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Abstract: In-shoe systems and pressure plates are used to assess plantar pressure during gait,
but additional tools are employed to evaluate other gait parameters. The GAITRite® system is a
clinical gait evaluation tool. Extensive literature is available for spatiotemporal parameters, but it is
scarce for relative plantar pressure data. Therefore, we investigated whether, when controlling for
age, the GAITRite® system is able to distinguish the effects of walking velocity on plantar pressure
parameters in six plantar regions in a large sample of adults. Participants (83 women and 87 men, aged
18–85 years) walked at three self-selected velocities (slow, preferred, fast) on a 6-m long GAITRite®

walkway. Relative peak pressure, pressure-time integral, peak time and contact area were computed
for six zones (lateral and medial heel, mid- and forefoot). The impact of age (covariate), sex, side,
velocity, pressure zone and their interactions on pressure variables was evaluated. Velocity affected
peak pressure, pressure-time integral, peak time and contact area (p < 0.001). With increasing self-
selected gait velocity, medial forefoot peak pressure and pressure-time integral increased (p < 0.001),
while heel and lateral forefoot regions displayed a nonlinear plantar pressure evolution. These results
suggest lower (heel strike) or more equally distributed (push-off) loads at preferred gait velocity.

Keywords: plantar pressure; velocity; gait; GAITRite®

1. Introduction

As with spatiotemporal parameters, plantar pressures are part of a battery of param-
eters studied in gait analysis [1]. Complementary to the clinic, they allow a functional
exploration of the foot behaviour interacting with a supporting surface (floor or shoe sole)
and help in the diagnosis and the prognosis of foot deformities [2,3], walking patholo-
gies [4–6] and sensory disorders of the foot [7–9], among others.

In-shoe systems and pressure plates have unique functions and features useful for
measuring, collecting, processing, and analysing plantar pressure data [1]. However, these
systems often record only plantar pressures and other systems are needed to measure
spatiotemporal parameters [10–12].

Thanks to their interconnected pressure sensor grids, some instrumented portable and
flexible walkways commonly used in the study of spatiotemporal parameters also return
plantar pressure distributions, and allow the extraction of data pixel by pixel and/or from
defined regions of interest. Although not as exhaustive as a three-dimensional motion
analysis combined with a pressure plate and a force plate, the use of such walkways is
a valuable time-saver in the clinical evaluation of patients, who may not sustain long
preparation periods. In addition, these systems are generally less expensive and allow
individuals to walk more naturally, without restrictions [13–15].

As with some spatiotemporal parameters, plantar pressures vary with individual
(age, height, weight, foot types and morphologies, health, joint mobility, neuromuscular
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activity) and environmental factors (barefoot versus shod walking, type of walking surface,
etc.) [1,16]. Among the latter, increased walking velocity and cadence result in increased
peak pressures at the heel [17–20], medial toes and metatarsals [13,17–20], indicating a
medial shift in pressure distribution with increased velocity. In addition, increased stride
length increases heel peak pressure [21] while swing and stance times tend to be negatively
correlated with forefoot peak pressure. Peak time decreases in the rear- and forefoot
with increasing speed and cadence [13,19,20] and interacted with changes in all temporal
parameters (step time, cycle time, stride time, swing and double support time) [13]. The
impact levels differ in function in the plantar anatomical areas but plantar pressure and
some spatiotemporal gait components, especially gait velocity, seem to be inter-related [22].

Pressure-sensor instrumented walkways have been used extensively to study spatio-
temporal gait parameters (for instance [10–12]). However, only a few studies [13–15,23–27]
have analysed pressure distribution during gait using such systems in reasonably large
samples. For these reasons, reference databases for clinical studies have not yet been
established. The purpose of this study was therefore to investigate if the plantar pressure
data of different regions of interest evaluated using an instrumented walkway, commonly
used in the assessment of spatiotemporal parameters, show the influence of velocity in a
large sample of adults of all ages.

While controlling for age, additional attention will be paid to sex and right-left plantar
pressure differences. It was hypothesized that plantar pressure distribution during walking
measured using the instrumented walkway (1) would correspond to the typical patterns
reported in the literature [17], and (2) would vary with walking velocity and sex.

2. Materials and Methods
2.1. Participants

A total of 170 subjects (Table 1) participated in this study. Participants were eligible
if they were between 18 and 85 years old. Exclusion criteria included severe orthopaedic,
oncological or neurological conditions. Balance disorders that affect gait and pregnancy
were also considered as exclusion criteria. All subjects were recruited from the researchers’
local community, Faculties of Medicine and Motor Sciences and from Erasme University
Hospital. This study was approved by the Ethical Review Board of Erasme University
Hospital and all participants signed an informed consent form prior to entering the study.

