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Abstract: Pseudomonas aeruginosa is the most common causative agent associated with microbial
keratitis. During contact lens wear, pathogens may be introduced into the ocular environment,
which might cause adverse events. Lehfilcon A is a recently developed contact lens with a water
gradient surface composed of polymeric 2-methacryloyloxyethyl phosphorylcholine (MPC). MPC is
re-ported to impart anti-biofouling properties onto modified substrates. Therefore, in this in vitro
experimental study, we tested the capability of lehfilcon A to resist adhesion by P. aeruginosa. Quan-
titative bacterial adhesion assays using five strains of P. aeruginosa were conducted to compare the
adherence properties of lehfilcon A to five currently marketed silicone hydrogel (SiHy) contact lenses
(comfilcon A, fanfilcon A, senofilcon A, senofilcon C, and samfilcon A). Compared to lehfilcon A, we
observed 26.7 ± 8.8 times (p = 0.0028) more P. aeruginosa binding to comfilcon A, 30.0 ± 10.8 times
(p = 0.0038) more binding to fanfilcon A, 18.2 ± 6.2 times (p = 0.0034) more binding to senofilcon A,
13.6 ± 3.9 times (p = 0.0019) more binding to senofilcon C, and 29.5 ± 11.8 times (p = 0.0057) more
binding to samfilcon A. These results demonstrate that, for various strains of P. aeruginosa, lehfilcon A
reduces bacterial adhesion compared to other contact lens materials.

Keywords: Pseudomonas aeruginosa; keratitis; ocular infection; contact lenses; medical device;
2-methacryloyloxyethyl phosphorylcholine; MPC; surface treatment; bacterial adherence; microbial
adhesion

1. Introduction

Pseudomonas aeruginosa is a common Gram-negative bacterial pathogen that can detri-
mentally affect multiple organ systems. P. aeruginosa is a leading cause of ocular infections,
including conjunctivitis, dacryocystitis, keratitis, and corneal ulcerations [1–7]. Keratitis
caused by P. aeruginosa is characterized by severe pain, photophobia, generalized redness,
swelling, and discharge. The disease can progress to corneal ulceration, scaring, and in
severe circumstances, loss of vision [8]. Unfortunately, contact lens usage is associated with
the development of microbial keratitis (CLMK) [2,7,9,10]. P. aeruginosa is the microorganism
most frequently associated with CLMK [10]. Eyecare professionals and contact lens manu-
facturers offer recommendations to patients for the safe use of contact lenses. However,
patients routinely fail to follow recommended guidelines for contact lens usage [11–17].
Poor contact lens hygiene can circumvent the microbiological safeguards required for safe
usage, setting the stage for infection. A likely contributing mechanism for CLMK occurs
when an inadequately disinfected contact lens serves as a vector for the introduction of a
pathogen into the eye. Contact lens storage cases are intended to serve as cleaning vessels
when paired with biocide-containing contact lens care (CLC) solutions. Historically, there
have been keratitis outbreaks believed to be linked to inadequate CLC disinfection efficacy
under some circumstances. These include outbreaks of the comparatively rare pathogens
Fusarium solani [18,19] and Acanthamoeba [20]. It is widely understood, and now codified
in ISO 18259, that the efficacy of multipurpose disinfection solutions (MPDS) can depend
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upon the materials of the contact lens, contact lens storage case, and the presence of soiling
agents [21–25]. However, additional disinfection variability can arise when real-world pa-
tient practices, such as reusing or topping off contact lens care solution, dilute the effective
concentration of biocides.

Unfortunately, pathogens such as P. aeruginosa can express or acquire a wide variety of
resistance genes and biofilm-promoting pathways that enable survival when challenged
with an insufficient biocide concentration [26]. In a study by Subedi et al., P. aeruginosa
strains isolated from keratitis patients were challenged with various dilutions of mul-
tipurpose disinfection solutions (MPDSs) [27]. The authors found, for multiple strains,
substantial variations between formulations in their minimum bactericidal concentrations.
A similar study by Khan et al. observed strain-to-strain variations in the susceptibility of
P. aeruginosa isolates to MPDS formulations and constituent biocides [28]. In addition to
genetically driven differences in disinfection efficacy between organisms, microbial life
cycle can play an important role in determining MPDS susceptibility. Biofilms formed
by P. aeruginosa can be particularly resistant to disinfection by MPDS formulations [29].
Biofilms can form within contact lens storage cases, and the efficiency of removal depends
upon the cleaning regimen [30]. Once established, a reservoir of live microbes within the
storage case may then serve as a source for constant reinoculation of the eye. Indeed,
P. aeruginosa contamination of storage cases is associated with keratitis [31,32].

