ant Colony
Optimization (ACO)

Spotted Hyena
Optimizer (SHO)

Artificial Bee
Colony (ABC)

Gravitational Search
Algorithm (GSA)

Black Hole
Algorithm (BH)

Charged System
Search (CSS)

Galaxy-based Search
Algorithm (GbSA)

Firefly
Algorithm (FA)

Cuckoo
Search (CS)

Bat
Algorithm (BA)

Bacterial Foraging
Optimization (BFO)

Figure 1. Classification of metaheuristic algorithms [24].

2. Spotted Hyena Optimizer (SHO)

Spotted Hyena Optimizer is a metaheuristic bio-inspired optimization algorithm developed by
Dhiman et al. [24,37,38]. The fundamental concept of this algorithm is to simulate the social behaviors
of spotted hyenas. There are four main steps of the SHO algorithm that are inspired by encircling,
hunting, attacking and searching behaviors of spotted hyenas.

2.1. Encircling Prey

The target prey or objective is considered as the best solution and the other search agents can
update their positions with respect to the best solution obtained. The mathematical model of this
behavior is represented by Equations (1) and (2):

~Dh =| ~B× ~Pp(x)− ~P(x) |, (1)

~P(x + 1) = ~Pp(x)− ~E× ~Dh, (2)

where ~Dh represents the distance between the prey and spotted hyena, x indicates the current iteration,
~B and ~E are co-efficients vectors, ~Pp indicates the position vector of prey, and ~P is the position vector of
the spotted hyena.

However, the vectors ~B and ~E are calculated by Equations (3)–(5), respectively:

~B = 2× ~rd1, (3)

~E = 2~s× ~rd2 −~h, (4)

~s = 5−
(

Iteration× 5
MaxIteration

)
, (5)

where, Iteration = 0, 1, 2, . . ., MaxIteration.
The~s is linearly decreased from 5 to 0 and ~rd1, ~rd2 are random vectors in range [0, 1].

2.2. Hunting

The hunting strategy of the SHO algorithm is described by Equations (6)–(8):

~Dh =| ~B× ~Ph − ~Pk |, (6)

Designs 2018, 2, 28 4 of 16

~Pk = ~Ph − ~E× ~Dh, (7)

~Ch = ~Pk + ~Pk+1 + . . . + ~Pk+N , (8)

where ~Ph defines the position of first best obtained spotted hyena, and ~Pk represents the position of
other spotted hyenas. However, variable N indicates the total number of spotted hyenas, which is
calculated by Equation (9):

N = countnos(~Ph, ~Ph+1, ~Ph+2, . . . , (~Ph + ~M)), (9)

where ~M is a random vector in range [0.5, 1], nos represents the number of solutions and count all
candidate solutions, and ~Ch is a group of N number of optimal solutions.

2.3. Attacking Prey

The mathematical formulation for attacking the prey is defined by Equation (10):

~P(x + 1) =
~Ch
N

, (10)

where ~P(x + 1) saves the best solution and updates the positions of other search agents with respect to
the position of the best search agent.

2.4. Search for Prey

For searching the suitable solution, ~E is responsible which is greater than 1 or less than 1 using
Equation (4). The ~B is an another important constituent of SHO algorithm for exploration purposes.
It contains random values that provide the random weights of prey as shown in Equation (3). To show
the more random behavior of the SHO algorithm, assume vector ~B > 1 precedence than ~B < 1 to
demonstrate the effect in the distance.

The SHO algorithm solves various high dimensional problems with low computational efforts and
avoids the local optimum problem. The pseudo code of the SHO algorithm is described in the Algorithm.

Algorithm Spotted Hyena Optimizer

Input: the spotted hyenas population Pi (i = 1, 2, . . . , n)
Output: the best search agent

1: procedure SHO
2: Initialize the parameters h, B, E, and N
3: Calculate the fitness of each search agent
4: Ph= the best search agent
5: Ch= the group or cluster of all far optimal solutions
6: while (x < MaxIteration) do
7: for each search agent do
8: Update the position of current agent by Equation (10)
9: end for

10: Update h, B, E, and N
11: Check if any search agent goes beyond the given search space and then adjust it
12: Calculate the fitness of each search agent
13: Update Ph if there is a better solution than previous optimal solution
14: Update the group Ch with respect to Ph
15: x = x + 1
16: end while
17: return Ph
18: end procedure

Designs 2018, 2, 28 5 of 16

2.5. Analysis of the SHO Algorithm

The convergence analysis of metaheuristic algorithm is another feature for better understanding
of explorative and exploitative mechanisms. In order to demonstrate the convergence analysis of SHO
algorithm, three metrics are employed in the 2D environment that are shown in Figure 2. The employed
metrics are discussed as follows:

• Search history shows the location history of spotted hyenas during optimization.
• Trajectory shows the value of the first variable in each iteration. The trajectory curves show that

the spotted hyenas exhibit large and abrupt changes in the initial steps of optimization. According
to Berg et al. [39], this behavior can guarantee that a Swarm-based method eventually converges
to a point in the search space.

