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Abstract: A study was conducted to determine stable cortical contrast response functions (CRFs)
accurately and repeatedly in the shortest possible experimentation time. The method consisted
of searching for experimental temporal aspects (number and duration of trials and number and
distribution of contrasts used) with a model based on inhomogeneous Poisson spike trains to varying
contrast levels. The set of values providing both short experimental duration and maximizing fit of
the CRFs were saved, and then tested on cats’ visual cortical neurons. Our analysis revealed that
4 sets of parameters with less or equal to 6 experimental visual contrasts satisfied our premise of
obtaining good CRFs’ performance in a short recording period, in which the number of trials seems
to be the experimental condition that stabilizes the fit.

Keywords: statistical curve fitting; contrast response function; Naka Rushton equation; visual
cortical neurons

1. Introduction

Recent technological advances yielded an exponential increase in the number and size
of the biological data simultaneously recorded [1]. At first sight, neuroscientists would
benefit from these massive amounts of data to better understand brain functions [2], but new
considerations have to be taken when experiments are done [2]. For example, if individual
responses within a large neural population were optimized as a function of external visual
stimuli, the amount of time required to record such data would be enormous. One solution
would be to perform adaptive methods, such as those used in psychophysics [3], and
acquire the average performance of neural populations to visual stimuli. Another approach
would be to know a priori the optimal visual responses of this group of neurons and thus
use these already optimized variables to reduce the recording time required.

An example of technological advancement is the development of multi-channel elec-
trodes, which allow the recording of the activity of hundreds if not thousands of neurons
simultaneously [4]. When recording with a single electrode, researchers can extract rapidly
and efficiently neuronal properties from raw signals. However, the use of a multi-electrode
array poses new challenges for neuroscientists regarding the optimization of stimulation
protocols and the subsequent analyses, increasingly so if it is performed online. Therefore,
new tools for extracting specific parameters from experimental data are required to exploit
and maximize the recording of a large neural data set.

One of the most investigated properties of neurons in the visual system is their
response to stimulus contrast changes leading to the contrast response function (CRF) [5].
A sigmoidal shape characterizes the CRF, increasing nonlinearly as a power function at low
contrast levels, approximately linear at middle levels, and saturating at high contrasts. The
CRF can be fitted by the Naka-Rushton Equation (NRE) [6]. Assessing the CRF of a large
pool of neurons is essential when one wants to characterize a given brain area’s functional
properties but remains challenging in time and accuracy.

This study will address how to find the best fit of the CRF within the shortest period of
neural recording. One possibility of improving the fit of the curve is increasing the number
of contrast values experimentally, along with the number of trials and the duration of the
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visual stimuli (Figure 1A). However, adding more conditions increases the total recording
time. Inversely, if one wishes to minimize the recording duration, the variation of neuronal
responses to contrast will be considerably higher, and the CRF fit will be low (panel B).
These two extremes are inadequate. Therefore, a point where a short recording time and an
appropriate number of experimental conditions to yield a suitable CRF fit are required.
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Figure 1. Trade-off between the fit performance and the recording time to obtain reliable CRFs. While
the performance of the fit is measured by the comparison between theoretical and experimental curves,
the recording time comes from the multiplication of experimental conditions (# points, # repetitions,
length of trials). Theoretical curves (blue lines) are obtained directly by the NRE to a given set of
parameters. Experimental curves (red lines) are generated by the fit of the average firing rate to
visual contrast stimuli (black dots). Two representative cases are shown. (A) Comparison between
theoretical and experimental CRFs provides a good curve fit (blue and red lines are similar), but the
total experimental time is long. (B) The fit performance is poor since theoretical and experimental
curves are substantially different, but the total acquisition time of the experiment is short.

Here, we present a novel method to precisely and repeatedly obtain reliable CRF from
big experimental data sets, offline or online, in a reasonable time. The method consisted to
calculate a priori experimental variables that contribute the most to obtaining optimal CRF
curves in a short period. To that end, from experiments with great contrast, many repetitions
and a long trial duration, a “ground truth” CRF was formed. From this “theoretical” CRF,
multiple data subsets were drawn to build representative new CRFs. An error between the
ground truth CRF and the new CRFs was calculated, and this quantification was evaluated
to validate that what formed CRF was the most similar to the theoretical ground truth.
Thus, experimental CRFs were ranked by their adjustment to this “theoretical curve”. Such
an adjustment was defined as the performance of the fit. In parallel, the experimental time
of each CRF was estimated, and combined with the performance of the fit to obtain the
optimal combination of parameters searched.

Since the number of iterations to generate this data set can be extremely large, we
first simulated CRFs with a nonlinear-Poisson cascade model. The nonlinear function
was the NRE, which was the theoretical ground under the given experimental conditions.
Such experimental conditions were the number of trials, the amount of input contrast
levels, the length of stimulus used, and different types of contrast metrics (e.g., linear or
logarithmic scales). Then, “experimental” Poisson spiking data from the theoretical curve
were generated, and from these average data points, new CRFs were fitted with the NRE.
Thus, the performance of the fit was calculated by the comparison between theoretical and
experimental curves.

We selected CRFs that minimized the experimental recording duration and maximized
the fit. Our simulations showed that a point where CRFs maximize the fit’s performance
with a considerable experimentation time of recording exists. Such data sets of contrast
curves were then experimentally tested in the visual cortex of cats to confirm the variables
that best satisfy both requirements, best fit in a short recording period. Our analysis
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revealed that 4 sets of parameters with less or equal to 6 experimental visual contrasts
satisfied our premise of obtaining good CRFs’ performance in a short recording period.

2. Material and Methods

For all experimental and theoretical data, CRFs were built by fitting points to the Naka-
Rushton Equation (NRE). The NRE describes the behavior of visual neurons to contrast
changes [6,7], and is defined as follows:

r(c) = Rmax
cn

cn + Cn
50

+ B (1)

where r(c) is the output response at contrast c. Parameters of the NRE are B, the baseline
response, n, the exponent of the curve (it is related to how rapidly the curve transitions
around its inflection point), Rmax, the dynamic range of the curve, and C50, is the half-
saturation contrast constant.