Disinfection by MPDS depends upon the identity and concentration of the biocide, the
context in which the agent is applied, and the genetics and behavior of the organism being
targeted. Thus, susceptibility to disinfection by biocides in MPDS is analogous to antibiotic
efficacy, which is similarly context-dependent. As with clinical antibiotic interventions, it is
inevitable that there will be disinfection failures. The consequences of a disinfection failure
ultimately depend upon the interactions of the infectious organisms and the patient. The
ocular surface is constantly challenged with microorganisms that do not cause apparent
disease. The epithelial barrier and tear-film components generally prevent infection [33–36].
However, pathogenic organisms such as P. aeruginosa can express a variety of virulence
factors that enable corneal tissue degradation, including secreted proteases [36–38] and type
III secreted effector proteins [39,40]. Similarly, P. aeruginosa can exhibit disease-promoting
phenotypes such as motility [41,42] and biofilm formation [43].

The pattern of medical-device-associated infections is not unique to CLMK and is
similar to other those of susceptible organ systems, such as catheter-associated urinary
tract infections (CAUTI) and ventilator-associated pneumonia (VAP). Unlike CAUTI and
VAP, prevention of CLMK is dependent upon continual compliance with good hygienic
practices by contact lens wearers rather than by medical professionals. Therefore, new
mitigation strategies for reducing the infection risks posed by contact lens usage should
include multiple layers of redundancy to account for user non-compliance.

SiHy contact lenses provide patients with the advantage of high oxygen permeability,
which reduces the epithelial effects of corneal hypoxia [44]. However, siloxane-based mate-
rials of silicone hydrogels are natively hydrophobic. Poor wettability of contact lenses is as-
sociated with patient discomfort and biomass deposition, including microbial adhesion [45].
Therefore, a variety of strategies are used to decrease the hydrophobicity of SiHy contact
lens surfaces, including plasma treatment, copolymerization with hydrophilic molecules,
and surface coatings. Lehfilcon A is a recently developed SiHy contact lens material that is
surface modified with poly-(2-methacryloyloxyethyl phosphorylcholine) (PMPC) [46,47].
MPC is remarkable for its anti-biofouling properties and has been shown to be effective
on a multitude of substrates [47–54]. Previously, lehfilcon A was demonstrated to reduce
protein and lipid deposition compared to its silicon hydrogel base material [46,47]. Re-
cently, we demonstrated that lehfilcon A showed reduced adhesion by the ocular pathogen
Serratia marcescens [55]. Therefore, we explored the degree to which the poor adhesion of
S. marcescens to lehfilcon A extends to the pathogen P. aeruginosa. In this manuscript, we
compare the anti-biofouling performance of lehfilcon A to a panel of SiHy contact lens
materials when challenged with multiple P. aeruginosa strains.
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2. Materials and Methods
2.1. Strains and Materials

P. aeruginosa strain ATCC 10145 was obtained from the American Type Culture Col-
lection. The P. aeruginosa strain CL79, isolated from a contact lens case, and the keratitis-
associated strains 6294 and 6206, were contributed by Suzanne Fleiszig [56]. GSU#3, derived
from a human corneal ulcer, was contributed by Donald Ahearn [57].

P. aeruginosa strains were maintained on trypticase soy agar (TSA) slants with incuba-
tion at 30–35 ◦C for 16–24 h. For assays, cells were grown on fresh slants and resuspended
in phosphate buffered saline (PBS). Cell densities were then adjusted to a 106–107 colony
forming units (CFU)/mL using spectrophotometry. CFU quantifications were performed
by dilution plating on TSA supplemented with 0.5% polysorbate 80 and 0.07% lecithin
(MCTA), followed by incubation at 30–35 ◦C for 18–24 h. Duplicate plate counts were aver-
aged. The eluted concentration of P. aeruginosa (CFU/mL) was calculated by multiplying
the averaged plate count by the dilution factor used in plating.