• Average fitness indicates the average objective value of all spotted hyenas in each iteration. The
curves show descending behavior on all of the test functions. This proves that the SHO algorithm
improves the accuracy of the approximated optimum during simulation runs.

Therefore, the success rate of SHO algorithm is computationally high for solving
optimization problems.

Figure 2. Search history, trajectory, and average fitness of the spotted hyena optimizer (SHO) algorithm
on 2D benchmark test problems.

3. Constraint Handling

Constraint handling is one of the biggest challenges in solving optimization problems using
metaheuristic techniques. There are five constraint handling techniques [40]: penalty functions, hybrid
methods, separation of objective functions and constraints, repair algorithms, and special operators.
Among these techniques, the penalty functions are simple and easy to implement. There are numerous
penalty functions such as static, annealing, adaptive, co-evolutionary, and death penalty. These
approaches convert constraint problems into unconstraint problems by adding some penalty values.
In this paper, a static penalty approach is employed to handle constraints in optimization problems:

ζ(z) = f (z)±
[m

∑
i=1

li ×max(0, ti(z))α +
n

∑
j=1

oj× | Uj(z) |β
]
, (11)

Designs 2018, 2, 28 6 of 16

where ζ(z) is the modified objective function, li and oj are positive penalty values, ti(z) and Uj(z) are
constraint functions, and li and oj are positive constants. The values of α and β are 1 and 2, respectively.
This approach assigns the penalty value for each infeasible solution. In the death penalty approach,
a large value is assigned to the objective function of infeasible solution. Therefore, the static penalty
function is employed which helps the search agents to move towards the feasible search space of
the problem.

Experimental Setup

The parameter settings of metaheuristic algorithms are tabulated in Table 2. The parameter values
of these algorithms are set as they are recommended in their original papers. The experimentation has
been done with the Matlab R2014a (8.3.0.532) version in the environment of Microsoft Windows 8.1
using 64 bit Core i-5 processor with 2.40 GHz and 4 GB main memory.

Table 2. Parameter settings for algorithms.

Algorithms Parameters Values

1 Spotted Hyena Optimizer (SHO)

Search Agents 80
Control Parameter (~h) [5, 0]
~M Constant [0.5, 1]
Number of Generations 1000

Search Agents 80
2 Grey Wolf Optimizer (GWO) Control Parameter (~a) [2, 0]

Number of Generations 1000

3 Particle Swarm Optimization (PSO)

Number of Particles 80
Inertia Coefficient 0.75
Cognitive and Social Coeff 1.8, 2
Number of Generations 1000

4 Genetic Algorithm (GA)

Population Size 80
Crossover 0.9
Mutation 0.05
Number of Generations 1000

Population Size 80
5 Differential Evolution (DE) Crossover 0.9

Scale Factor (F) 0.5

4. Optical Buffer Design Problem

The optical buffer permits the optical CPUs to measure different optical packets by slowing down
the group velocity of light. This whole process is executed using the most popular device known
as the Photonic Crystal Waveguide (PCW). Generally, PCWs have a lattice-shaped structure with a
line defect and holes with different radii that yield the characteristics of slow light. In this subsection,
the structure of PCW called a Bragg Slot Photonic Crystal Wave guide (BSPCW) is optimized to achieve
these characteristics by the SHO algorithm.