2.1. Curve Fitting

The fitting of the experimental data points to obtain the CRF from the NRE was
achieved through a nonlinear least squares curve fitting (LSCF) algorithm. The LSCF used
was from the lsqcurvefit function of MATLAB (Mathworks, Natick, MA, USA). The data
point to obtain such curve fit was obtained from the average of the mean firing rate (the
spike count per second) of trials of an experiment. For example, one experiment consists
of the visual presentation of 6 different contrast percentages for 2 s each. Each trial was
repeated for 10 times. Then, to calculate the mean firing rate, we average each point of the
data set for the number of spikes for 2 s, divided this point by the ten repetition trials. This
average iterated for each of the six contrast levels. Thus, for this particular experiment,
6 average contrast levels were used to calculate the curve fitting of the CRF and their
parameters from the NRE. The algorithm used for fitting curve parameters to data points
was trusting region reflective [8], with the maximum number of iterations set at 1000,
and a termination tolerance on the function value and the contrast, c, of 10−11 [9]. Initial
values for curve parameters were drawn from a homogeneous distribution between limits
imposed below.

The parameters of NRE were bounded to simulate the response of neurons to visual
contrast in biologically possible ranges. C50 was bounded as (0, 100)%. Boundaries of C50
higher than 100% contrast show a misleading Rmax, that is much higher than the experi-
mental dynamic range. A quick set of simulations revealed that the most stable boundary
for Rmax was (0, MAX + MAXERR), where MAX was the maximum firing response to
contrast, and MAXERR was the maximum uncertainty (2 standard deviations) of MAX
(Supplementary Table S1). The baseline B was also settled with that range. Another set of
simulations showed that the optimal boundary for n was (0, 6) (Figure S1 and Table S2).
Imposing an upper boundary on n greater than 6 makes neither biological nor statistical
sense (Figure S1, panel D), which is in agreement with biological measurements [10,11].
To avoid a potential local minimum as a possible global minimum per each curve, fitting
LSCF was iterated with random NRE parameters (N = 500). Parameters were drawn from
a homogeneous distribution with boundaries as above described. The global minimum
was then conserved.

2.2. Computational Model

A simplified and modified linear-nonlinear-Poisson cascade model was used to simu-
late neuronal responses to variations of visual contrast percentages (Figure 2A) [12]. For
simplicity, the linear component that represents RFs of cells was not considered. First, the
visual stimulus was passed through a nonlinear function, which in our case is the NRE. For
each of these simulations (i.e., visual experiment), the NRE was set with fixed parameters.
Once the instantaneous firing rate of the neuron was recovered, it was later transformed
into spike trains by an inhomogeneous Poisson process. As a visual input with different
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levels of contrast is presented randomly (Figure 2B), spikes were collected and averages of
mean firing rates were calculated (Figure 2C,D). In summary, our model generated dynamic
spike responses from visual contrast inputs by using the NRE.
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Figure 2. Simulating CRFs. (A) Model showing the spiking response to variation of visual contrast.
Spikes were generated using an inhomogeneous Poisson process. For more explanations, see Section 2.
The model is tested with different contrast magnitudes. (B) Visual contrast changing as a function of
time. Visual contrast stimuli were presented randomly, but are shown aligned for better visualization.
(C) Spike response to variations of contrast stimuli. (D) Peri-stimulus time histograms generated
in order to confirm contrast responses. (E) CRF response based on the model output from the
firing rate of the simulated neuron. The blue line indicates the theoretical curve with fixed contrast
response parameters from the NKE. Black dots show average responses of spiking firing rate to a
given contrast. The red line shows the CRF fit from the least-squares curve fitting. Testing conditions
were preemptively determined and varied (stimulus trial length, number of trials, number of points).
(F) Calculation of RMS#points by comparing particular CRF points to the theoretical curve (red dots).
(G) Calculation of RMSAllpoints by comparing all experimental CRF points to the theoretical curve.
(H) Calculation of experimental parameters from the CRF fit (Rmax, B, C50, and n). (I) Calculation of
the angle formed by the difference between theoretical and experimental parameters’ vectors. (J) Ten
scales (metrics) with different contrast distributions are shown. Only scales of 6 points are represented.

This model was used to obtain theoretical and “experimental” CRFs. While the ground
truth CRF of the model was the NRE, experimental curves were obtained by simulating
the model with different conditions (i.e., #points, #trials, trial length) (Figure 2E). At
these particular experimental conditions, curve fitting was calculated and an experimental
CRF was recovered (see Curve Fitting). Finally, the theoretical CRF was compared to the
“experimental” CRF, and such a difference was quantified as a measure of the error of the
experimental conditions used. In our case, it should be clarified that simulated spike trains
are equivalent to single-unit but not multi-unit recordings.

2.3. Optimization Criteria

Our criteria is to find the best curve fit in a short recording period that a neuron has.
To optimize such a premise, we quantified the performance of the fit and the total duration
of the experiment. As Figure 1 shows, it is expected that the performance of the fit increases
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when the duration of the experiment is long. Inversely, the performance of the fit is poor
when the experiment duration is too short. Between these two extremes, a neuron has
a point where the fit performance equals the total experiment duration. Therefore, the
performance of a neuron is maximized where the curves that describe the fit performance
and the total experiment duration overlap.

2.3.1. Error Estimation of CRF

As explained above, theoretical and experimental CRFs were recovered, and an esti-
mate from their comparison is needed (Figure 2E). The curve fitting recovers two outputs,
the CRF curve and the parameters of the NRE. For the theoretical ground truth, these vari-
ables were known a priori. To evaluate differences between theoretical and experimental
outputs, two methods were used. To evaluate the differences between theoretical and
experimental outputs, we used three methods. Outcomes of these three methods will be
compared to search for consistent experimental conditions among repetitions, and thus,
find a regularity in the analysis.

The first approach consisted of the direct comparison of the two CRF curves, the
theoretical and experimental curves. The second method quantifies the difference between
theoretical and experimental parameters of the NRE.

For the first method, we used the root-mean-square (RMS) error of the CRF. RMS is
defined as:

RMS =

√
∑N

i=1(Ei − Ti)
2

N
(2)

where N is the total number of i points on the CRF, Ei is the experimental data, and
Ti is the theoretical curve. In parallel, RMS was used with all the points of the CRF
curve (N = 100). Error estimation by the number of points or all points were defined as
RMS#points (Figure 2F) or RMSallpoints (Figure 2G), respectively. These two measurements
were calculated to compare the differences between a discrete and continuous use of fitting
of errors.

Differences between theoretical and experimental parameters of the NRE were com-
pared by calculating the angle difference between two vectors (Figure 2H). These vectors
were formed by experimental or theoretical parameters, so σE = [Rmax, B, C50, n]E, or
σT = [Rmax, B, C50, n]T , respectively. The angle difference is calculated by the dot product
of the two vectors, divided by the length of the two vectors, so:

σ = arccos
(

σE · σT

|σE||σT |

)
(3)

where |σA| =
√

R2
max + B2 + C2

50 + n2. If vectors are similar, and so are the parameters, the
angle becomes small, otherwise the angle is large.