Contact lenses were commercially acquired for experiments. Contact lenses tested
were lehfilcon A (TOTAL30™, Alcon, Fort Worth, TX, USA), comfilcon A (Biofinity®,
Cooper Vision®, Scottsville, NY, USA), fanfilcon A (Vitality®, Cooper Vision®, Scottsville,
NY, USA), senofilcon A (Acuvue® Oasys, Johnson & Johnson Vision Care, Jacksonville,
FL, USA), senofilcon C (Acuvue® Vita™, Johnson & Johnson Vision Care, Jacksonville, FL,
USA), and samfilcon A (Ultra®, Bausch + Lomb, Rochester, NY, USA). To begin experiments,
contact lenses were removed from their packaging using sterile forceps and equilibrated
overnight in PBS.

2.2. Confocal Microscopy

Fluorescently labeled P. aeruginosa ATCC 10145 was prepared to facilitate visualization
of bacterial interactions with contact lenses according to the procedure described in Pifer
et al. with minor modifications [55]. Briefly, TSA slants were prepared as described above
and harvested into PBS, and the cells were pelleted. Cell pellets were rinsed twice with
PBS and resuspended in a buffer composed of nine parts PBS and one part 7.5% sodium
bicarbonate. A 10 mg/mL solution of 5(6)-carboxytetramethylrhodamine succinimidyl
ester (TAMRA-SE, Life Technologies, Eugene, OR, USA) was prepared in DMSO and mixed
with cells to achieve a concentration of 0.1 mg/mL. The staining reaction was carried out for
10 min at 30–35 ◦C. The staining procedure was repeated once, followed by five sequential
rinses with PBS to remove excess stain. For adhesion experiments, stained cells were
resuspended to 106–107 CFU/mL in PBS and incubated in a 12-well plate in the presence
of contact lenses previously equilibrated in PBS. Negative control lenses were exposed to
sterile PBS. Stained cells were left in contact with contact lenses for 2 h with gentle agitation
at 100 RPM at 30–35 ◦C in an Innova 40R shaking incubator. Non-adherent cells were rinsed
from the lens by gently transferring each lens into wells containing fresh PBS and agitating
for 1 min at 30–35 ◦C, 100 RPM. Three sequential rinses were performed. Cells adhered to
contact lenses were then fixed with 4% paraformaldehyde in PBS, followed by an additional
rinse in PBS to remove excess paraformaldehyde. Contact lenses were suspended in Prolong
Live antifade reagent for imaging. Images were collected using a Nikon A1R confocal
microscope at 4.975 micrometer resolution at 10X magnification. A 561 nm laser was used
for excitation, and emission spectra were collected from 570 to 616 nm.

2.3. Adhesion Assays

Quantitative adhesion assays were performed to evaluate the density of P. aeruginosa
adhered to contact lens surfaces. Equilibrated contact lenses were transferred into 12-well
plates containing P. aeruginosa at 106–107 CFU/mL in PBS. P. aeruginosa adhered to the
contact lenses for 2 h at 30–35 ◦C during agitation at 100 RPM. Three sequential 1 min rinses
in PBS were performed at 30–35 ◦C, 100 RPM. Lenses were then transferred into 10 mL
PBS supplemented with 0.05% polysorbate 80 and vigorously vortexed for 2 min to elute
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P. aeruginosa. Live organism recovery from each lens was quantified by dilution plating, as
described above. A schematic of this procedure was created with BioRender.com.