Table 1. Mean ± SD of subject characteristics. p-values are the results of a Mann—Whitney U Test by
sex and effect size r is computed using the Rosenthal equation [28]: r = z/

√
N (with a small effect

when r ≈ 0.1, a medium effect when r ≈ 0.3 and a large effect when r
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All Subjects
n = 170

Women
n = 83 Men n = 87 p-Value r

Age (years) 43 ± 16 43 ± 16 42 ± 15 0.73
Height (m) 1.72 ± 0.10 1.64 ± 0.07 1.79 ± 0.07 <0.001 −0.73
Weight (kg) 73 ± 15 66 ± 12 81 ± 13 <0.001 −0.58

BMI (kg/m2) 24.8 ± 4.2 24.4 ± 4.5 25.3 ± 3.7 0.04 −0.16
Leg length (cm) 91.3 ± 6.6 87.2 ± 5.5 95.3 ± 4.9 <0.001 0.65

Foot Length (cm) 25.2 ± 2.1 23.5 ± 1.1 26.7 ± 1.6 <0.001 −0.79

Age, sex, height and weight were reported by all subjects. In a relaxed standing and
equal weight-bearing posture, the medial longitudinal arch angle of both feet was assessed,
placing the centre of a goniometer at the navicular tuberosity, and the goniometer’s arms
through the centre of medial malleolus and the head of the first metatarsal. Lower-limb
length was determined bilaterally using a direct clinical method using a tape measure as
the distance between the tip of the anterior superior iliac spine and the tip of the medial
malleolus in supine position.



J. Funct. Morphol. Kinesiol. 2022, 7, 106 3 of 17

2.2. Protocol

Plantar pressure data were collected from the 6-m long GAITRite® walkway (CIR
Systems, GAITRite Gold v. 3.9) at 120 Hz. Each participant performed three walking trials
at three different self-selected [10–15,17,23,25,26] paces (slow, preferred and fast walking
velocities) following the recommendations of Kressig and Beauchet [29]. Gait speed order
was randomized by lot drawing. To avoid the effects of acceleration and deceleration,
participants started and ended walking two meters from walkway edges [10–12,25,26,29].
Before and during testing, they could practise walking across the walkway or take a break
to rest.

A trapezoid mask divided each footprint proportionally into 12 zones (6 lateral and
6 medial). For each pressure zone, four variables were computed: peak pressure (maxi-
mum pressure per zone, expressed as a percentage of the overall maximum pressure), P*t
(integrated pressure over time, expressed as a percentage of the overall integrated pressure
over time), peak time (first time point at which one or more sensors in a zone were at the
maximum level, expressed in seconds) and area (sum of the active sensor areas within a
zone; expressed in square centimetres) [13]. In this study, data of the 12 trapezoids were
assembled in 6 sections defined as medial and lateral fore-, mid- and hind-foot [25,26].

Average values over three trials were computed to compare the plantar pressure
parameters between sides, velocities, and pressure zones.

2.3. Statistical Analysis

Statistics were computed in STATISTICA (StatSoft, Inc. 2007, version 8) and the
level of significance was set at p < 0.05. The normality of all data was explored using the
Kolmogorov—Smirnov test and Q-Q scatterplots. Descriptive analyses and Mann—Whitney
U Test were performed on demographic characteristics (Table 1). For selected spatiotem-
poral parameters, a mixed-model ANOVA evaluated differences between the velocity
condition, sexes and between a velocity-sex interaction (Table 2).

A mixed-model analysis of covariance (ANCOVA) was carried out to investigate
univariate sex differences (between-subject factors) in pressure parameters between left
and right fore- and rear-foot at slow, preferred, and fast speeds (within-subject factors)
when controlling for age (covariable). Homoscedasticity and sphericity assumptions were
examined with Levene and Mauchly tests, respectively. When the sphericity assumption
was not met, adjusted p-values were computed using the Greenhouse—Geisser correction
if epsilon (ε) was lower than 0.75, or the Huynh—Feldt correction if ε was higher than
0.75 [30]. Prior to the mixed-model ANCOVA, assumptions of independency of categorical
independent variable and covariable as homogeneity of regression slopes were assessed
using specific ANOVAs and mixed-model ANCOVAs. Tukey HSD tests were used to
explore within-subject interactions and/or between-subject interactions. Partial eta-square
(part. η2) were computed to estimate the effect size (with part. η2 ≈ 0.01 indicating a small
effect, part. η2 ≈ 0.06 a medium effect, and part. η2 ≈ 0.14 a large effect) [30].