2.3.2. Temporal Error Estimation

Total experimental time was calculated by multiplying experimental conditions. For
example, for the previous example of 6 visual contrast levels with 2 s duration, repeated
10 times, the total time was 6 × 2 × 10 = 120 s. This factor was used logarithmically to
enhance its importance.

2.3.3. Monte Carlo Method

Monte Carlo simulations were used here to recover experimental CRFs and parameters
of the NRE. These outputs were compared with the theoretical curves whose curves
and parameters are known. Seven CRF parameter variations were considered: four of
which are functional parameters (Rmax, C50, n, B), and three of which were experimental
conditions (#points, #trials, trial length) (Table 1). A total of 10,000 replicates were used
per experimental condition. On a side note, since there were four functional parameters
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(degrees of freedom), the absolute minimal number of data points for a fit to occur must be
at least 4.

Table 1. Functional and experimental parameter values that were varied in the Monte Carlo simula-
tions (all simulations).

CRF Parameter Values for Simulations Units

Functional Rmax 5, 7, 10, 16, 32 spk/s

C50 20, 40, 50, 60, 80 %

B 1, 2, 4 spk/s

n 1, 2, 3, 6 -

Experimental Trial Length 1, 2, 4, 6, 8, 16 s

# contrast points 4, 6, 8, 10, 15, 20 -

# repetitions 1, 2, 4, 8, 16, 32, 64 -

2.4. Metric Spacing or Scales

Different percentage distances between visual contrasts can be used to fit the CRF.
Parametric and logarithmic scales are the most used scale in the literature (Figure 2J, scales
1 and 2, respectively). A logarithmic scale generates n spaced points between decades
10a and 10b, where a and b are the lower and upper bounds, respectively. The resulting
vector, for both linear and logarithmic scales, was weighted by 100 to obtain percentages
of contrasts. Since the duration of the experiment is unaffected by the different spacing of
contrast, we investigated whether the position of the contrasts and their type of distribution
influenced the performance of the fit. Table 2 details such distance and distribution of the
ten scales used. While scales 2, 3, 4, 5, 6, 7, and 10 have a logarithmic distribution, scales
1, 8, and 9 have a linear distribution. Scale 3 lacks the last contrast at 100%. Scale 4 has
contrasts concentrated around 100% (second half of the distribution). Scale 5 has contrasts
concentrated around 25%. Scale 6 is similar to scale 5 but without the first contrast (0%).
Scale 7 has contrast concentrated around 50%. Scale 8 is similar to scale 7 but linearly
spaced, so visual contrasts have a tendency to be close to borders (0% and 100%). Scale 9 is
similar to scale 8, but contrasts are less distributed towards the borders. Scale 10 has values
logarithmically concentrated around 50%. These scales and their metrics were analyzed
theoretically and experimentally.

Table 2. Metrics used during theoretical and experimental tests. For a given number of points T, we
have the following 10 metrics as depicted in Figure 3.

Implementation

Scale Lower Bound Upper Bound Description

1 Linear 0.0 1.0 Linearly spaced

2 Logarithmic −1.2 0.0 Concentrated around 0

3 Logarithmic −1.0 −0.15 Concentrated around 0.25

4 Logarithmic −0.3 0.0 Concentrated around 1

5 Logarithmic −0.7 0.0 Concentrated around 0.75

* 6 Logarithmic −0.5 0.0 Same as 5 without 0

7 Logarithmic −0.5 −0.15 Concentrated around 0.5

8 Linear 0.1 0.9 Same as 7 but linearly spaced

9 Linear 0.25 0.75 Same as 8 but less spread out

10 Logarithmic −0.7 −0.1 Log-concentrated around 0.5
* Note that for metric spacing 6, there is no point at c = 0, therefore the baseline, B, parameter has to be estimated
from the rest of the points.
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Figure 3. Examples of simulations of CRFs for different parameters and experimental conditions.
(A) Variation of parameters of CRFs. Top, middle and bottom panels show changes of Rmax, C50, and n,
respectively. Parameters for simulations in top panels with C50 = 20%, n = 2, and B = 1 sp/s/; middle
panels Rmax = 15 sp/s, n = 2, and B = 1 sp/s; bottom panels, Rmax = 15, C50 = 25%, and B = 1 sp/s.
For this set of simulations, number of points = 6, trial length = 2 s, and number of repetitions = 10.
(B) Variation of conditions of CRFs. Top, middle and bottom panels show changes of the number
of points (#pnts), length of trials (len), and number of repetitions (#rep), respectively. Conditions
for simulations in top panels, len = 1, and #rep = 6; middle panels, #pnts = 6, and #reps = 6; bottom
panels, #pnts = 6, len = 1. For this set of simulations, Rmax = 10, C50 = 50%, B = 1 sp/s, and n = 2. A
logarithmic scale was used for all these simulations.

2.5. Experimental Conditions
2.5.1. Animal Preparation

Recording experiments were carried out on healthy adult female cats weighing be-
tween 3 and 4 kg. A total number of 2 cats (n = 2) were used in the current study. Using
mathematical simulations, the use of animals required to validate theoretical results was re-
duced to a minimum (See Section 2.2). All surgical and experimental procedures were done
according to the guidelines of the Canadian Council on Animal Care and were approved
by the Ethics Committee of University of Montreal (CDEA 19-008), which ensures and
complies with the commonly accepted “3R’s” (replacement of animals by alternatives wher-
ever possible; reduction in the number of animals used, and refinement of experimental
conditions and procedures to minimize the harm to animals). Prior to surgery, cats received
subcutaneously a solution of atropine (0.1 mg/kg) and acepromazine (Atravet ® 1 mg/kg,
Boehringer Ingelheim Canada, Burlington, ON, Canada), to reduce the parasympathetic
effects of isofluorane anesthesia and to induce sedation, respectively, and then they were
acclimatized to the laboratory to reduce any stress. Anesthesia was induced with 3.5%
isofluorane in a 50:50 (vol/vol) gas mixture of O2 and N2O. A catheter was placed in
the cephalic vein to provide intravenous access. A tracheotomy was performed prior to
the transfer of the animal to the stereotaxic apparatus. Following anesthetic induction,
isofluorane concentration was maintained at 1.5% during surgical procedures. During
recording sessions, the anesthesia was changed to Halothane (0.5–0.8%) in a 30:70 (vol/vol)
gas mixture of O2 and N2O. The anesthesia level was continuously monitored in case it
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needed to be adjusted to reduce any animal stress and/or harm situation. Lubricant eye
gel (Systane Gel drops ®, ALCON Fort Worth, TX, USA) was applied to avoid corneal
dehydration. Oxygen saturation was monitored using a pulse oximeter, cardiac activity was
monitored throughout the experiment by recording the ECG and the animal’s temperature
was maintained at 37 ◦C by means of a heated blanket controlled by a rectal thermome-
ter probe. A bolus intravenous injection of 2% gallamine triethiodide was administered
to induce muscular paralysis and, subsequently, the animal was placed under artificial
ventilation. A 1:1 (vol/vol) solution of 2% gallamine triethiodide (10 mg/kg/h) in 5%
of dextrose in lactated ringer was continuously administered intravenously to maintain
muscular relaxation and to provide nutrition and electrolytes. Expired levels of CO2 were
maintained between 35 and 40 mmHg by adjusting the tidal volume and respiratory rate.
The animal’s heart rate was maintained at 180 bpm± 10. Pupils were dilated using atropine
(Mydriacyl ®, ALCON, Fort Worth, TX, USA) and nictitating membranes were retracted
using phenylephrine (Midfrin ®). Rigid contact lenses of appropriate power were applied
to the corneas. The lubricant eye gel was replaced by a liquid one (Blink®, ABBOTT,
JOHNSON & JOHNSON, Irvine, Californie, États-Unis) during recordings and was used
when needed. Craniotomies were performed to provide access to areas 17 (4–8 P; 0.5–2 L,
Horsley-Clarke coordinates), 18 (1–4 A, 2–7 L) and 21a (2–6 P; 7–11 L).