2.4. Statistical Analysis

Contact lens surface areas were calculated as described in Pifer et al. [55] Briefly,
surface area in square millimeters was computed as:

A = 2π[(D/2)2 + S2], (1)

where the contact lens diameter is represented by D. The posterior sag (S) is computed
using the contact lens diameter and base curve (BCE):

S = BCE −
√

(BCE2 − (D/2)2). (2)

Following adhesion assay recovery, the eluted concentration of P. aeruginosa (CFU/mL)
was multiplied by the 10 mL recovery volume to determine the absolute recovery per lens
(CFU/lens). The density of P. aeruginosa on a contact lens was then calculated by dividing
the absolute recovery per lens by the surface area of the contact lens (CFU/mm2). The log10
microbial density was then calculated for each lens (log CFU/mm2).

Pooled mean fold differences in adhesion were calculated to compare contact lens
material performance for multiple P. aeruginosa strains. To accomplish this, the ratio of
the average microbial density (CFU/mm2) of each lens material to that of lehfilcon A was
calculated. This yielded the fold difference in adhesion between a comparator material and
lehfilcon A. The fold differences in adhesion for each strain were averaged to calculate the
pooled mean fold differences in adhesion among P. aeruginosa strains.

Statistical analyses were performed with GraphPad Prism version 9.2.0. To determine
if the microbial recovery was significantly different between contact lenses, 2-tailed t-tests
were run on the log microbial densities to compare datasets without assuming equal sample
variance. For each analysis, Bonferroni correction was used to adjust the initial significance
level of α = 0.05 to account for multiple comparisons.

3. Results

To visualize how P. aeruginosa interacts with the surfaces of a contact lenses, we fluores-
cently labeled P. aeruginosa strain ATCC 10145 with TAMRA-SE, a dye that forms covalent
bonds with primary amine residues of proteins. We performed confocal microscopy to qual-
itatively evaluate the population of P. aeruginosa that was bound to the surface of a panel of
silicon hydrogel contact lenses currently available on the market, as of 2023. We observed
that comparatively low amounts of ATCC 10145 bound to lehfilcon A (Figure 1A) relative
to comfilcon A (Figure 1B), fanfilcon A (Figure 1C), senofilcon A (Figure 1G), senofilcon C
(Figure 1H), and samfilcon A (Figure 1I). Uninfected control materials (Figure 1D–F,J–L)
showed considerably lower fluorescent signals, as expected. This outcome is similar to our
observation of low accumulation of S. marcescens on lehfilcon A [55]. We also observed a
trend of relatively low adhesion on senofilcon C compared to senofilcon A.

To quantify the extent of the adhesion advantage of lehfilcon A seen by microscopy,
we performed adhesion assays with unstained ATCC 10145, using live bacteria re-
covery from the contact lens surfaces as the readout (Figure 2). Lehfilcon A bound
less (1.7 ± 0.2 log CFU/mm2) 10145 than comfilcon A (3.1 ± 0.1 log CFU/mm2), fanfil-
con A (3.3 ± 0.1 log CFU/mm2), senofilcon A (3.1 ± 0.0 log CFU/mm2), senofilcon C
(3.0 ± 0.1 log CFU/mm2), or samfilcon A (3.2 ± 0.1 log CFU/mm2). These results are
statistically significant at α = 0.01 with p < 0.0005 for all pairwise comparisons of lehfilcon
A and show that P. aeruginosa adheres to lehfilcon A at comparatively low densities.
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Figure 1. Qualitative assessment of P. aeruginosa’s adherence to soft contact lenses. Confocal mi-
croscopy of contact lenses treated with TAMRA-stained P. aeruginosa strain ATCC 10145 (A–C,G–I) or
mock treated with sterile PBS (D–F,J–L). Bacteria are visible as foci attached to the surface of lehfilcon
A (A), comfilcon A (B), fanfilcon A (C), senofilcon A (D), senofilcon C (E), or samfilcon A (F). A
0.42 × 0.42 mm field of view from the center of each contact lens is shown.
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Figure 2. P. aeruginosa ATCC 10145 adheres poorly to lehfilcon A. (A) A depiction of the critical steps
of the quantitative adhesion assay procedure used to compare contact lens materials. (B) Results of
a quantitative adhesion assay of P. aeruginosa strain ATCC 10145 incubated with soft contact lenses
(n = 6 individual contact lenses tested per material). The data are depicted as the average log density
of colony forming units recovered from adhesion reactions (log10 CFU/mm2) ± S.D. *** represents
p < 0.0005 for comparison to lehfilcon A.