Mid-foot plantar pressure parameters were analysed with nonparametric statistics, as
Kolmogorov—Smirnov tests were significant. Mann—Whitney U tests investigated the sex
differences, Wilcoxon tests observed differences between left and right feet or medial and
lateral mid-foot, and Friedman rank tests assessed the differences between velocities, sides,
and plantar pressure zones. Pairwise comparisons were computed between each variable
level using Wilcoxon matched pairs test. Bonferroni corrections were used to adjust for
multiple comparisons in our post-hoc analysis (PCrit. = 0.05/k; where k is the number of
comparisons tests). To convert z-scores into effect size estimates, Rosenthal’s equation was
used (r = z/

√
N; where r is the effect size estimate; z the test statistics z-score and N the

size of the total observations on which z is based. r ≈ 0.1 indicates a small effect, r ≈ 0.3
indicates a medium effect and, r
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Results are reported as mean ± standard deviation or median [interquartile range].
Raw plantar pressure data, mixed-model ANCOVA, Friedman ANCOVA and Wilcoxon
matched pairs test results are provided in the Supplementary Materials (Tables S1–S3).

Table 2. Mean ± SD of spatiotemporal parameters for all subjects, women and men at the three
different velocity conditions and their mean (appearing in a boldface type). p-values in the first
column (S) indicate mixed-model ANOVA sex effect. In the second column (V), p-values indicate the
result of mixed-model ANOVA velocity effects. In the third column (V × S), results of mixed-model
ANOVA velocity-sex interaction are displayed (first row) and associated, when significant, with
post-hoc Tukey test comparing men and women at each specific velocity (rows in line with speed
data). Partial eta-squares (part. η2; with part. η2 ≈ 0.01 indicating a small effect, part. η2 ≈ 0.06
indicating a medium effect and, part. η2 ≈ 0.14 indicating a large effect) are reported as effect size
(in brackets).

All Subjects Women Men p-Value (Part. η2)
n = 170 n = 83 n = 87 S V V × S

Velocity (m/s)
MEAN 1.29 ± 0.50 1.27 ± 0.47 1.30 ± 0.52 0.59 0.002 a (0.04)
Slow 0.79 ± 0.20 0.80 ± 0.20 0.76 ± 0.20

<0.001 a (0.90)
0.93

Preferred 1.25 ± 0.19 1.24 ± 0.20 1.24 ± 0.19 >0.99
Fast 1.86 ± 0.32 1.78 ± 0.31 1.89 ± 0.31 0.02 (0.03)

Cadence (step/s)
MEAN 1.87 ± 0.42 1.92 ± 0.41 1.82 ± 0.43 <0.001 (0.09) 0.40 a

Slow 1.43 ± 0.21 1.48 ± 0.21 1.38 ± 0.21
<0.001 a (0.86)Preferred 1.86 ± 0.16 1.92 ± 0.15 1.80 ± 0.16

Fast 2.33 ± 0.27 2.35 ± 0.25 2.28 ± 0.29
Step Length (m)

MEAN 0.67 ± 0.13 0.64 ± 0.13 0.69 ± 0.14 <0.001 (0.07) <0.001 a (0.10)
Slow 0.54 ± 0.08 0.53 ± 0.08 0.54 ± 0.08

<0.001 a (0.89)
0.82

Preferred 0.67 ± 0.07 0.65 ± 0.08 0.68 ± 0.07 0.03 (0.05)
Fast 0.80 ± 0.09 0.76 ± 0.10 0.83 ± 0.07 <0.001 (0.15)

Contact Time (s)
MEAN 0.68 ± 0.19 0.66 ± 0.18 0.70 ± 0.20 <0.001 (0.08) 0.15 b

Slow 0.89 ± 0.15 0.86 ± 0.15 0.92 ± 0.15
<0.001 b (0.82)Preferred 0.62 ± 0.07 0.62 ± 0.06 0.67 ± 0.07

Fast 0.50 ± 0.07 0.50 ± 0.06 0.51 ± 0.07
a Adjusted p-values were computed using Huynh—Feldt ε estimates. b Adjusted p-values were computed using
Greenhouse–Geisser ε estimates.

3. Results

The assumptions of mixed-model ANCOVA (homoscedasticity and linearity, indepen-
dency covariable-independent factor and homogeneity of regression slopes) were met.

