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Abstract: The purpose of this study was to evaluate the agreement between three methods for
measuring pupil size in patients implanted with multifocal intraocular lenses (MIOLs): Keratograph
5M (K5M), Pentacam AXL Wave (PW), and a simple hand ruler. Sixty-nine subjects implanted with
MIOLs and measured at the three-month follow-up visit were included in this retrospective analysis.
K5M and PW were used to measure the photopic (PP) and mesopic (MP) pupil sizes, and a hand ruler
was used to measure the pupil under environmental light conditions (135 lux). The Bland–Altman
method with its limits (LoAs) was used to assess the agreement. The median PP was 2.8, 2.95,
and 3 mm for K5M, PW, and the ruler, respectively (p < 0.05). Differences in PP were statistically
significant for all paired comparisons (p < 0.0005) except between PW and the ruler (p = 0.44). The
LoAs for the difference in PP between K5M and PW was 0.63 mm. The mean difference for MP
between K5M and PW was 0.04 mm (p = 0.34) with LoAs of 0.72 mm. MP measured with K5M and
PW could be considered interchangeable, although a correction of −0.3 mm (IC95%: −0.23 to −0.39)
should be applied to PP measured with PW to attain the K5M mean.

Keywords: pupil diameter; photopic; mesopic; average; multifocal intraocular lenses

1. Introduction

The pupil diameter is a mandatory measurement in screening procedures for cataract
surgery and refractive lens exchange with the implantation of a multifocal intraocular
lens (MIOL). The importance of this measurement is justified by the variations in visual
performance in patients implanted with MIOLs depending on pupil size [1–3] which
could lead to the selection of a particular design depending on the patient’s pupil [4].
Historically, this measurement has been conducted with devices known as pupillometers,
which are specially designed for this purpose, such as the Colvard (Oasis Medical, Glendora,
CA, USA) [5]. However, new devices such as videokeratographers, tomographers, and
aberrometers incorporate this measurement as a complementary tool beyond the main
measurement purpose [6,7]. These devices can use flashlights with different intensities to
measure the Photopic Pupil Diameter (PP), while Mesopic Pupil Diameter (MP) can depend
on the environmental light conditions in which the measurement is taken. Therefore, the
knowledge of the device being used for measuring pupil diameter and the use of this
device under appropriate environmental light conditions are mandatory for interpreting its
possible relationship with visual performance.

Beyond the previously-described technologies, the PP can be also measured, though
less precisely, with a simple ruler [8]. However, this requires infrared light to evaluate the
latter in mesopic (MP) conditions. This assessment, despite its simplicity, could be more
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highly correlated with visual performance if it is conducted in the same environmental
light condition where visual acuity is tested [9]. Interpretation of MIOL studies reporting
visual performance changes with pupil diameter could be quite difficult considering the
differences in the testing conditions. It is important to note that pupil size depends on
environmental light intensity, and this environmental light usually depends on the patient’s
activities. For instance, reading tasks require a range between 300 lux and 500 lux in places
such as offices, libraries, and exam lanes where eye examinations are conducted [10]. This
range of light intensities is consistent with the flashlights used by several devices, such
as Keratograph (K5M) and Pentacam (both by Oculus Optikgeräte, Wetzlar, Germany).
However, very demanding tasks at near vision, such as working with precious stones,
require even higher levels of light intensity (1500 lux) [10]. Therefore, some questions that
the surgeon should consider are: What are the tasks conducted by the patient (working
distances)? What is the environmental light level at which the patient conducts these tasks?
And finally, what is the visual performance achieved with the MIOL considering the pupil
diameter for these distances and environmental lights? Obviously, the final answer that will
help us to select the MIOL requires much knowledge of the pupil dependency of the optical
design, but also, as importantly, how the device being used measures the pupil diameter.