The performance of slow light devices is compared using Delay Bandwidth Product (DBP) and
Normalized DBP (NDBP) metrics that are formulated by Equation (12) [41]:

DBP = ∆d× ∆b, (12)

where ∆d and ∆b indicate the delay and bandwidth of slow light device, respectively,

NDBP = mg × ∆ω/ω0, (13)

where mg is the average of group index, ∆ω is the bandwidth, and ω0 is the central frequency of light
wave. However, NDBP has a relation with group index (mg) as:

Designs 2018, 2, 28 7 of 16

mg =
V
vg

= C
dv
dω

, (14)

where ω is the dispersion, v defines the wave vector, C indicates the velocity of light, and mg is
responsible for changing in the bandwidth range. The average of mg is calculated as follows:

mg =
∫ ωH

ωL

mg(ω)
dω

∆ω
(15)

since mg has a constant value with maximum fluctuation of ±10% [42]. The detailed information about
PCWs can be found in [43]. The mathematical formulation of this problem is described in Equation (16):

~z = [z1z2z3z4z5z6z7z8] =
[R1

a
R2
a

R3
a

R4
a

R5
a

l
a

wh
a

wl
a

]
,

Maximize: f (~z) = NDBP,

subject to:

max(| β2(ω) |) < 106a/2πc2,

ωH < min(ωupband),

ωL > max(ωlowband),

kn > knH = ωguidedmode > ωH ,

kn < knL = ωguidedmode < ωL,

where,

ωH = ω(knH) = ω(1.1mg0), vωL = ω(knL) = ω(0.9mg0),

vkn =
ka
2π

, ∆ω = ωH −ωL, a = ω0 × 1550nm,

0 ≤ z1−5 ≤ 0.5, 0 ≤ z6 ≤ 1, 0 ≤ z7,8 ≤ 1.

(16)

There are five constraints defined in this problem for the SHO algorithm. The algorithm is iterated
for 30 times and the obtained results are tabulated in Table 3. The results reveal the substantial
improvements of 99% and 10% in bandwidth using the SHO approach in comparison to the results
reported by Wu et al. [44] and GWO [28], respectively. The similar behavior has been observed in the
NDBP. The improvements achieved in NDBP are 90% and 14% as compared with Wu et al. [44] and
GWO [28] approaches, respectively. The optimized super cell is shown in Figure 3. It shows that the
optimized structure has a very good bandwidth without band mixing. The results demonstrate that
the SHO algorithm proved its merit for solving the optical buffer optimization problem.

R =118 nm

R =100 nm

R =91 nm

R =82 nm

R =111 nm

w =65 nm w =201 nm

l=254 nm

Super Cell

5

4

3

2

1

l h

Figure 3. Optimized super cell using the SHO algorithm.

Designs 2018, 2, 28 8 of 16

Table 3. Comparison results for the optical buffer design problem.

Parameters SHO GWO [28] Wu et al. [44]

R1 0.31349a 0.33235a -
R2 0.22378a 0.24952a -
R3 0.23400a 0.26837a -
R4 0.27681a 0.29498a -
R5 0.30217a 0.34992a -
l 0.7263a 0.7437a -

wh 0.2052a 0.2014a -
wl 0.60027a 0.60073a -

a(nm) 328 343 430
mg 17.4 19.6 23

Bandwidth 37.2 33.9 17.6
β2(a/2πc2) 103 103 103

NDBP 0.49 0.43 0.26

5. Airfoil Design Problem

There are two objectives in the airfoil design problem: lift and drag. It has been observed that
lifting causes a plane to fly, whereas drag decreases the speed of a plane. Both of these objectives are
very important on different occasions. In this section, only the drag is considered to minimize the force
and consequently defines the best shape of the wing. The B-spline is utilized to define the shape of
an airfoil as shown in Figure 4. There are eight controlling parameters along with x-axis and y-axis
directions. The problem formulation of airfoil design is defined by Equation (17):

Minimize: F(x, y) = Ed(x, y),

Subject to:− 1 ≤ x, y ≤ 1, and set of SC,
(17)

where x = {x1, x2, . . . , x7}, y = {y1, y2, . . . , y7}, Ed is the drag, and set of many constraints SC which
includes maximum thickness, minimum thickness, and so on. The penalty function is utilized, which
is proportional to the level of violation.

F(x, y) = F(x, y) + pe
3

∑
j=1

Pj, (18)

where pe is a constant and Pj defines the violation size on the jth constraint in the set SC. After
performing 1000 iterations and 30 independent runs, the best results and convergence curves are
obtained as shown in Figures 5 and 6, respectively. Figure 6 demonstrates that the SHO algorithm
performs better than other competitor approaches and improves the airfoil shape to minimize the drag.
The standard deviation of this problem obtained by various approaches is shown in Figure 7. Table 4
shows the parameters value for the airfoil design problem. The optimum drag force value of SHO
as well as other approaches is shown in Table 5. The results show that the SHO algorithm is able to
minimize the drag force value using low computational efforts.

Table 4. Parameter values of the airfoil design problem.