To determine if the trends in adhesion density seen for ATCC 10145 generalize to
other strains, we performed quantitative adhesion assays for four additional clinically
relevant P. aeruginosa strains (Figure 3). For P. aeruginosa strain CL79 (Figure 3A), lehfil-
con A bound less (1.8 ± 0.1 log CFU/mm2; p < 0.0005 for all comparisons) than did
comfilcon A (3.1 ± 0.1 log CFU/mm2), fanfilcon A (3.2 ± 0.0 log CFU/mm2), senofil-
con A (2.9 ± 0.1 log CFU/mm2), senofilcon C (2.9 ± 0.0 log CFU/mm2), or samfilcon A
(3.2 ± 0.1 log CFU/mm2).

Similarly, for strain 6294 (Figure 3B), lehfilcon A bound less (1.9 ± 0.2 log CFU/mm2;
p < 0.0005 for all comparisons) than did comfilcon A (3.1 ± 0.2 log CFU/mm2), fanfil-
con A (3.1 ± 0.1 log CFU/mm2), senofilcon A (2.9 ± 0.1 log CFU/mm2), senofilcon C
(2.8 ± 0.0 log CFU/mm2), or samfilcon A (3.1 ± 0.0 log CFU/mm2). For strain 6206
(Figure 3C), lehfilcon A bound less (1.2 ± 0.1 log CFU/mm2; p < 0.0005 for all comparisons)
than did comfilcon A (2.7 ± 0.1 log CFU/mm2), fanfilcon A (2.8 ± 0.1 log CFU/mm2),
senofilcon A (2.6± 0.2 log CFU/mm2), senofilcon C (2.4± 0.0 log CFU/mm2), or samfilcon
A (2.8 ± 0.1 log CFU/mm2). Finally, for strain GSU3 (Figure 3D), lehfilcon A permitted
significantly less binding (1.4 ± 0.2 log CFU/mm2; p < 0.0005 for all comparisons) than
did comfilcon A (3.0 ± 0.1 log CFU/mm2), fanfilcon A (3.0 ± 0.1 log CFU/mm2), senofil-
con A (2.7 ± 0.1 log CFU/mm2), senofilcon C (2.6 ± 0.1 log CFU/mm2), or samfilcon A
(3.0 ± 0.1 log CFU/mm2).

The average bacterial density among all five tested P. aeruginosa strains was calculated,
and the fold difference in adhesion relative to the baseline set by lehfilcon A was calculated
for each material (Figure 3E). The next best performing material after lehfilcon A, senofilcon
C, bound 13.6 ± 3.9 times (p = 0.0019) more P. aeruginosa than did lehfilcon A. Of the
other materials, comfilcon A bound 26.7 ± 8.8 times (p = 0.0028) more, fanfilcon A bound
30.0 ± 10.8 times (p = 0.0038) more, senofilcon A bound 18.2 ± 6.2 times (p = 0.0034) more,
and samfilcon A bound 29.5 ± 11.8 times (p = 0.0057) more P. aeruginosa than lehfilcon
A. These results demonstrate that lehfilcon A allowed less P. aeruginosa adherence than
other contact lens materials, regardless of the strain used for testing. Interestingly, the
trend of relatively good performance of senofilcon C was maintained among strains. This
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is in contrast to a study of lipid binding that observed relatively high total lipid binding of
senofilcon C treated with an artificial-tears solution [58].
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Figure 3. Lehfilcon A’s performance was consistent for various strains of P. aeruginosa. (A–D) Quanti-
tative adhesion assays of P. aeruginosa strains GSU3 (A), CL79 (B), 6294 (C), and 6206 (D) exposed
to soft contact lenses (n = 6 per lens type). The data are depicted as the average log density of
CFUs recovered from adhesion reactions (log10 CFU/mm2) ± S.D. (E) Fold difference in P. aerugi-
nosa adhesion for each lens material relative to lehfilcon A. The data depicts the pooled mean fold
difference ± S.D. for all five quantified P. aeruginosa strains (10145, GSU3, CL79, 6294, and 6206).
* represents p < 0.05, *** represents p < 0.0005 for comparison to lehfilcon A.