The distribution of PP and MP in patients implanted with MIOLs has been previously
published for the K5M [11], which is a videokeratographer that dynamically allows the
measurement of pupil diameter. However, this device is not commonly used to report pupil
diameter in clinical studies of MIOLs [12,13]. Pentacam AXL, a tomographer and biometer,
is more commonly used by anterior segment surgeons due to its versatility, incorporating
the measurement of the static MP in its latest Wave version (PW). Previous clinical studies
on MIOLs have used this device to report PP. For instance, Tañá-Sanz et al. [14] reported
a mean pupil size of 2.4 mm in a sample of patients with a mean age of 72 years, and
Sun et al. [15] reported a mean pupil size of 3.3 mm in a sample of patients with a mean
age of 66 years. Other authors have also used Pentacam for reporting PP in their studies
with mean pupil sizes in the range of 2.4 to 3.3 mm depending on the mean age of the
sample [16–19]. As PW now measures MP, it is expected that future studies will also include
the MP with this device; therefore, it is important to know how the measurement agrees
with other previous devices such as the K5M. The aim of this study was to evaluate
the agreement between the K5M, PW, and a simple ruler for measuring pupil diameter.
The results of this study are of importance for the screening criteria selection of MIOLs
using the pupil diameter of current PW users who previously used K5M to conduct
these measurements.

2. Materials and Methods
2.1. Subjects

This retrospective study was approved by the Ethics Committee of Research, Almería
Center, Torrecardenas Hospital Complex, and adhered to the tenets of the Declaration
of Helsinki. A total of 69 eyes and subjects consecutively implanted with the Liberty
(Medicontur Medical Engineering Ltd., Inc., Budapest, Hungary) from February 2021 to
January 2022 at Qvision, Ophthalmology Department (VITHAS Almería) whose pupil
diameters were measured during the 3-month follow-up visit with K5M, PW, and a hand
ruler were included in the study. The exclusion criteria were those for which an MIOL
implantation was not recommended according to our current standard clinical practice:
any disease affecting visual acuity and high-order aberrations above 0.5 microns, measured
with PW at 4 mm.

2.2. Measurement Procedures

The pupil size of the subjects was measured using our current patient journey map.
First, pupil size was measured using K5M followed by PW in a different room under
mesopic conditions, approximately 5 lux, by the same technician. The K5M is a multipur-
pose system that includes a Placido disk corneal topographer and a wide-field camera. This
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device uses infrared light and a video camera that dynamically allows for the measurement
of pupil size with the response to consecutive flash lights of 0.2 s followed by a brief
mesopic adaptation of 9.8 s [11]. The PP and MP were obtained by averaging the results
obtained after three consecutive measurements. Although this is a multipurpose system,
only the “Pupillogram” automated mode was used.

Patients were moved to the PW room and a single full-sequence measurement was
conducted approximately 3 min after K5M measurement completion. The PW is a combined
optical biometer (partial low-coherence interferometry), tomographer (Scheimpflug), and
aberrometer (Hartman–Shack). The full-sequence procedure was conducted in all eyes with
this device, starting with the wavefront measurement, where the static MP is captured in
infrared light, followed by a retro-illumination capture through the pupil, the measurement
of axial length, and finishing with tomography, where PP is measured through the response
to a rotation slit light scan. The last measurement of PP with a ruler was carried out
in an exam lane with an environmental light of 135 lux while the patient observed an
ETDRS chart located at 4 m, which was measured prior to the common ophthalmologic
examination procedures such as refraction and visual acuity.

2.3. Statistical Analysis

Although both eyes were consecutively measured, starting with the right eye and fol-
lowed by the left eye, only a random eye was included in the study due to high within-eye
intraclass correlation coefficients, >0.8 in all the comparisons, except for the MP measured
with PW which was 0.67 (p < 0.0005). Normal data distributions were confirmed using
the Kolmogorov–Smirnov test. Randomization was conducted using a personalized ran-
dom function created in MATLAB (R2019a; MathWorks, Natick, MA, USA). Any error
in systematically measuring the left eye after the right eye was also discarded, obtaining
differences below 0.06 mm between eyes in all cases (p > 0.05), except for the MP with PW
that was 0.14 mm higher with the right eye (p = 0.12), tested with a t-test for paired samples.
Differences between pupil diameter measurement procedures were analyzed using the
Friedman test with Bonferroni correction for post hoc comparison when the PP measured
with the ruler (non-normally distributed) was included in the analysis, with the paired
t-test for the comparison of MP with K5M and PW, and the independent t-test for testing
differences between men and women. Data analysis was performed using the IBM SPSS
for Windows statistical software (version 24.0; SPSS, Inc., Chicago, IL, USA). Agreement
was assessed by computing the Bland–Altman plots using Carkeet Excel file and 2-sided
tolerance factor for computing 95% confidence intervals [20].