Participant characteristics are provided in Table 1. Except for age, significant dif-
ferences were found between women and men. For BMI, the observed difference was,
however, trivial (r = −0.16). Descriptive statistics for spatiotemporal parameters and plan-
tar pressure variables are shown in Tables 2 and 3, respectively. Reference tables for medial
and lateral plantar pressure parameters values at slow, preferred and fast velocity are dis-
played in the supplementary materials (Tables S4 and S5). In comparison to men, women
walked slower at a fast speed with an increased average cadence, decreased average contact
time and a significantly lower step length at both preferred and fast walking speed.
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Table 3. Fore- and rear-foot mean ± SD and mid-foot median [interquartile range] of plantar pressure
parameters for the three different velocity conditions; computed on all subjects (n = 170). For the
fore- and rear-foot, p-values reflect the effects of velocity (V, in the first column), zone (Z, in the
second column) and velocity-zone interaction (V × Z, in the third column) through the results of the
mixed-model ANCOVA (covariates appearing in the model are evaluated for the following values:
age = 42.5 yrs). When a significant difference occurred, effect sizes are reported in brackets as partial
eta-squares (part. η2 ≈ 0.01 indicates a small effect, part. η2 ≈ 0.06 indicates a medium effect and,
part. η2 ≈ 0.14 indicates a large effect). For the mid-foot, p-values display the velocity effect (V, in
the first column) analysed using a Friedman rank test. Effect sizes for significant effects are reported
in brackets after p-values as average rank r (with r ≈ 0.1 indicating a small effect, r ≈ 0.3 a medium
effect and, r
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Slow Preferred Fast
p-Value (Effect Size)

V Z V × Z

Peak Pressure (%)
Forefoot 21.5 ± 4.4 23.6 ± 4.3 23.0 ± 3.8 <0.001 a

(0.30)
<0.02 b

(0.03)
<0.001 b

(0.05)Rearfoot 23.7 ± 4.3 22.4 ± 4.1 23.9 ± 3.7

Mid-foot 3.6
[0.8–8.1]

3.3
[0.4–6.6]

2.2
[0.4–5.0]

<0.001
(0.46)

P*t (%)
Forefoot 47.7 ± 8.9 52.6 ±7.6 50.3 ± 5.9 <0.001 a

(0.28)
<0.001 b

(0.11)
<0.001 b

(0.11)Rearfoot 40.2 ± 8.5 37.9 ±7.4 42.6 ±7.2

Mid-foot 10.9
[7.0–15.8]

8.0
[5.0–12.2]

5.9
[3.2–9.6]

<0.001
(0.58)

Peak Time (s)
Forefoot 0.71 ± 0.13 0.53 ± 0.08 0.42 ± 0.06 <0.001 b

(0.30)
<0.001 b

(0.86)
<0.001 b

(0.14)Rearfoot 0.34 ± 0.10 0.20 ± 0.05 0.15 ± 0.03

Mid-foot 0.25
[0.06–0.43]

0.15
[0.03–0.28]

0.09
[0.02–0.17]

<0.001
(0.95)

Contact Area
(cm2)

Forefoot 44.7 ± 5.7 45.9 ± 5.4 46.8 ±5.2 <0.001 a

(0.26)
<0.001 b

(0.18)
<0.001 a

(0.03)Rearfoot 37.6 ± 3.4 38.7 ± 3.7 39.9 ± 4.0

Mid-foot 17.4
[12.9–22.9]

14.9
[10.1–20.4]

12.4
[8.1–18.2]

<0.001
(0.48)

a Adjusted p-values were computed using Huynh—Feldt ε estimates. b Adjusted p-values were computed using
Greenhouse—Geisser ε estimates.

3.1. Impact of Sex

After controlling for the effect of age, male subjects presented a significantly later
peak time than women in the rear- and forefoot (0.40 ± 0.01 s and 0.38 ± 0.01 s, p = 0.004,
part. η2 = 0.05, respectively). In the mid-foot, the distribution of peak time did not differ
between sexes (p = 0.11) and, whatever the statistical analysis, no differences between men
and women appeared for peak pressure, P*t and area (p ≥ 0.23) (Table S2).

3.2. Impact of Side

There were no significant differences between left and right peak pressure, P*t, peak
time and area in the rear- and forefoot when controlling for age (p ≥ 0.11). However,
right mid-foot peak pressure, P*t and area medians were significantly higher than the
corresponding left mid-foot medians (2.3% [1.6–3.1] versus 1.2% [0.9–1.8], p ≤ 0.03, r = 0.84;
4.5% [2.8–6.2] versus 3.9% [2.7–6.0], p = 0.01, r = 0.20; and 7.7 cm2 [5.3–10.3] versus 7.2 cm2

[5.2–9.9], p = 0.03, r = 0.17, respectively). No right-left differences were noted for mid-foot
peak time (p = 0.07).
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3.3. Impact of Velocity

When controlling for age, rear- and forefoot peak pressure and P*t varied with velocity
changes (p < 0.001, 0.28≤ part. η2 ≤ 0.30), area increased with increasing velocity (p < 0.001,
part. η2 = 0.26) while peak time decreased from slow to fast speed (p < 0.001, part. η2 = 0.30).
In the mid-foot, peak pressure, P*t, peak time and area decreased with increasing velocity
(p < 0.001, 0.46 ≤ r ≤ 0.95) (Table 3).