4. Discussion

The use of daily disposable contact lenses rose from 28% of contact lens users in 1998
to 63% of users as of 2022 [59]. This change in use habits has come at the expense of
monthly contact lenses, such as those studied here. Daily disposable contact lenses are
attractive to patients for their convenience, though they are generally more costly. Eyecare
professionals appreciate daily disposable contact lenses for their relatively lower risk of
complications [60,61]. To improve the competitiveness of monthly contact lenses, manufac-
turers would need to improve the design of these contact lenses, perhaps by mitigating
risks associated with their use. Historically, there have been many improvements to contact
lenses, including the transitions from rigid gas-permeable contact lenses to soft contact
lenses and then to silicone hydrogel contact lenses. A potential area of improvement for
next-generation contact lenses is the diminishment of microbially driven corneal inflam-
matory/infiltrative events (CIEs) associated with contact lens usage. CIEs occur when
inflammatory signals promote leukocyte recruitment to the cornea, which may then cause
irritation or tissue damage [62–64]. This can occur in instances where a microbe begins
an infectious process, such as microbial keratitis. In such cases, a clinician may be able
to isolate the causal organism by corneal scraping. However, CIEs can occur without the
presence of a clinically identifiable pathogen, such as in cases of contact lens-induced acute
red eye (CLARE) or contact lens peripheral ulcers (CLPUs). CLARE is a painful inflamma-
tory disease of the cornea and conjunctiva associated with contamination of contact lenses
by-products derived from Gram-negative bacteria, including P. aeruginosa, S. marcescens,
H. influenza, and other organisms [65–67]. CLARE is believed to be precipitated by the
presence of endotoxins released by these organisms, which recruit inflammatory cells [68].
CLPU is another infiltrative complication resulting in the loss of corneal epithelium [69,70].
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CLPUs are not necessarily infectious but are associated with Gram-positive bacteria and
their toxic products [71,72].

A current hypothesis in the field is that contact lens materials that can reduce microbial
contamination may reduce CIEs. As a proof of concept of this hypothesis, a series of
publications by Wilcox et al. detailed the results of in vitro experiments, animal model
testing, and clinical outcomes for an experimental antimicrobial contact lens [73–75]. In
these studies, the synthetic antimicrobial cationic peptide melimine was coated onto a
contact lens to prevent microbial contamination of the material [73]. The authors observed
melimine-concentration-dependent reductions in contact lens colonization of up to 92%
for P. aeruginosa and 76% for S. aureus. In a follow-on in vivo study, melimine coating
of contact lenses reduced the incidence of infiltrates from 50% to 13% in a guinea pig
model of P. aeruginosa-dependent CLARE [74]. Similarly, the melimine lenses reduced
epithelial defects from 27% to 9% in a S. aureus CLPU rabbit model [74]. A contact lens
coated in the melimine-derived peptide, Mel-4, was assessed for CIE outcomes in human
patients in a contralateral comparison study [75]. The study observed a 50–69% reduction
in CIEs in patients using Mel-4 coated lenses for three months, relative to patients wearing
the control contact lens. Combined, these studies offer strong evidence that advanced
contact lens materials that prohibit contamination can reduce microbially driven contact
lens complications.

Reduced microbial contamination of synthetic substrates has long been an infection
prevention goal of the medical-device community. Two broad categories of polymer tech-
nologies have been employed to reduce the microbial burden on medical devices: antimi-
crobial surfaces that actively kill the microbes that encounter the device and anti-biofouling
surfaces that reduce microbial binding to the device. These are still emerging strategies,
and not all are likely to be compatible with consumer products. Important examples of
antimicrobial surfaces include metal-impregnated polymers [76–78], drug-eluting compos-
ites [79,80], and coatings with antimicrobial peptides such as Mel-4 [73,81,82] and other
cationic polymers [83]. Examples of anti-biofouling surfaces include zwitterionic polymers
such as PMPC found on lehfilcon A, nanoscale topography [84,85], superhydrophobic
coatings [86,87], and PEG-based coatings [88]. PMPC is a hydrophilic, biocompatible poly-
mer displaying a zwitterionic phosphorylcholine group [89]. The PMPC on lehfilcon A is
formed into a layer on top of a silicon hydrogel base material, yielding a hydrophilic and
lubricious surface [46,47]. MPC has been previously demonstrated to confer resistance to
protein adsorption to a variety of surfaces [90–95]. Similarly, the PMPC coating of lehfilcon
A reduces protein adsorption relative to its base material [46,47]. PMPC is hypothesized to
not interact strongly with proteins due to the formation of a stable water clathrate structure
surrounding the PMPC chain [89,95].