Parameters Values

Foil co-ordinates NACA0012
Reynolds number 106

Mach number 0.2
Co-efficient of Lift 0

Designs 2018, 2, 28 9 of 16

Table 5. Optimum drag force values using SHO and other competitor approaches.

Algorithms Force

SHO 0.0068
PSO 0.0021
GA 0.0067
DE 0.0020

y

-y

x-x

Figure 4. B-spline for the airfoil design problem.

1

(a) (b)

Figure 5. Optimized airfoil design using (a) SHO algorithm; (b) PSO algorithm.

Figure 6. Convergence curves of airfoil design using SHO and other competitive approaches.

Designs 2018, 2, 28 10 of 16

Figure 7. The standard deviation of the proposed as well as competitor algorithms for the airfoil
design problem.

6. Conclusions

This paper discussed the contemporary Spotted Hyena Optimizer (SHO) bio-inspired
optimization algorithm. The main concept of the SHO algorithm is to analyze the social hierarchy and
hunting behaviors of spotted hyenas. Furthermore, the SHO algorithm is employed on two real-life
constrained engineering design problems such as optical buffer design and airfoil design problems.
The obtained results are compared with other competitor algorithms. The results of engineering design
problems reveal that the SHO algorithm is an efficient optimizer to solve these problems and generate
the near optimal designs.

Author Contributions: G.D. has performed the whole experimentation and justified the research problem.
A.K. surveyed the updated state-of-the-art of the area and wrote the paper.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare that they have no conflict of interest.

Appendix A. Unimodal, Multimodal, and Fixed-Dimension Multimodal Benchmark
Test Functions

Appendix A.1. Unimodal Benchmark Test Functions

Appendix A.1.1. Sphere Model

F1(z) =
30

∑
i=1

z2
i

−100 ≤ zi ≤ 100, fmin = 0, Dim = 30,

Appendix A.1.2. Schwefel’s Problem 2.22

F2(z) =
30

∑
i=1
|zi|+

30

∏
i=1
|zi|

−10 ≤ zi ≤ 10, fmin = 0, Dim = 30,

Appendix A.1.3. Schwefel’s Problem 1.2

F3(z) =
30

∑
i=1

(i

∑
j=1

zj

)2

−100 ≤ zi ≤ 100, fmin = 0, Dim = 30,

Designs 2018, 2, 28 11 of 16

Appendix A.1.4. Schwefel’s Problem 2.21

F4(z) = maxi{|zi|, 1 ≤ i ≤ 30},

−100 ≤ zi ≤ 100, fmin = 0, Dim = 30,

Appendix A.1.5. Generalized Rosenbrock’s Function

F5(z) =
29

∑
i=1

[100(zi+1 − z2
i)

2 + (zi − 1)2]

−30 ≤ zi ≤ 30, fmin = 0, Dim = 30,

Appendix A.1.6. Step Function

F6(z) =
30

∑
i=1

(bzi + 0.5c)2

−100 ≤ zi ≤ 100, fmin = 0, Dim = 30,

Appendix A.1.7. Quartic Function

F7(z) =
30

∑
i=1

iz4
i + random[0, 1]

−1.28 ≤ zi ≤ 1.28, fmin = 0, Dim = 30,

Appendix A.2. Multimodal Benchmark Test Functions

Appendix A.2.1. Generalized Schwefel’s Problem 2.26

F8(z) =
30

∑
i=1
− zisin(

√
|zi|)

−500 ≤ zi ≤ 500, fmin = −12569.5, Dim = 30,

Appendix A.2.2. Generalized Rastrigin’s Function

F9(z) =
30

∑
i=1

[z2
i − 10cos(2πzi) + 10]

−5.12 ≤ zi ≤ 5.12, fmin = 0, Dim = 30,

Appendix A.2.3. Ackley’s Function

F10(z) = −20exp
(
− 0.2

√
1
30

30

∑
i=1

z2
i

)
− exp

(
1
30

30

∑
i=1

cos(2πzi)

)
+ 20 + e

−32 ≤ zi ≤ 32, fmin = 0, Dim = 30,

Appendix A.2.4. Generalized Griewank Function

F11(z) =
1

4000

30

∑
i=1

z2
i −

30

∏
i=1

cos
(

zi√
i

)
+ 1

−600 ≤ zi ≤ 600, fmin = 0, Dim = 30,

Designs 2018, 2, 28 12 of 16

Appendix A.2.5. Generalized Penalized Functions

• F12(z) =
π

30
{10sin(πx1) +

29

∑
i=1

(xi − 1)2[1 + 10sin2(πxi+1)] + (xn − 1)2}+
30

∑
i=1

u(zi, 10, 100, 4)