3. Results

A sample of 29 men and 40 women with a mean age of 64 ± 9 years was included in
the analysis. No significant differences in age were obtained between sex groups (p = 0.79).
However, men had smaller PP and MP than women, −0.33 mm (p = 0.02) and −0.53 mm
(p = 0.007), respectively, for K5M, whereas for PW, mean differences of −0.37 mm (p = 0.005)
and −0.51 mm (p = 0.008) were obtained, respectively. These smaller pupil sizes for men
were not as obvious in the measurement with the ruler at −0.12 mm for PP (p = 0.28).

Table 1 shows the descriptive statistics for pupil diameter measurements for each
procedure. Differences were found between K5M and PW and the ruler (p < 0.0005) for PP
but not between PW and the ruler (p = 0.44). No differences were found between K5M and
PW for MP (p = 0.34).

Figure 1A shows these differences between methods for PP, more remarkably for
pupil diameters ≤ 2.5 mm, where the cumulative percentage of eyes was 40.6% for K5M,
whereas PW and the ruler only achieved 10.1% and 4.3%, respectively. On the other hand,
nearly 80% of eyes resulted in a PP smaller than 3.5 mm and almost 100% were below
4.0 mm. Cumulated percentages of eyes for MP are described in Figure 1B. The MP was
very uniform between both methods of measurement.
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Table 1. Descriptive statistics for pupil diameter measurement using Keratograph 5M (K5M), Penta-
cam AXL Wave (PW), and a ruler. The mean ± standard deviation and median [interquartile range]
are shown.

Pupil K5M PW Hand Ruler p-Value

Photopic 2.75 ± 0.56 a

2.8 [0.6]
3.06 ± 0.54 b

2.95 [0.59]
3.17 ± 0.46 c

3 [0] <0.0005

Mesopic 4.64 ± 0.82
4.5 [1.1]

4.68 ± 0.80
4.56 [1.03] 0.34

Paired comparisons a vs. b and a vs. c, p < 0.0005; b vs. c p = 0.44. Keratograph 5M (K5M), Pentacam AXL Wave (PW).
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Figure 2 shows the agreement between K5M and PW for PP with a mean difference of
0.3 mm smaller diameter for K5M. The LoAs at 1.96 standard deviations from the mean
were narrower for the PP (0.63 mm) than for the MP (0.72 mm).
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4. Discussion

Pupil diameter is a key measurement in the preoperative screening for the selection of
a MIOL, as visual performance may vary with this parameter and patient satisfaction can
be affected by pupil size [1–3,21]. Beyond the question of which MIOL design is selected
depending on this preoperative measurement, other questions may arise such as which
is the minimum or maximum pupil size at which a particular MIOL design should be
discarded. To answer these questions, clinical studies should report the visual performance
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stratified by pupil size [22]. However, this information would have little or no value if
the clinician is using another device for measuring the pupil diameter, and a previous
agreement study has not been conducted to confirm that results could be interchangeable.
In this study, we evaluated the agreement between two devices: the K5M, for which pupil
diameter distribution with MIOLs has been previously published [11], and the PW, a
device that integrates a wide number of measurements required for preoperative screening.
Furthermore, the agreement of the PP with the measurement using a hand ruler was
analyzed for both devices.