2.5.2. Visual Stimuli

Visual stimuli were generated using the VPixx software (Vpixx Technologies Inc.,
St-Bruno, QC, Canada) and images were projected onto an isoluminant screen at a viewing
distance of 57 cm, with a refreshing rate of 60 Hz. The images covered 116◦ by 150◦ of
visual angle, with a mean luminance of 50 cd/m2. To avoid modulation surround effects of
different size stimuli when the visual contrast is varied [13], we stimulated receptive fields
monocularly with full field drifting sinusoidal gratings presented at various directions
from 0◦ to 330◦ with 30◦ steps. Extracellular recordings were carried out through all layers
of the visual cortex. Responses in areas 17, 18 and 21a, and in the posteromedial lateral
suprasylvian cortex (PMLS) were recorded simultaneously. The spatial and temporal
frequencies used were within the stimulation range of areas 17 and 21a (SF = 0.3 cycle/deg
and TF = 3 Hz), and of area 18 and PMLS cortex (SF = 0.2 cycle/deg and TF = 4 Hz) [14–17]
In total, 24 contrast values (0, 3, 6, 8.5, 12, 17, 21, 26, 29, 32, 35, 38, 41, 44, 48, 53, 57, 63.5, 70,
74.5, 79, 83, 91, and 100 %) were tested. The presentation of the combinations of directions
and contrasts was randomized to avoid hysteresis that can shape CRF (i.e., cat striate
neurons show hysteresis) [18]. Each stimulus was presented 50 times and lasted 4 s. The
neural response obtained a 0% contrast was used as a blank.

2.5.3. Electrophysiological Recordings and Data Acquisition

Extracellular activity was recorded using linear multielectrodes of 32 channels
(impedance at recording sites were between 1 and 2 MOhm, A1x32-6mm-50-177, Neu-
ronexus). Efforts were made to record cortical neurons with the most centrally located
receptive fields, using the visuotopic maps of the targeted visual areas. Electrodes were
lowered at 3 mm depth perpendicular to the surface. Electrophysiological signals were
acquired at 30 KHz and band-pass filtered 1–7500 Hz using an open-source system (Open-
Ephys platform) [19]. Single-unit clusters were identified using the software package
Klusta [20]. Manual validation verified the selected clusters. The firing rate of neurons was
quantified as the spike count over a time window duration. Units with very low firing
rates at maximum contrast magnitude (<3 spikes/s) were excluded from the analysis. Data
was analyzed with custom scripts in MATLAB (Mathworks, Natick, MA, USA). A total of
42 neurons were used for the theoretical validation.

2.5.4. Experiment Termination

At the end of the experiment, animals were euthanized by an intravenous injection of
sodium pentobarbital (Euthanyl, 110 mg/kg, Bimeda -MTC Animal Health, Cambridge,
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ON, Canada). Animals were transcardially perfused with a phosphate-buffered solution
(PBS 0.1M, pH 7.4) followed by a fixative (Paraformaldehyde 4%, Fisher Scientifc, Ottawa,
ON, Canada). Brain tissue was cryoprotected using sucrose solutions at different concentra-
tions (10 to 30%), frozen and stored at −80 ◦C. Then, 40 µm coronal sections were obtained
and subsequently stained and used to reconstruct the electrodes’ position.

2.6. Statistical Analysis and Data Analysis

No animals were excluded from the analysis. All data were also analyzed using Matlab
functions (MATLAB 2018; Math Works Inc., Natick, MA, USA). Data extraction and analysis
were performed blindly. The parametric test ANOVA was used to compare differences
between groups. When the test revealed significant differences, multiple comparisons were
performed using Tukey’s tests, and p values were revealed. A bootstrap method was used
to test significance for experimental conditions and the recording time they generated. This
analysis iterated experimental conditions (i.e., #points, #trials, trial length) to calculate the
theoretical patterns’ average error.

3. Results

The results are divided into two sections. In the first section, theoretical results show
what are the experimental conditions (i.e., #points, #trials, trial length) that minimizes
the recording time and maximize the fit performance. Such a set of conditions is tested
experimentally in the second section.

3.1. Theoretical Results

To search for experimental conditions that minimizes the recording time and maximizes
the fit performance, we used a simplified cascade nonlinear-Poisson spiking model that
reproduces theoretical and experimental curves. While theoretical curves were obtained
by simulating NRE, experimental ones were obtained by fitting simulated neuronal mean
firing rates to stimuli of varied contrasts (Figure 1). Comparison between the theoretical
and experimental curves measured the fit performance (Equation (2)). The recording time
was calculated by the multiplication of experimental conditions. Thus, this model was used
to search curve fits with the shortest experimental time and the best fitting performance.

Examples of simulations of CRFs. We simulated nine representative sets of parameters
and conditions to visualize how the model accomplishes our premise. Here, we only
analyzed how the performance of the fit is affected. As Figure 3 shows, theoretical (red
line) and experimental (blue line) curves are depicted. Experimental curves are calculated
from the fit of data points (black dots). For simplicity, only the logarithmic scale is shown
in these examples. First, NRE’s parameters were varied, and conditions remained fixed
(Panel A), then experimental conditions were changed, and parameters were preserved
(Panel B).