−50 ≤ zi ≤ 50, fmin = 0, Dim = 30,

• F13(z) = 0.1{sin2(3πz1)+
29

∑
i=1

(zi−1)2[1+ sin2(3πzi +1)]+ (zn−1)2[1+ sin2(2πz30)]}+
N

∑
i=1

u(zi, 5,100,4)

−50 ≤ zi ≤ 50, fmin = 0, Dim = 30,

where xi = 1 +
zi + 1

4
,

u(zi, a, k, m) =


k(zi − a)m, zi > a,

0, −a < zi < a,

k(−zi − a)m, zi < −a.

Appendix A.3. Fixed-Dimension Multimodal Benchmark Test Functions

Appendix A.3.1. Shekel’s Foxholes’ Function

F14(z) =
(

1
500

+
25

∑
j=1

1

j +
2

∑
i=1

(zi − aij)6

)−1

−65.536 ≤ zi ≤ 65.536, fmin ≈ 1, Dim = 2.

Table A1. Shekel’s Foxholes Function F14.

(aij, i = 1, 2 and j = 1, 2, . . . , 25)

i\j 1 2 3 4 5 6 . . . 25

1 −32 −16 0 16 32 −32 . . . 32
2 −32 −32 −32 −32 −32 −16 . . . 32

Appendix A.3.2. Kowalik’s Function

F15(z) =
11

∑
i=1

[
ai −

z1(b2
i + biz2)

b2
i + biz3 + z4

]2

−5 ≤ zi ≤ 5, fmin ≈ 0.0003075, Dim = 4,

Appendix A.3.3. Six-Hump Camel-Back Function

F16(z) = 4z2
1 − 2.1z4

1 +
1
3

z6
1 + z1z2 − 4z2

2 + 4z4
2

−5 ≤ zi ≤ 5, fmin = −1.0316285, Dim = 2,

Appendix A.3.4. Branin Function

F17(z) =
(

z2 −
5.1
4π2 z2

1 +
5
π

z1 − 6
)2

+ 10
(

1− 1
8π

)
cosz1 + 10

−5 ≤ z1 ≤ 10, 0 ≤ z2 ≤ 15, fmin = 0.398, Dim = 2,

Designs 2018, 2, 28 13 of 16

Appendix A.3.5. Goldstein–Price Function

F18(z) = [1 + (z1 + z2 + 1)2(19− 14z1 + 3z2
1 − 14z2 + 6z1z2 + 3z2

2)]× [30 + (2z1 − 3z2)
2 ×

(18 − 32z1 + 12z2
1 + 48z2 − 36z1z2 + 27z2

2)]

−2 ≤ zi ≤ 2, fmin = 3, Dim = 2,

Appendix A.3.6. Hartman’s Family

• F19(z) = −
4

∑
i=1

ciexp(−
3

∑
j=1

aij(zj − pij)
2)

0 ≤ zj ≤ 1, fmin = −3.86, Dim = 3,

• F20(z) = −
4

∑
i=1

ciexp(−
6

∑
j=1

aij(zj − pij)
2)

0 ≤ zj ≤ 1, fmin = −3.32, Dim = 6,

Table A2. Hartman Function F19.

i (aij, j = 1, 2, 3) ci (pij, j = 1, 2, 3)

1 3 10 30 1 0.3689 0.1170 0.2673
2 0.1 10 35 1.2 0.4699 0.4387 0.7470
3 3 10 30 3 0.1091 0.8732 0.5547
4 0.1 10 35 3.2 0.038150 0.5743 0.8828

Appendix A.3.7. Shekel’s Foxholes Function

• F21(z) = −
5

∑
i=1

[(X− ai)(X− ai)
T + ci]

−1

0 ≤ zi ≤ 10, fmin = −10.1532, Dim = 4,

• F22(z) = −
7

∑
i=1

[(X− ai)(X− ai)
T + ci]

−1

0 ≤ zi ≤ 10, fmin = −10.4028, Dim = 4,

• F23(z) = −
10

∑
i=1

[(X− ai)(X− ai)
T + ci]

−1

0 ≤ zi ≤ 10, fmin = −10.536, Dim = 4.