Our results for K5M and PP were in agreement with the results published in a previous
study by our research group, 78.3% vs. 84.5% of eyes ≤ 3 mm and 91.3% vs. 95.8% of
eyes ≤ 3.5 mm [11]. However, it is important to note that these percentages for smaller PP
were not in agreement with the PW, which showed percentages of 59.4% and 79.3% for
these diameters, respectively. On the other hand, all devices showed PP below 4 mm in
nearly 100% of eyes, which means that an MIOL that provides near and intermediate vision
inside of patient expectations at 4 mm will be able to be generally selected independently
of the loss of intermediate/near vision above this pupil diameter. Moreover, the K5M and
PW provided similar outcomes for MP due to this measurement being obtained at the
environmental lighting conditions. The percentage of eyes with MP ≤ 5 mm was lower in
the current study than in the previous one [11], 71% versus 93.3%. The role of MP in the
selection of MIOL differs from the role of PP, while the PP is related to intermediate and
near vision tasks for which high light conditions are required, the MP is related to the loss of
visual quality due to the spherical aberration (SA) which can be compensated or increased
by the SA induced by the MIOL. The importance of SA in MIOL selection has offered
controversial results among studies [23–26]; this is mainly due to devices usually providing
the SA at 6 mm and this should be recalculated for the mesopic pupil size. While the SA
also could have some influence on the photic phenomena size, the relationship between
MP and photic phenomena is driven by the addition and extension of rings in diffractive
MIOLs [27]. Therefore, the surgeon should make a decision considering a balance between
maintaining intermediate and near vision by taking into account the PP, and minimizing
the increase of photic phenomena by considering the MP.

Before new devices for measuring PP and MP came to the market, the Colvard was
widely used in studies with MIOLs (Table 2).

Table 2. Photopic (PP) and mesopic pupil (MP) diameters, measured with Colvard device, reported
in studies with intraocular lenses.

Author Subjects Eyes Age Intraocular Lens Device PP MP

Gil et al. [28] 19 19 74 ± 8 ReSTOR_SN6AD2 Colvard 3.2 ± 0.6 -
Gil et al. [28] 20 20 69 ± 13 Tecnis ZKB00 Colvard 3.4 ± 0.7 -
Gil et al. [28] 20 20 73 ± 5 Tecnis ZLB00 Colvard 3.2 ± 0.7 -
Gil et al. [28] 18 18 72 ± 7 AT LISA 809M Colvard 3.0 ± 0.6 -
Gil et al. [28] 19 19 69 ± 10 AT LISA tri 839MP Colvard 3.3 ± 0.8 -
Gil et al. [28] 20 20 68 ± 6 Symfony ZXR00 Colvard 3.3 ± 0.8 -

Chang et al. [29] 36 72 56 ± 7 Tecnis ZMB00 Colvard - 4.7 ± 0.8
Gil et al. [30] 12 24 63 ± 9 ReSTOR SN6AD1 Colvard 3.1 ± 0.6 4.6 ± 1.0
Gil et al. [30] 11 22 69 ± 7 Tecnis ZMA00 Colvard 3.0 ± 0.4 4.8 ± 0.4

Fernández-V-C et al. [31] 30 60 77 ± 6 Vivity DFT015 Colvard 2.9 ± 0.6 4.6 ± 0.8
Pepose et al. [32] 26 52 63 ± 6 Crystalens AO Colvard 3.2 ± 0.6 6.1 ± 0.7
Pepose et al. [32] 25 50 64 ± 7 ReSTOR SN6AD1 Colvard 3.2 ± 0.7 6.2 ± 1.3
Pepose et al. [32] 22 44 63 ± 9 Tecnis ZMA00 Colvard 3.4 ± 0.6 6.4 ± 0.8
Alfonso et al. [33] 22 44 68 ± 6 Eyhance ICB00 Colvard 3.9 ± 0.9 5.7 ± 0.9