In general, the variation of parameters affects the performance of the fit slightly. In
Figure 3A top panels, the saturation of the CRF, the Rmax, was increased from low to high
levels. The RMS#points changed 2.53%, from Rmax = 5 sp/s to Rmax = 15 sp/sec. Similar
results were observed when the position of the CRF, C50, shifted from left (C50 = 25 %) to
right (C50 = 75 %), showing a small RMS#points variation of 2.07% (middle panels). Increas-
ing the curve’s steepness, n, affected the RMS#points by 4.71% (bottom panels) from n = 2 to
n = 6. The baseline, B, was not analyzed to simplify the description. This latter parameter
affected the performance of the fit when its value was larger than half of maximum firing
rate, meaning that the limit for a good fit was Rmax/2 = B.

Contrary to the variation of parameters, variation of conditions largely affected the
CRF’s fit. Results of these simulations can be seen in In Figure 3B. The addition of data
points enhanced the performance (minimized the RMS#points) of the fit by 38.22% from
4 to 8 points. Increasing the length of the trial also allowed a better performance, in
which the RMS#points decreased 55.78% from 1 s to 4 s duration. Finally, the number of
repetitions showed the largest fit improvement. The RMS#points decreased from 62.05%,
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when repetitions moved from 4 to 15. Taken together, variation of parameters improved
little the performance of the fit, whereas changing experimental conditions modified the
CRF’s fit substantially.

3.1.1. Theoretical Optimization of Experimental Conditions

As shown above, the performance of the fit depended more on the experimental
conditions than on the CRF parameters used. To obtain a robust sight of how the perfor-
mance of the fit is affected by the experimental conditions, we averaged CRFs simulated
overall parameters quantified. To that end, Monte-Carlo methods were used by repeating
several CRFs with a random sampling of NRE parameters, and the mean error for the
three estimators (RMS#points, RMSAllpnts, and angular difference) was calculated. Thus, the
profile of each experimental condition was obtained from averaging CRF simulations of
varied NRE parameters.

The quantification of such mean error is described in Figure 4. Panels A, B and C
show the performance of the fit as a function of the number of points, the trial length, and
the number of repetitions, respectively. For each experimental condition, all the 10-metric
scales were considered. Each point of the curves was the average of 174 different CRF
simulations, and error bar represented the SEM. While the performance of the fit was
quantified with RMS#points, lower levels of this estimator reflect a higher performance of
the fit.
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Figure 4. Optimization of fit performance and total experimental time to experimental conditions
across metrics (errors). Fit performance as a function of experimental conditions is shown in (A–C).
Each dot is the average of 300 CRF simulations. Bars represent SEMs. (A) RMS#points for a number of
points. (B) RMS#points for the length of trials. (C) RMS#points for a number of repetitions. Sorting of
RMS#points (D), RMSAllpoints (E), and angles (F) solutions for combination of all patterns, experimental
conditions (left y-axis), against the average total experimental time (black line, right y-axis). Lines
are the average of 174 CRF simulations. Dash lines are the range of optimal fit performance and
experimental duration.

Experimental conditions and performance of the fit. In general, the performance of the fit
increased (RMS#points decreased) when experimental conditions became large. For example,
as the number of points to fit the CRF increased, the RMS#points decreased slightly. In this
case, only scale 7 had significant differences between RMS#points values when the number
of points increased (p-value = 0.025, One-way ANOVA). A similar tendency was observed
for the performance of the fit when the length of trials was large. The RMS# points for
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all scales dropped when the trial length increased (all scales, p-values < 0.001, One-way
ANOVA). Beyond 4 s duration, RMS#points differences between the length of trials and
scales tended to be constant. This decline of RMS#points was even more drastic for the
number of repetitions. All scales showed significant differences as the number of trials
increased (all scales, p-values < 1 × 10−8, One-way ANOVA). Beyond four repetitions,
the performance of the fit was constant, and between 8 and 64 repetitions, no significant
differences were revealed for all scales (p < 0.05). Means (±sem) of the last RMS#points value
for the number of points, trial length, and the number of repetitions over all scales were
0.955 (±0.03), 0.832 (±0.023), and 0.269 (±0.012), respectively with significant difference
between them (p-values = 3.5 × 10−18, One-way ANOVA). Thus, increasing the number of
repetitions, then the length of trials, and to a lesser degree, the number of points improved
the performance of the fit.

3.1.2. Optimization Point

Although the performance of the fit improves as the size of the experimental condi-
tions increases, this improvement comes with a trade-off. The recording time also increases.
To assure optimal performances of the fit with considerable recording times, we searched
for a point where the two constraints were equal. An optimal point of a neuron (CRF opti-
mization) was defined where the curves that describe fit performance and total experiment
duration overlap. This optimization was searched as follows.

To find such neuron’s CRF optimization, we combined the three experimental condi-
tions with the generated experimental time. Each experimental combination was defined
as a “pattern”, and expressed as a tuple of values {#points, #trials, trial length}. The fit per-
formance and the experimental time were calculated from the 252 patterns used (6 #points,
7 #trials, 6 trial lengths). The recording time was calculated by averaging the recording
time for each pattern of the 10 scales used.

We defined an optimal point when the recording time and the fit performance were
equal. Since the recording time decreased as the error estimator’s curves increased, the
optimization CRF point was the interception between these two curves. Such results are
depicted in Figure 4D–F, in which the RMS#points, RMSAllpnts, and angular differences are
shown, respectively. For the 252 patterns, curves representing the fit performance of the
ten scales are in the left y-axis, and the curve formed by the recording time is in the right
y-axis (black line). For simplicity, only averages are shown as each curve resulted from
174 randomly simulated parameters. A logarithm scale for the recording time was used to
highlight the importance of this factor.