Table A3. Shekel Foxholes’ Functions F21, F22, F23.

i (aij, j = 1, 2, 3, 4) ci
1 4 4 4 4 0.1
2 1 1 1 1 0.2
3 8 8 8 8 0.2
4 6 6 6 6 0.4
5 3 7 3 7 0.4

6 2 9 2 9 0.6
7 5 5 3 3 0.3

8 8 1 8 1 0.7
9 6 2 6 2 0.5

10 7 3.6 7 3.6 0.5

Designs 2018, 2, 28 14 of 16

Table A4. Hartman Function F20.

i (aij, j = 1, 2, . . . , 6) ci (pij, j = 1, 2, . . . , 6)

1 10 3 17 3.5 1.7 8 1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
2 0.05 10 17 0.1 8 14 1.2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
3 3 3.5 1.7 10 17 8 3 0.2348 0.1415 0.3522 0.2883 0.3047 0.6650
4 17 8 0.05 10 0.1 14 3.2 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

References

1. Marzband, M.; Azarinejadian, F.; Savaghebi, M.; Pouresmaeil, E.; Guerrero, J.M.; Lightbody, G. Smart
transactive energy framework in grid-connected multiple home microgrids under independent and coalition
operations. Renew. Energy 2018, 126, 95–106. [CrossRef]

2. Kaur, A.; Dhiman, G. A Review on Search Based Tools and Techniques to Identify Bad Code Smells in Object
Oriented Systems. In Advances in Intelligent Systems and Computing; Springer: New York, NY, USA, 2018;
in press.

3. Singh, P.; Dhiman, G. Uncertainty Representation using Fuzzy-Entropy Approach: Special Application in
Remotely Sensed High Resolution Satellite Images (RSHRSIs). Appl. Soft Comput. 2018, in press.

4. Dhiman, G.; Kaur, A. A Hybrid Algorithm based on Particle Swarm and Spotted Hyena Optimizer for
Global Optimization. In Advances in Intelligent Systems and Computing; Springer: New York, NY, USA, 2018;
in press.

5. Dhiman, G.; Kumar, V. Multi-objective spotted hyena optimizer: A Multi-objective optimization algorithm
for engineering problems. Knowl.-Based Syst. 2018, 150, 175–197. [CrossRef]

6. Bonabeau, E.; Dorigo, M.; Theraulaz, G. Swarm Intelligence: From Natural to Artificial Systems; Oxford
University Press, Inc.: Oxford, UK, 1999.

7. Beyer, H.G.; Schwefel, H.P. Evolution strategies—A comprehensive introduction. Nat. Comput. 2002, 1, 3–52.
[CrossRef]

8. Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for global Optimization over
Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. [CrossRef]

9. Simon, D. Biogeography-Based Optimization. IEEE Trans. Evol. Comput. 2008, 12, 702–713. [CrossRef]
10. Selvakumar, A.I.; Thanushkodi, K. A New Particle Swarm Optimization Solution to Nonconvex Economic

Dispatch Problems. IEEE Trans. Power Syst. 2007, 22, 42–51. [CrossRef]
11. Nobile, M.S.; Cazzaniga, P.; Besozzi, D.; Colombo, R.; Mauri, G.; Pasi, G. Fuzzy Self-Tuning PSO: A

settings-free algorithm for global optimization. Swarm Evol. Comput. 2018, 39, 70–85. [CrossRef]
12. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680.

[CrossRef] [PubMed]
13. Rashedi, E.; Nezamabadi-pour, H.; Saryazdi, S. GSA: A Gravitational Search Algorithm. Inf. Sci. 2009,

179, 2232–2248. [CrossRef]
14. Kaveh, A.; Talatahari, S. A novel heuristic optimization method: Charged system search. Acta Mech. 2010,

213, 267–289. [CrossRef]
15. Hatamlou, A. Black hole: A new heuristic optimization approach for data clustering. Inf. Sci. 2013,

222, 175–184. [CrossRef]
16. Dhiman, G.; Kumar, V. Emperor penguin optimizer: A bio-inspired algorithm for engineering problems.

Knowl.-Based Syst. 2018, doi:10.1016/j.knosys.2018.06.001. [CrossRef]
17. Alatas, B. ACROA: Artificial Chemical Reaction Optimization Algorithm for global optimization.