Fernández-V-C et al. [34] 22 22 71 ± 9 Vivity DFT015 Colvard 3.0 ± 0.5 4.7 ± 0.7

Nowadays, several devices have been proposed for measuring the pupil diameter.
However, the light intensity and classification of PP and MP can vary. For instance, the
VX120 (Visionix-Luneau Technologies, Chartres, France) measures pupil diameter for four
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light conditions from scotopic to photopic, grading as mesopic at 160 lux and photopic
at 220 lux [35]. This classification is not consistent with handheld infrared pupillometers,
which classified high mesopic at 6.61 lux [36], or in our study where mesopic was ~5 lux.
The Sirius® (SCHWIND eye-tech-solutions, Kleinostheim, Germany) also stated in its
protocol that the PP diameter as 40 lux, even though the pupil diameter can be measured
up to 500 lux in the dynamic mode [37,38]. The latter value is close to the 568 lux measured
with a luxmeter at our premises for the K5M [11]. The Topolyzer Vario (WaveLight; Alcon,
Fort Worth, TX, USA) measures photopic and mesopic pupils sizes with similar outcomes
to the K5M for the mean age of the population [11,39].

Pentacam light intensity at the surface of the cornea has been reported as
4.79 × 10−2 mW/cm2, which corresponds to 327 lux and is similar to the WaveLight®

Oculyzer II (Alcon, Fort Worth, TX, USA) [7]. As expected, due to the lower light intensity
of PW in comparison to K5M, the PP measured with PW was 0.3 mm higher in our sample
and estimated between 0.23 and 0.39 in the population with 95% confidence. However, as
the MP measurement depended mainly on environmental light conditions, and this was
similar in both rooms (~5 lux), the agreement was almost perfect between devices. A poste-
rior power analysis using G Power (version 3.1, available at http://www.gpower.hhu.de/)
was conducted to confirm that a power of >0.8 can be obtained for the sample of 69 eyes
included to detect a true difference in population means >0.1 mm with a type I error proba-
bility of 0.05 given a standard deviation of 0.5 mm and correlation between measurements
of 0.8.

Table 3 shows how the mean PP described in studies with MIOLs range from 2.4 to
3.3 mm; therefore, our result of 3.06 mm is in the middle of this range and also inside of the
range from 2.9 to 3.9 mm described for the Colvard in Table 2.

Table 3. Photopic (PP) and mesopic pupil (MP) diameters added, measured with Pentacam device,
reported in studies with intraocular lenses.

Author Subjects Eyes Age Intraocular Lens Device PP

Tañá-Sanz et al. [14] 25 50 68 ± 7 Xact Mono-EDOF ME4 Pentacam 2.8 ± 0.5
Eguileor et al. [16] 15 30 72 ± 8 Eyhance ICB00 Pentacam 2.4 ± 0.3
Eguileor et al. [16] 15 30 74 ± 8 Tecnis ZCB00 Pentacam 2.5 ± 0.5

Nejat et al. [17] 23 46 58 ± 11 AT LISA tri 839MP Pentacam 2.8 ± 0.6
Zhu et al. [18] 20 40 60 ± 7 Symfony ZXR00 Pentacam 2.7 ± 0.5
Zhu et al. [18] 21 42 59 ± 6 AT LISA tri 839MP Pentacam 2.9 ± 0.4
Sun et al. [15] 20 20 66 ± 13 AT LISA tri 839MP Pentacam 3.3 ± 0.6
Sun et al. [15] 20 20 71 ± 11 AT LISA tri 839MP Pentacam 2.8 ± 0.5
Sun et al. [15] 20 20 70 ± 10 SBL-3 Pentacam 3.3 ± 0.8
Sun et al. [15] 20 20 68 ± 8 SBL-3 Pentacam 2.9 ± 0.4

Rementería-Capelo [19] 14 28 67 ± 10 PanOptix TFNT00 Pentacam 2.6 ± 0.6
Rementería-Capelo [19] 13 26 66 ± 6 RayOne Trifocal Pentacam 3.0 ± 0.7