Maximization to find the optimal point. An optimal point was obtained between error
estimators and recording time for the ten different scales used. For the three error estimators,
optimal points were located between 200 to 225 patterns and around 100 s (between
30–200 s) of the recording time. Slight differences appeared in the profile of each estimator,
in particular for the scale 6. For RMS#points, when only the number of dots was considered
to form the fit, all curves increased suddenly, but scale 6 deviated after the intersection with
the temporal recording curve (Figure 4D). These fluctuations rose as the fit’s error estimator
was computed by considering the total number of dots of the CRF (N = 100). Such an
estimator is the RMSAllpnts. Scales 6 and 7 had lower performance, whereas for scale 8 the
fit performance increased a bit early than the other scales at the same patterns (Figure 4E).
Scale 6 deviated further for the angle differences that quantified the similarity of CRF
parameters between the theoretical and experimental curves (see Section 2). Here, smaller
angles meant a better-fit performance of patterns. The angle error raised almost equally for
the same range of patterns for the other scales, and the intersection with the recording time
was almost at the same point (Figure 4F). Taken together, we found optimization points
from theoretical simulations that examined which experimental conditions improved the
performance of the fit for CRF quantification. In order to verify such results, we tested
these optimized points on experimental data obtained from the cat’s visual cortex.
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3.2. Experimental Results

Theoretical values that minimized both the error and the experimental time were
tested empirically. These points correspond to the intersection between the performance
of the fit and the total experimental time calculated as above. Each of these intersections
gave a particular combination of three elements or “patterns”: number of contrast points,
number of trials, and duration of each trial in seconds. Patterns were also examined for
the ten contrast scales. These combinations enabled us to test the desired patterns that
maximized the time versus fit performance.

Extracellular recordings of visual neurons (n = 42) of the cat’s cortical areas 17, 18,
21a and PMLS were used to test these patterns experimentally. The contrast sensitivity
was quantified by presenting drifting sinusoidal gratings at the preferred direction of
neurons (Figure 5A). To ensure that we covered the broadest range of patterns as large
as possible (81 patterns), we tested 24 different contrasts values, each repeated 50 times
for 4 s (Figure 5B). The experiment lasted approximately 2 h. The 24 contrast points were
chosen so that all types of scales could be examined. A ground truth CRF for each cell
was calculated from these 24 contrasts (Figure 5C), and, similar to the theoretical section, it
was defined as the “theoretical” CRF (Figure 5C,D Left). Forty-two theoretical CRFs were
formed from the combination of optimized experimental conditions.
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Figure 5. Experimental validation of computational simulations. (A) Experimental setup. Visual
stimuli presented to cortical neurons in anesthetized cats. Contrast stimuli were presented randomly.
(B) Representative raster plots of cortical neural responses. (C) CRF of recorded neurons, considered
as the ground truth curve. Arrows indicate contrast used in (B). (D) Representative comparison
between the empirical CRF (ground truth, black line) and the ten tested scales (color lines from
scale 1 to 10). Errors are indicated in each subplot. Number of trials, number of points and trial
length were similar across CRFs. (E1–E3) Average errors of scales across all patterns from 42 neurons.
Best scales are those minimizing the error. Significant differences between scales are expressed as
* p < 0.05; ** p < 0.01. Significant differences for each average error, (1) RMS#points, p = 1.0 × 10−97;
(2) RMSAllpnts, p = 2.9 × 10−35; (3) Angle, p = 2.6 × 10−245; One-way ANOVA. (F1–F3) Boxplots
between simulated (solid line) and empirical (dashed line) data for the 3 different errors across the
scales. Lines inside boxplots show medians, and whiskers indicate 95% confidence intervals.

3.2.1. Evaluation of Patterns’ Performance

Such CRFs were used afterwards as a template for calculating the optimization of
each pattern. From the theoretical CRF, subsets of CRFs were formed by the experimental
conditions characterized in a pattern. For example, for a pattern with {6, 16, 2.0} conditions,
6 of the 24 percentage of contrasts, 12 of 50 repetitions, and the first two seconds of
the stimulus time recording were selected as experimental conditions (Figure 5D). This
sample was iterated randomly (100 iterations) from the ground truth data. Each pattern
performance was quantified for each scale. Thus, the performance of each pattern was
evaluated by comparing subsets of “experimental” data against the ground truth data.

The performance of scales for all neurons was first analyzed with the average output
of RMS#points, RMSAllpnts, and the angle between vectors. Results are shown in Figure 5E,
in which significant differences between scales were found. For RMS#points, scales 2, 3,
4, 6 and 8 showed lower performance than the rest of the scales (Figure 5E1). Scale 1
had the best performance. Similar effects were observed for the RMSAllpnts, but average
differences between scales were less distant (Figure 5E). For instance, scales 2 and 3 showed
less significant differences with respect to other scales than in RMS#points. Scale 7 had the
best performance, and scale 4 had the poorest performance. In the average angle, it is scale
6 that had a large difference from the other scales (Figure 5E3). In summary, depending on
the type of error used, scales 2, 3, 4, and 6 showed a poor performance (For more details
of the comparison see Supplementary Table S3). In general, the simulated data tend to
cover the empirical data when comparing the distribution of the recorded experimental
conditions with the theoretical simulations for each scale (the 24 visual contrasts to test the
81 experimental conditions) (Figure 5F).

Most representative patterns. Now, in order to find patterns that were representative,
we searched patterns that minimized average errors (maximized the fit performance). For
every tested neuron, error performance was ranked from the largest to the smallest value.
From this sorting, the last ten patterns that minimized most average errors were saved.
Each scale was also measured. Figure 6A shows a representative example of this procedure.
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Here, RMS#points was quantified for each scale, and after sorting the performance of each
sequence, the ten patterns that minimized most average errors were analyzed (Figure 6A2).
The results of the last ten patterns for each neuron were also collected for RMSAllpnts and
angle differences between vectors.
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Figure 6. Experimental patterns with the best performance. (A1–A3) Representative example for
angle errors sorted from the worst to the best pattern performance. Best patterns are those minimizing
the error. (A1) Errors across all patterns, (A2) Errors of the last ten patterns, (A3) Last pattern that
minimizes most of the error. (B1–B3) Histogram showing the most representative patterns that
minimize the error for all spacing scales. Data was taken from last ten patterns (A2). Last ten pattern
errors for RMS#points (B1), RMSAllpnts (B2), and angle difference between vectors (B3).

Patterns were compared to identify representative experimental conditions that maxi-
mize the fit performance. Figure 6B shows stacked bars of the ten more represented patterns
for the different scales. Across errors, different patterns emerged as the most recurrent.
Those patterns that appear in the three types of errors and ranked from the most to the less
repeated were: {6, 16, 2.0}, {6, 30, 1.0}, {4, 12, 4.0}, and {4, 20, 2.0}. Ranking and appearing
in two errors, the patterns were {6, 10, 3.0}, {4, 16, 3.0}, {8, 8, 3.0}, {6, 8, 4.0}, {4, 40, 1}, and
{8, 12, 2}. The recording time of such patterns ranged between 160 and 192 s.