3.4. Sex, Side and Velocity Interactions on Overall Plantar Pressure Data

When controlling for age, a side-velocity interaction was observed for rear- and
forefoot peak pressure (p < 0.001, part. η2 = 0.08) revealing a significant increase of left peak
pressure especially marked at the fast speed. In contrast, in the mid-foot and mainly at
slow speed, left peak pressure was significantly lower in comparison to right peak pressure
(p < 0.001, r = 0.79). This reflected also in the left-right mid-foot P*t results at slow speed
(p = 0.004, r = 0.22).

Moreover, peak time was influenced by a side-velocity-sex interaction when control-
ling for age (p = 0.004, part. η2 = 0.04) since, at slow speed, women presented significantly
delayed right rear- and forefoot peak time (.51 ± 0.02 s) in comparison to women and men
left peak time (0.50 ± 0.02 s and 0.55 ± 0.02 s, respectively).

Area did not present a significant interaction effect between side and velocity and/or
sex on overall plantar pressure data (p ≥ 0.34).

3.5. Pressure Zones and Interactions with Velocity

Peak pressure, P*t, peak time and area differed between plantar pressure zones
(p ≤ 0.02; in the mid-foot, 0.61 ≤ r ≤ 0.87 and, in the rear-/forefoot regions, 0.03 ≤ part.
η2 ≤ 0.86) and reflected (1) typical double-peak plantar pressure and contact area dis-
tribution patterns, (2) increased total pressure exposure in the forefoot, and (3) timing
progression during foot rollover (Figure 1). Furthermore, velocity impacted heteroge-
neously these parameters within the plantar pressure regions (p < 0.001; in the mid-foot,
0.83 ≤ r ≤ 0.89 and, in the rear-/forefoot regions, 0.03 ≤ part. η2 ≤ 0.14) (Figure 2 and
Tables S4 and S5).

Except in the mid-foot where no differences in peak pressure were noticed between
preferred and fast velocities (p = 0.05), all other plantar pressure zones presented different
peak pressure with a decrease or increase in walking velocity (p ≤ 0.04) (Figure 2).

With increasing velocity, medial forefoot peak pressures increased (p < 0.001) while
lateral mid-foot peak pressure decreased (p < 0.001). Medial and lateral heel peak pressures
were smaller at preferred walking speed compared to both slow and fast velocities (p ≤ 0.04)
while, in the lateral forefoot, a reduced peak pressure at slow and fast velocities was
observed in comparison to preferred speed peak pressure (p < 0.001). At the medial mid-
foot, peak pressure was higher at slow compared to preferred and fast velocity (p < 0.001)
(Figure 2).

P*t evolved with walking velocity, as did peak pressure (p ≤ 0.02) except that there
was no difference in medial heel P*t between slow and normal walking speed (p = 0.09).
Strongly dependent on walking speed, peak time decreased with increasing walking speed
in all studied plantar pressure regions (p < 0.001). Finally, with increasing speed, contact
area increased in the medial forefoot and heel regions (p ≤ 0.008) and decreased in the
mid-foot zones (p ≤ 0.004). Lateral forefoot contact area was not influenced by walking
velocity (p ≥ 0.99) (Figure 2).
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Figure 2. For each define pressure zone, (a) Peak pressure, (b) P*t, (c) Peak time and (d) Area mean 
(and standard errors) [computed for covariates at their means: age = 42.5 yrs] at each specific walk-
ing speed (from bottom to top): slow velocity results are in pink, preferred in blue, and fast in green. 
Results are computed on all subjects (n = 170). Asterisks (*) denote statistically significant differences 
between velocities within each plantar pressure zones (p < 0.05). 

Figure 2. For each define pressure zone, (a) Peak pressure, (b) P*t, (c) Peak time and (d) Area mean
(and standard errors) [computed for covariates at their means: age = 42.5 yrs] at each specific walking
speed (from bottom to top): slow velocity results are in pink, preferred in blue, and fast in green.
Results are computed on all subjects (n = 170). Asterisks (*) denote statistically significant differences
between velocities within each plantar pressure zones (p < 0.05).