Expert Syst. Appl. 2011, 38, 13170–13180. [CrossRef]
18. Kaveh, A.; Khayatazad, M. A new meta-heuristic method: Ray Optimization. Comput. Struct. 2012,

112–113, 283–294. [CrossRef]
19. Shah Hosseini, H. Principal components analysis by the galaxy-based search algorithm: A novel

metaheuristic for continuous optimisation. Int. J. Comput. Sci. Eng. 2011, 6, 132–140. [CrossRef]

http://dx.doi.org/10.1016/j.renene.2018.03.021
http://dx.doi.org/10.1016/j.knosys.2018.03.011
http://dx.doi.org/10.1023/A:1015059928466
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1109/TEVC.2008.919004
http://dx.doi.org/10.1109/TPWRS.2006.889132
http://dx.doi.org/10.1016/j.swevo.2017.09.001
http://dx.doi.org/10.1126/science.220.4598.671
http://www.ncbi.nlm.nih.gov/pubmed/17813860
http://dx.doi.org/10.1016/j.ins.2009.03.004
http://dx.doi.org/10.1007/s00707-009-0270-4
http://dx.doi.org/10.1016/j.ins.2012.08.023
http://dx.doi.org/10.1016/j.knosys.2018.06.001
http://dx.doi.org/10.1016/j.eswa.2011.04.126
http://dx.doi.org/10.1016/j.compstruc.2012.09.003
http://dx.doi.org/10.1504/IJCSE.2011.041221

Designs 2018, 2, 28 15 of 16

20. Dorigo, M.; Birattari, M.; Stutzle, T. Ant Colony Optimization - Artificial Ants as a Computational Intelligence
Technique. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [CrossRef]

21. Yang, X.S.; Deb, S. Cuckoo search via Lévy flights. In Proceedings of the World Congress on
Nature & Biologically Inspired Computing (NaBIC), Coimbatore, India, 9–11 December 2009; pp. 210–214.

22. Yang, X.S. A New Metaheuristic Bat-Inspired Algorithm; Springer: Berlin/Heidelberg, Germany, 2010; pp. 65–74.
23. Yang, X. Firefly Algorithm, Stochastic Test Functions and Design Optimisation. Int. J. Bio-Inspired Comput.

2010, 2, 78–84. [CrossRef]
24. Dhiman, G.; Kumar, V. Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for

engineering applications. Adv. Eng. Softw. 2017, 114, 48–70. [CrossRef]
25. Ghorbani, N.; Babaei, E. Exchange market algorithm. Appl. Soft Comput. 2014, 19, 177–187. [CrossRef]
26. Ramezani, F.; Lotfi, S. Social-Based Algorithm. Appl. Soft Comput. 2013, 13, 2837–2856. [CrossRef]
27. Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A New Heuristic Optimization Algorithm: Harmony Search.

Simulation 2001, 76, 60–68. [CrossRef]
28. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
29. Sadollah, A.; Bahreininejad, A.; Eskandar, H.; Hamdi, M. Mine blast algorithm: A new population based

algorithm for solving constrained engineering optimization problems. Appl. Soft Comput. 2013, 13, 2592–2612.
[CrossRef]

30. Alba, E.; Dorronsoro, B. The exploration/exploitation tradeoff in dynamic cellular genetic algorithms.
IEEE Trans. Evol. Comput. 2005, 9, 126–142. [CrossRef]

31. Lozano, M.; Garcia-Martinez, C. Hybrid Metaheuristics with Evolutionary Algorithms Specializing in
Intensification and Diversification: Overview and Progress Report. Comput. Oper. Res. 2010, 37, 481–497.
[CrossRef]

32. Singh, P.; Dhiman, G. A hybrid fuzzy time series forecasting model based on granular computing and
bio-inspired optimization approaches. J. Comput. Sci. 2018. [CrossRef]

33. Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997,
1, 67–82. [CrossRef]

34. Singh, P.; Dhiman, G. A Fuzzy-LP Approach in Time Series Forecasting; Shankar, B.U., Ghosh, K., Mandal, D.P.,
Ray, S.S., Zhang, D., Pal, S.K., Eds.; Pattern Recognition and Machine Intelligence; Springer International
Publishing: Cham, Switzerland, 2017; pp. 243–253.

35. Chandrawat, R.K.; Kumar, R.; Garg, B.P.; Dhiman, G.; Kumar, S. An Analysis of Modeling and Optimization
Production Cost Through Fuzzy Linear Programming Problem with Symmetric and Right Angle Triangular
Fuzzy Number. In Proceedings of Sixth International Conference on Soft Computing for Problem Solving: SocProS
2016, Volume 1; Deep, K., Bansal, J.C., Das, K.N., Lal, A.K., Garg, H., Nagar, A.K., Pant, M., Eds.; Springer:
Singapore, 2017; pp. 197–211. [CrossRef]

36. Pritpal Singh, K.R.; Dhiman, G. A Four-Way Decision-Making System for the Indian Summer Monsoon
Rainfall. Mod. Phys. Lett. B 2018, in press.