The four most significant patterns were further investigated by averaging their errors
across all the neurons analyzed. As Figure 7 shows, their error profiles were similar to those
of the average error of all the patterns (Figure 5E). For example, scale 8 had a high error of
RMS#points and RMSAllpnts for patterns {4, 12, 4.0}, and {4, 20, 2.0}, scales 2 and 3 had a large
RMS#points for the four patterns, and scale 6 had a greater increase of the vector angle for the
four patterns. Another remark of this quantification was that the performance of a pattern
depended strongly on the scale and error analyzed. For instance, for pattern {6, 16, 2.0}
scale 2, RMS#points was large but small for the angle vector. The performance of each
pattern was summarized by averaging errors across all scales (Figure 7A2–C2). Although
for RMS#points, pattern {6, 16, 2.0} has the smallest mean error (1.44 ± 0.47), so with the
best performance, no differences were found between patterns (p-values = 0.222, Two-way
ANOVA). For RMSAllpnts and angle vector errors, patterns’ performance was similar to
the average error of all patterns, and for the two comparisons, the pattern {6, 16, 2.0}
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had a smaller average error than the pattern {6, 30, 1.0} (p-value < 0.01). Taken together,
four patterns that minimize errors emerged as the most recurrent, and the maximization of
their fit performances depended on the scale and error quantified.
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Figure 7. Performance of the four best patterns. (1) Average errors of patterns across scales. (2) Mean
errors for each pattern as scale outputs are averaged in a single value. Bars show the average errors
for RMS#points (A), RMSAllpnts (B), and angle difference between vectors (C) across scales (1) or mean
errors (2). * p < 0.05; ** p < 0.01; *** p < 0.001. Statistical comparisons for figures in 1 are not shown.
For more details of the statistical comparisons refers to Supplementary Tables S4 and S5.

Particular cases of CRF. We tested if different points of the curve were more informative
than others and may require different amounts of sampling. For example, points on
the curve where they begin to accelerate or flatten again after the maximum steep are
particularly useful. So, to explore how experimental conditions allocate across these points,
we studied three extreme cases: (i) C50 = 100%, (ii) C50 < 40%; (iii) n > 3.5 (Figure 8). In the
first case, when C50 is saturated, the factor tends to be low, showing almost linear CRFs
(Supplementary Figure S2). In case 2, when C50 is low, the curves tend to have a rapidly
saturating hyperbolic-like profile. Only 3 CRFs presented this profile when C50 < 30%.
Unlike case 1, in case 3, the curves present a steep slope.
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Figure 8 shows the result of this analysis, where the three errors were measured as a
function of three particular cases for each scale. Each scale’s bar also describes the pattern
that achieved a minimal error. When C50 = 100%, while RMS#points, and RMSAllpnts showed
similar errors to Figure 5E, in which scales 2 and 3 had the lowest performance, the angle
error showed scales 3 and 6 as the worst. As C50 increased (Panel C), RMS#points and
RMSAllpnts maintained profiles, but average errors were less pronounced. For the angle,
scale 6 stood out as the worst, and the best were scales 2 and 5. Errors were higher for
the third case when n was large (Panel C). Besides scales 2 and 3, scale 8 also had a low
performance for RMS#points and RMSAllpnts. For the angle, only scale 3 had a high error.

For the angle error, patterns minimizing the error showed a tendency across cases.
When C50 saturated, these patterns had more repetitions, fewer contrast points to the
sample, and short periods of recordings. On the contrary, as n increased, the number of
sample points increased, the number of repetitions decreased, and the recording time was
longer. When C50 < 40%, linear scales were likely to have more repetitions, short recording
times, and an intermediate number of contrast points, compared to exponential scales that
were characterized by a greater sampling of contrasts, longer times, and fewer repetitions.
This result shows that curves that tend to be more linear optimize for more repetitions,
while nonlinear CRFs are more likely to increase the number of contrast sampling.

3.2.2. Dynamical CRF Characterization

One caveat of the theoretical approach is that the spiking model lacked neuronal
adaptation. Since the visual contrast is constant over time, a gradual decrease of neuronal
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responses is produced long the stimulation. We investigate whether short or long-duration
trials can influence the fit of CRF. In turn, this analysis may allow choosing what pattern is
the most representative to obtain a good fit performance in a short period. Furthermore,
the dynamic response of CRFs to long periods, several contrast points, and several trials
has not been thoroughly studied.

To explore how CRFs vary across time, we quantified errors dynamically along with
the recordings. The CRF for each neuron was calculated with a window that gradually
enlarges until it covers the entire registration period. Figure 9A shows a representative
case of this adaptation analysis, in which the experimental CRF (red line) is compared to
the theoretical fit (blue line). For short quantification periods, the experimental fit was
very different from the theoretical CRF, mainly because short periods collected insufficient
spike data to construct a similar curve to that of the theoretical CRF. When the windows
were 1 s long, the dynamic range of the tested CRF increased, but its maximum firing rate
was smaller than that of the theoretical curve. As recording periods were longer than two
seconds, the tested curve was similar to the theoretical curve.
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Figure 9. Dynamic response of CRFs. (A) Example of CRF fit to increasing lengths of recording time
(red line). Average firing rates (black dots) are drawn with SEM (error bars). The theoretical curve is
also depicted (blue line). (B) Average percentage of variation of RMS#points, RMSAllpnts, and angle
difference between vectors as a function of increasing trail duration. Average (red line) and confidence
interval of the mean (black lines) were obtained by bootstrapping the data (1000 iterations).

Mean neuronal profiles were further investigated by calculating the dynamic changes
of the average RMS#points, RMSAllpnts, and angle vector difference. As Figure 9B shows, the
average percentage of error variations was computed as the temporal window increased
progressively. In general, errors were high, larger than 50% of the variation, just before
1 s of trial duration. After this point, average errors dropped around 30%. For a window
of 2 s, errors were around 20% of the variation. Then, values gradually decreased as the
window temporally increased to four seconds, where experimental and theoretical curves
were equal. For RMS#points, the drop was much steeper than for the other two errors. Taken
together, CRFs had lower errors close to one-second recording, and curves stabilized further
from two seconds to end time.
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4. Discussion

This study presents experimental and theoretical procedures to enable a reliable CRF
that fits extensive experimental data in a reasonable recording period. With theoretical
simulations, first, we found that changing parameters of the NRE varied little in CRF fitting.
On the contrary, CRF fitting improved when experimental conditions (i.e., #points, #trials,
trial length) increased, in which the number of repetitions was the most significant variable.
After simulating several patterns with different experimental conditions, we found that
a trade-off between the fit performance and the time duration exists to find adequate
CRFs. Trade-off points were tested then experimentally to search for patterns that satisfied
our two requirements. Four sets of experimental conditions that best satisfied these two
constraints were revealed: {6, 16, 2.0}, {6, 30, 1.0], {4, 12, 4.0}, and {4, 20, 2.0}, meaning that
with six or less contrast percentage points a sufficiently good curve fit can be recovered.
Finally, we identified that recordings closer and longer to 1 s improved the CRF fitting than
shorter periods. Our results suggest that their implementation in online recordings that
require simultaneous sampling of numerous neurons will improve the adjustment of CRF
fitting using short periods.