3.6. Influence of Sex on Pressure Zones and Interactions

At preferred velocity in the lateral forefoot, men presented greater P*t than women
(p ≤ 0.04). No further differences were observed between women and men when comparing
equivalent pressure zones at specific walking velocities (p ≥ 0.07) (Figure 3).

However, the effect of velocity on peak pressure and P*t in the different plantar
pressure zones was mainly observed in male participants (p ≤ 0.04, part. η2 = 0.02) where
greater variation in peak pressure and P*t with increased or decreased walking speed were
present. Instead, women showed increased peak pressure and P*t in the medial forefoot
only when they increased walking speed from slow to preferred (p ≤ 0.006). Moreover,
greater peak pressure in the lateral heel (p = 0.04) and reduced P*t in the lateral forefoot
(p < 0.001) were observed only at fast speed.

Furthermore, peak time was shorter in female subjects in both lateral and medial
forefoot regions (p ≤ 0.01, part. η2 = 0.09).
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Figure 3. For lateral and medial fore- and rear-foot, P*t in men (n = 87) and women (n = 83). Asterisks
(*) denote statistically significant differences between women and men in specific plantar pressure
zones at each gait speed (p < 0.05).

4. Discussion

Whereas the GAITRite system is commonly used for the analysis of spatiotemporal
gait parameters, its application in the field of plantar pressure distribution assessment
during gait is scarce [13,14,23–27]. Previous studies did not aim at establishing a reference
database which takes into account a sufficiently large sample (maximal control group of
62 subjects [13]), nor was the effect of gait speed considered (participants walked at a single
preferred gait speed). The present study can thus be considered to be a solid normative
reference for future clinical applications, as studies have shown alterations of pressure
distribution during gait during pregnancy [25,26], and in patients with different disorders,
such as diabetes [24], low-back pain [23] and autism [14]. The database presented in this
work can contribute to facilitate the use of the GAITRite system to assess relative pressure
distribution in the clinical context of diagnosis and follow-up.

The recorded plantar pressures measured in this study reflected the typical plantar
pressure pattern and their value conformed to those described in the literature [13,14,17,23].
The pattern also varied with walking speed (slow, preferred, fast), which, along with the
other reported spatiotemporal parameters, reproduced known sex differences. These pa-
rameters were slightly lower but within the normal limits described in the literature [31,32].
The slow and preferred velocities reported by Rosenbaum et al. [17] corresponded to
those of our study. These authors observed that by increasing the walking speed, young
subjects showed an increase in peak pressure at the heel and medial forefoot (related to
hallux, 1st metatarsal and 2nd–3rd metatarsal anatomical areas). On the other hand, peak
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pressure in the lateral forefoot decreased with increasing velocity. Gait speed also nega-
tively influenced the local impulse (aka P*t) in the heel where, when speed increased, the
hind-foot contribution to the total loading of the foot was reduced, even if peak pressures
were higher.

In our study, peak pressures by area showed a similar evolution from preferred to fast
speed. At slow speed, however, lateral forefoot and heel peak pressures and P*t were close
to those at fast speed, displaying a U-shaped variation with velocity. This finding differs
from the evolution traditionally described in the literature [17–19]. However, Rosenbaum
et al. [17] showed an identical P*t speed evolution pattern at the medial heel and the central
forefoot but did not emphasise or explain this curvilinear evolution.

Moreover, for each foot region studied, Taylor et al. [19] did not demonstrate differ-
ences in pressure peak or P*t between slow and preferred speeds, indicating a non-linear
evolution of plantar pressures within toe 2, toes 3–5, lateral mid-foot and hallux metatar-
sophalangeal joint with increasing velocity. However, within our sample, peak pressures
and P*t were significantly different between slow and preferred velocities. This could
be due to the speeds observed as slow and preferred, which were different between our
studies. The slow speed in Taylor’s study [19] (1.10 m/s) was close to our preferred speed
(1.25 ± 0.20 m/s). Secondly, the difference between reported slow and preferred velocities
(56% in our study versus 28% in Taylor’s study [19]) may also explain the different results,
as could the different masks applied to the footprint. The GAITRite system uses a mask
that is less specific from an anatomical point of view.

In the medial, central and lateral forefoot (without inclusion of the toes), Segal et al. [18]
established an initial increase of peak plantar pressures with increasing velocity, followed
by a plateau or even a decrease at the fastest speeds (above 1.5 m/s in the central and lateral
forefoot). This finding is similar to the lower lateral forefoot peak pressure found in our
study at fast velocity and illustrates that, with velocity changes, quadratic models appeared
to fit best peak pressure evolution in these regions. On the other hand, heel and hallux peak
pressure evolved linearly with increasing speed [18]. The differences observed between
studies at the heel and medial forefoot could be clarified by the measuring device (pressure
insoles), the imposed gait velocities, the use of a treadmill and the applied mask [18].