Previously, we developed a fluorescent, live-cell, cell-surface, covalent labeling tech-
nique for studying a genetically intractable strain of S. marcescens by confocal microscopy [55].
We demonstrate the use of this technique for covalent labeling of P. aeruginosa with TAMRA-
SE. Qualitatively, we observed that lehfilcon A bound relatively low levels of labeled
P. aeruginosa strain ATCC 10145 (Figure 1). This successful implementation of TAMRA-
SE staining for P. aeruginosa suggests the potential for broad use of this staining method
for imaging live microorganisms in experimental settings that do not allow for genetic
labeling with fluorescent proteins or transient labeling with non-covalent dyes. To quantita-
tively evaluate P. aeruginosa biofouling, we recovered and enumerated adhered organisms
from each contact lens material. We observed low adhesion to lehfilcon A by unlabeled
P. aeruginosa ATCC 10145 (Figure 2B). Our observations are in accordance with prior studies
showing reduced P. aeruginosa binding to MPC coated steel plates [49] and our observations
of S. marcescens interactions with lehfilcon A [55]. We observe that these results are inde-
pendent of the strain used for testing (Figure 3), suggesting that the differences in adhesion
between contact lenses are primarily due to differences in the contact lens materials. Most
studies have used only a single microbial strain to evaluate adhesion to contact lenses,
leaving considerable ambiguity as to whether their conclusions are dependent upon the
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material tested or the strain used for evaluation. We have performed a parallel analysis
using five strains, including clinical isolates. Therefore, we can without ambiguity distin-
guish the role of the contact lens material in governing adhesion from variations caused
by individual phenotypic behavior of a given strain. Interestingly, the general pattern of
adhesion was remarkably consistent. Even minor trends in material performance were
maintained among P. aeruginosa strains.

We observe that senofilcon C consistently trends towards lower levels of adhesion com-
pared to senofilcon A, comfilcon A, fanfilcon A, and samfilcon A (Figure 3E). Senofilcon A,
senofilcon C, and samfilcon A contain polyvinylpyrroliperformed (PVP) as a wetting agent
that might be expected to perform an analogous function to PMPC on lehfilcon A, arguing
that microbial adhesion to contact lens materials cannot necessarily be readily predicted and
must be experimentally determined. Interestingly, a series of explorative studies pairing
machine learning based prediction of microbial adhesion with high throughput synthesis
and testing of polymer formulations found that material properties previously believed rel-
evant had no value in predicting adhesion [96–99]. Further development of anti-biofouling
medical devices would likely benefit from incorporating the kinds of high-throughput
synthesis, testing, and computational tools now becoming available [100].

Our findings are relevant because CIEs, including contact lens-related keratitis and
CLARE, are associated with Gram-negative pathogens, especially P. aeruginosa [2,7,9,10,65].
While keratitis can be caused by the microbiota resident to the eye, contact lenses are likely
to function as a vector enabling the transfer of pathogenic microbes into the eye [31,101].
Indeed, SiHy lenses have been shown to allow more microbial adhesion to the contact lens
surface compared to conventional hydrogel lenses, perhaps due to the relative hydropho-
bicity of SiHy lenses [45,102–104].

Contact lenses that intrinsically limit microbial contamination may be an effective ap-
proach to reducing CIEs when coupled with effective contact lens care solutions. Currently,
we do not yet know if lehfilcon A will reduce CIEs in the hands of patients. However, the
in vitro anti-biofouling properties of lehfilcon A are promising, and thus, we believe that
our results may justify performing an observational study of lehfilcon A users to assess
CIE outcomes.
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