The pattern had the smallest average error among the four sets of experimental
conditions, so the best performance was {6, 16, 2.0} (Figure 7). Depending on the error used,
only the pattern {6, 30, 1.0} showed significant differences with it. That pattern {6, 16, 2.0} is
better than pattern {6, 30, 1.0} would be consistent with our previous results of optimizing
the fit by a high number of repetitions and an acquisition period equal to or longer than
1 s. Another way to choose between patterns is to rank them by the shortest recording
time generated: {4, 20, 2.0} < {6, 30, 1.0} < {6, 16, 2.0} = {4, 12, 4.0}. In this case, pattern
{4, 20, 2.0} will be enough to infer the best fitting curve as it has already been experimentally
implemented [21]. However, depending on the scale used, CRFs formed with four contrast
points can seriously damage contrast curve fitting. For example, scale 8 (Figure 7A,B), in
which points are distributed towards contrast boundaries (0% and 100%), induces a poor
quality curve fit since the central zone remains unexplored and exposed to high fluctuations.
Then, the pattern {4, 12, 4.0} should be applied to fit the contrast curve, but its experimental
duration is equal to that of the {6, 16, 2.0} pattern.

The fluctuations observed for the scales were even more pronounced when three
extreme cases of CRF were investigated. For all 3 cases, it is quantified that scales 2, 3, 6,
and 8 perform poorly when using RMSAllpnts, and even worse when using RMS#points. We
highlight that scales 2, 3, and 6 should be avoided when fitting CRFs with few contrast
points. In general, the effect was different when the angle was used as an error, where scales
3 and 6 had poor optimization, and scales 2 and 5 had high performance. Interestingly, there
is a trend in the angle error for the patterns that performed better. This result shows that
CRFs that tend to be more linear optimize better with more repetition trials (C50 = 100%),
whereas nonlinear curves (n > 3.5) are more likely to improve the fit as the number of
contrast sampled increases. This tendency would be effective for scales with explicit
contrasts at 0% and 100%. Thus, in the case of CRFs with a linear tendency, such as curves
from functional magnetic resonance imaging (fMRI) [22,23], the number of repetitions
should be prioritized for a good fit, while curves that tend to be more nonlinear, such
as those from an electroencephalogram (EEG) [24–26], should prioritize the number of
contrasts sampled.

One caveat of the theoretical model is the lack of neuronal adaptation. Neuronal
adaptation can act as a band-pass temporal filter to affect spike responses to subsequently
presented stimuli for tens to hundreds of milliseconds [18,27]. We avoid neuronal phenom-
ena by imposing an interstimulus interval (a blank grey screen between different contrast
stimuli). Another problem of neural adaptation is that long acquisition periods would have
been favored over patterns with shorter periods. Therefore, patterns with shorter acquisi-
tion times could be less often imposed. In the theoretical sections, 35.8% of the patterns
selected to be then tested experimentally had 1 s of duration. In the experimental validation,
besides {6, 30, 1.0}, another pattern that appeared ranked (repeated twice between errors)
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as a solution having short recording time was {4, 40, 1.0}. Other patterns that ranked lower
(only appearing in one type of error) as possible solutions were {8, 10, 1.0}, {4, 30, 1.0},
{8, 20, 1}, {6, 20, 1.0}, and {12, 16, 1.0} (Figure 6). Therefore, 43% of the best-ranked patterns
were for periods of 1 s. These findings suggest that short recordings, where adaptation
is less pronounced, were often selected. We found that a period of one second decreased
the variation of the errors substantially (Figure 9). The only requirement to stabilize CRF
formed by one-second recordings should be to increase the number of trials (Figure 4C).

Three types of errors were used in this work. Their implementation was to ensure an
objective comparison between contrast data points and the theoretical curve (RMS#points),
between the two curves (RMSAllpnts), and the NRE parameters (angle between two vectors).
As shown in Figure 5 and, later in detail for best patterns, Figure 6, the performance of
the scales is highly dependent on the type of error used. For example, the logarithmic
scale 2, which is widely used [27–32], shows a high error value for RMS#points, lower for
RMSAllpnts, and low and nonsignificant for the angle. This variation suggests that the
logarithmic scale is poorly estimated by calculating a few points of comparison between the
theoretical and experimental curves. This comparison would suggest that error estimations
that show few contrast points would not be as robust as those that sample the entire
curve [33]. Using other scales or other estimators is preferable, such as the angle between
NRE parameters. A further comparison of errors used here with another estimator, the
χ2, revealed that outputs are more similar to the angle values than the RMS type errors
(Supplementary Figure S3). This analysis may validate the better estimation of errors
by calculating the NRE parameters rather than by comparing data points of the curve.
Although differences between the solutions of each error are observed, the experimental
conditions show a convergence between their solutions. Four solutions are repeated among
the errors, suggesting a consistency of the analysis performed in this study.

As scale 6 shows, CRFs without the contrast at 0% performed poorly. For this scale,
the baseline, B, is estimated from contrast points bigger than zero. Even if the literature
shows that it is pretty common to use it [34–37], Figures 5 and 6 show that the lack of
contrast = 0% causes fit failures. As such, we suggest considering the use of a dynamic
range involving contrast = 0% for fitting CRFs.

5. Conclusions

Four sets of experimental conditions satisfy the trade-off between fit performance and
time of recording: {6, 16, 2.0}, {6, 30, 1.0}, {4, 12, 4.0}, and {4, 20, 2.0}. These sets have to
include the contrast point at 0. A recording period closer and longer to 1 s is needed to
obtain satisfactory CRF fittings.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/vision6040062/s1, Figure S1: Determining optimal least-square
curve-fitting boundaries on Rmax and n (slope), Figure S2: Correlation between parameters of CRFs
obtained from experimental neurons, Figure S3: Analysis of χ2; Table S1: Boundaries tested for CRF
parameter n, Table S2: Boundaries tested for CRF parameter Rmax, Table S3: Comparison of scales
for average output of the three errors used in Figure 5E, Table S4: Comparison of scales of the three
errors used in Figure 7, Table S5: ANOVA for scales output of the three errors used in Figure 7.
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