37. Dhiman, G.; Kaur, A. Spotted Hyena Optimizer for Solving Engineering Design Problems. In Proceedings
of the 2017 International Conference on Machine Learning and Data Science (MLDS), Noida, India,
14–15 December 2017; pp. 114–119. [CrossRef]

38. Dhiman, G.; Kumar, V. Spotted Hyena Optimizer for Solving Complex and Non-linear Constrained
Engineering Problems. In Advances in Intelligent Systems and Computing; Springer: New York, NY, USA, 2018;
in press.

39. van den Bergh, F.; Engelbrecht, A. A study of particle swarm optimization particle trajectories. Inf. Sci. 2006,
176, 937–971. [CrossRef]

40. Coello, C.A.C. Theoretical and numerical constraint-handling techniques used with evolutionary algorithms:
A survey of the state of the art. Comput. Methods Appl. Mech. Eng. 2002, 191, 1245–1287. [CrossRef]

41. Baba, T. Slow light in photonic crystals. Nat. Photonics 2008, 2, 465–473. [CrossRef]
42. Zhai, Y.; Tian, H.; Ji, Y. Slow Light Property Improvement and Optical Buffer Capability in Ring-Shape-Hole

Photonic Crystal Waveguide. J. Lightwave Technol. 2011, 29, 3083–3090. [CrossRef]

http://dx.doi.org/10.1109/MCI.2006.329691
http://dx.doi.org/10.1504/IJBIC.2010.032124
http://dx.doi.org/10.1016/j.advengsoft.2017.05.014
http://dx.doi.org/10.1016/j.asoc.2014.02.006
http://dx.doi.org/10.1016/j.asoc.2012.05.018
http://dx.doi.org/10.1177/003754970107600201
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.1016/j.asoc.2012.11.026
http://dx.doi.org/10.1109/TEVC.2005.843751
http://dx.doi.org/10.1016/j.cor.2009.02.010
http://dx.doi.org/10.1016/j.jocs.2018.05.008
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1007/978-981-10-3322-3_18
http://dx.doi.org/10.1109/MLDS.2017.5
http://dx.doi.org/10.1016/j.ins.2005.02.003
http://dx.doi.org/10.1016/S0045-7825(01)00323-1
http://dx.doi.org/10.1038/nphoton.2008.146
http://dx.doi.org/10.1109/JLT.2011.2165334

Designs 2018, 2, 28 16 of 16

43. Mirjalili, S.M.; Abedi, K.; Mirjalili, S. Optical buffer performance enhancement using Particle Swarm
Optimization in Ring-Shape-Hole Photonic Crystal Waveguide. Opt.-Int. J. Light Electron Opt. 2013,
124, 5989–5993. [CrossRef]

44. Wu, J.; Li, Y.; Peng, C.; Wang, Z. Wideband and low dispersion slow light in slotted photonic crystal
waveguide. Opt. Commun. 2010, 283, 2815–2819. [CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ijleo.2013.04.114
http://dx.doi.org/10.1016/j.optcom.2010.03.037
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Spotted Hyena Optimizer (SHO)
	Encircling Prey
	Hunting
	Attacking Prey
	Search for Prey
	Analysis of the SHO Algorithm

	Constraint Handling
	Optical Buffer Design Problem
	Airfoil Design Problem
	Conclusions
	Unimodal, Multimodal, and Fixed-Dimension Multimodal Benchmark Test Functions
	Unimodal Benchmark Test Functions
	Sphere Model
	Schwefel's Problem 2.22
	Schwefel's Problem 1.2
	Schwefel's Problem 2.21
	Generalized Rosenbrock's Function
	Step Function
	Quartic Function

	Multimodal Benchmark Test Functions
	Generalized Schwefel's Problem 2.26
	Generalized Rastrigin's Function
	 Ackley's Function
	 Generalized Griewank Function
	 Generalized Penalized Functions

	Fixed-Dimension Multimodal Benchmark Test Functions
	 Shekel's Foxholes' Function
	 Kowalik's Function
	 Six-Hump Camel-Back Function
	 Branin Function
	 Goldstein–Price Function
	 Hartman's Family
	 Shekel's Foxholes Function

	References