Finally, similar to the relationship between walking velocity and oxygen consump-
tion [33,34] or lower-limb kinematics variability [31,35,36], the average peak pressure and
P*t data computed with the GAITRite walkway displayed a U-shaped evolution with
increasing velocity in the lateral forefoot and hind-foot. An “optimal” velocity, also known
as “economic” [33,34,37], could be defined as the speed at which the peak pressure and the
P*t are lowest and could match the individual preferred walking speed. This velocity could
reduce the loads on the heel and forefoot, respectively, during heel strike and push-off.

At fast speed, the increased heel peak pressure and P*t can reflect an increase in ground
reaction forces generated during loading response phase [38,39]. The ground reaction forces
are opposed to the downwards momentum induced during initial contact [39], increasing
consecutively the dynamic load on the musculoskeletal system [40]. At the same time,
the muscles are activated to increase the centre-of-mass vertical acceleration and anterior
propulsion [41,42]. Velocity-induced changes on spatiotemporal characteristics, such as
increased step and stride length, also generate increased muscle activity to allow the
swing phase of gait [43]. In addition, the boat-shaped foot structure, as well as the link
between the triceps sural, Achilles tendon, flexor digitorum (and hallucis) brevis and
plantar fascia [44–46], make it possible to store the forces accumulated during the early
support phase and to avoid longitudinal arch collapse [47]. This induces in particular a
decrease in pressures (peak and P*t in our study) at the midfoot and forefoot [47]. With
regard to the optimal walking speed, simulation modelling data showed that the elastic
energy stored and returned reached a maximum of 1.2 m/s [48]. On the other hand, with
increasing speed, the decrease in peak pressure and P*t observed in the lateral forefoot at
fast speed may reflect a medial shift in the centre of pressures [49,50].
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Since at slow speeds the ground reaction force is less than the gravitational force,
additional muscular activity may be required to raise the centre of mass during the initial
contact phase [37]. The potential increased muscular forces at the hind-foot could explain
the increased pressure, reflecting the lower mechanical efficiency of slow speed (deviation
from the natural frequency of pendulum movement [37,51] and increased variability [35]).
In addition, walking at slow speed is less conducive to the storage and recovery of elastic
energy in the musculotendinous complex [51], which can induce in particular a lower ankle
push-off.

As this study did not include a kinematic and kinetic analysis of ground reaction
forces, centre of pressure excursion and foot type or foot angle progression, these remain
hypothetical explanations.

No differences between men and women were highlighted in the relative peak plantar
pressures data and contact area, while a difference in body weight and foot height was
present (Table 1). However, an increased peak pressure and P*t in the heel and medial
forefoot of men and in the medial mid-foot of women as well as a larger contact area in
men compared to women have been identified in the literature [12,52,53]. These differences
are likely driven by differences in foot structure, shape and size [54], vertical centre of mass
displacement, body weight [55], ligament laxity and joint stiffness [56,57] between sexes.

Our study detected men-women differences in medial and lateral forefoot peak times
as well as lateral forefoot P*t at preferential speed. With an equivalent average speed
between men and women, these differences could reflect a coupled disparity in contact
time, step lengths [21] and cadence observed between men and women in our study
(Table 2). Titianova et al. [13] demonstrated, indeed, that peak time increased with the
decrease in cadence (lower in men than in women in our study) in the forefoot and that
it was strongly related to the temporal gait parameters. They demonstrated further that
subjects with higher body weight (such as the group of male subjects in this study) had
delayed peak times. Body mass was also an important determinant of peak pressure in the
lateral forefoot, as in all other regions of the foot, except the heel and hallux [22]. Finally,
men had a higher P*t than women in the lateral forefoot, which may reflect an increase in
average pressure and/or contact time in this region due to a longer step length [21]. Indeed,
when stride length increased, Allet et al. [21] observed that P*t increased at metatarsals
1 and 5, mid-foot and under toes 3 to 5 and decreased at heel, hallux, second toe and
metatarsals 3 and 4.

In the women’s samples, plantar pressures distribution seemed to be less sensitive
to the effects of walking speed, although peak pressure was increased at fast speed at the
lateral heel, probably under the influence of cadence. Indeed, women tend to increase
their gait speed by increasing the pace [31]. Furthermore, the centre of pressure trajectory,
through the stance phase of gait is more medially distributed in women than in men [58].
This may explain the possible increase in pressure and P*t in the medial forefoot (as in [53])
and the decrease in lateral forefoot peak pressure observed in women. Conversely, men
seemed to distribute the load over the entire forefoot.