The agreement between the Orbscan II (Bausch & Lomb, Rochester, NY, USA) and
Pentacam (Oculus Optikgeräte, Wetzlar, Germany) has also been evaluated, demonstrating
a higher PP with Pentacam than with the Orbscan II [37,40]. Once again, the differences can
be justified by the lower light intensity for the Orbscan II. Although the latter is reported to
start at 480 lux and decrease to 28.2 lux during the scanning process [6], a value of 130 lux
was measured at our center during the scanning [11]. On the other hand, the Lenstar
(Haag-Streit, Bern, Switzerland) and iTrace (Tracey Technology, Houston, TX, USA) provide
bigger PP diameters than Pentacam but below the 0.2 mm of mean differences in both
cases [41]. These agreement results are controversial, since higher differences have been
reported with iTrace (1.89 mm) [42]. Furthermore, studies with MIOLs have reported the
iTrace pupil as PP or MP, leading to confusion with values close to 4 mm near MP instead
of PP size [43,44]. Thus, Asena et al. [42] reported the pupil measured in mesopic light
conditions (20 Lux) to explain the higher differences between Pentacam and iTrace, with the
first reporting PP and the second reporting MP in this study. This is because some devices

http://www.gpower.hhu.de/
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such as the iTrace and biometers such as the Anterion (Heidelberg Engineering GmbH,
Heidelberg, Germany) or the IOL Master (Zeiss Meditec, Jena, Germany) provide the pupil
diameter under the environmental light conditions and measurements are usually obtained
in mesopic vision [45,46]. Some caution should therefore be taken when interpreting the
pupil diameter relationship with visual performance measured with devices that measure
pupil size in environmental light conditions. On the other hand, studies with devices that
use flash lights such as the OPD-Scan III (Nidek Co., Ltd., Gamagori, Japan) and the Sirius
have reported pupil diameters closer to those measured with Pentacam [47–50].

The LoAs describe the maximum deviation expected in 95% of the cases for each
individual measurement using both devices. These values were 0.63 and 0.72 mm for PP
and MP, respectively, which means that the differences between a measurement taken in an
eye with both devices are rarely going to exceed these values. To qualify this agreement
between devices, it is important to know how far these values are from the repeatability
reported using these or other methods. For instance, these values are in the range of
repeatability shown by handheld pupillometers under scotopic light conditions (0.64 to
1.16 mm) [36], close to the repeatability reported for the MP measured by other biometers
(0.66 to 0.74 mm) [51], and slightly higher than that measured with Pentacam HR (0.55 mm).
Therefore, if a difference higher than 0.3 mm is observed between devices in a single
measurement, this could be mainly due to the repeatability of the pupil measurement.

From a practical point of view, it is important to understand that the PP measured un-
der extreme photopic and mesopic conditions, such as when measured with the K5M, could
differ from the conditions in which visual performance is measured. The measurement
with a hand ruler in the exam lane before the testing process was in better agreement with
PW than with K5M in our study, which was explained by the lower environmental light
intensity (135 lux). Authors reporting results of visual performance with pupil diameter
should take this into account since the lack of correlation between measured pupils with
these devices and vision testing could be due to this. A limitation of our study is that
these agreement results were for a sample of patients implanted with MIOLs, and the
agreement might differ for other populations. Furthermore, it should be taken into account
that the measurements were taken during the postoperative period, and these can differ
from those obtained in the preoperative period in which a 10% larger diameter has been
reported [3,7,52]. In addition, the measurement with the hand ruler was obtained with the
patient looking at a stimulus located at a distance of 4 m, and around a 0.5 mm smaller
pupil diameter would be expected with the patient looking at a near stimulus [53].

5. Conclusions

In conclusion, our study confirmed a good agreement between K5M and PW for
MP but a slight correction between 0.23 and 0.39 mm (0.3 mm in our sample) should
be subtracted to PW to obtain the equivalent to K5M in photopic vision. In addition,
PP in our study was close to that reported in the samples of previous studies reporting
PP with the Colvard and Pentacam. Independent of this agreement, surgeons should
always interpret the visual performance results with the measurement of pupil diameter
closer to the conditions on which it is measured, either considering light conditions or
testing distance.
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