Finally, the important disparity between studies (protocols, measurement devices,
footprint masks and units of measurements) prevent an effective comparison of the re-
sults [59] and is potentially the cause of divergent outcomes between studies, such as
those concerning the impact of age [12,60–63]. For instance, midfoot peak pressure was
reported to have increased [61], decreased [60] or be unchanged [62] in elderly adults.
Plantar pressures changes during gait in the elderly are declared to be influenced by several
factors, such as plantar callosity formation [60], loss of fat pad elasticity [61], toe defor-
mation [62], a decrease in muscle strength [62], an increase in step width [60], centre of
pressure medialisation [60], among others, indicating a less propulsive gait pattern [60,62].
These differences justify the choice of the integration of age as a covariate in this study.

These findings should, however, be considered in the light of several limitations, as
the use of self-selected speeds did not allow a controlled walking speed. The latter provide
advantages for normalizing individual differences, comparing subjects and eliminating
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the effects of gait velocity on plantar pressure distribution. However, in the perspective of
clinical applications, self-selected speed protocols are part of consensual guidelines [29]
and are considered valid, reliable, time and cost effective and representative of the patient’s
capacities [64]. Future work should include stratification strategies to better represent
age-distribution through the study sample.

Due to the high intra-subject variability observed by some authors [65–67], recording
a large number of steps (>500 steps per individual) is recommended to represent the
variability and central tendency of individual plantar pressure characteristics with a high
degree of accuracy [65,66]. However, some authors claimed that only 4 to 20 steps are
required to achieve acceptable levels of reliability [68–70]. The recording of more than
500 footprints is only reasonably feasible in samples of healthy individuals. Subjects with
pathologies would indeed need to walk for more than five min (and this for each walking
speed) in a laboratory environment in order to reach this number of steps. A treadmill offers
this possibility more easily than a walkway or platform. Indeed, on a system such as the
6-m long GAITRite, about 60 walks should be performed in order to record up to 500 steps.
In protocols where several velocities are assessed, this is not realistic with a patient. In
our study, participants walked over a distance of approximatively 18 m (3 × 6 m walking
distance) and between 20 and 30 steps were recorded per walking velocity, which is higher
than most reports in the literature [18,67]. Finally, by allowing a continuous recording of
several footprints during walking, the GAITRite system offers research opportunities to
deepen the understanding of intra-individual variability observed within plantar pressures.

In addition, the pressures applied on the walkway (GAITRite or similar) are trans-
formed into relative pressures on a scale of six switching levels over which researchers
and clinicians have no control. This plantar pressure data presentation is linked to the
impossibility of calibrating the number of sensors included in the active surface of the walk-
way. As a consequence, pressure variables are not presented as absolute values. Although
this approach can be criticised and makes comparisons with the literature difficult [59], it
eliminates the effect of body weight and foot size variations between individuals [15]. The
sensors within the mat are also larger (1.27 cm × 1.27 cm) than those of pressure plates
and assess the average pressure level over each individual sensor surface. This leads to
an underestimation of actual pressure values, especially in the case of pressures on small
anatomical regions [71]. Coupled with tedious extraction, this factor limits the common use
of such a system in the collection of plantar pressure data. However, the GAITRite walkway
is extremely useful for continuous recording of a large number of steps at self-selected
speeds, which could open the prospect of calculating the intra-subject variability of plantar
pressures when walking under nearly ecological conditions. Similarly, given the little
preparation required (no undressing and marker placement), it could be recommended in
studies about plantar pressures in subjects with pathologies, or children.

Finally, the mask applied to the footprint and provided by the GAITRite system is
unique. Among the multiple mask models used in other studies, some use regions of
interest related to anatomical and/or functional regions with a questionable plausibility
(in particular those at the forefoot [19–21,52] and the heel [17,20]). When using regional
methods to study plantar pressure distributions, it could be suggested to identify a mask
that allows an easier link between plantar pressures distribution and kinematic and kinetic
foot models results. It would therefore be interesting to collectively define a mask that fits
the anatomical and functional aspects of the foot by subdividing the forefoot into three
segments [72].

5. Conclusions

Increasing gait velocity generated increased pressure peak, P*t and contact area as
well as decreased peak time over the entire footprint (averaged data of fore- and rear-foot).
The increase in peak pressure and P*t was not linear when pressure zones were considered
except for mid-foot and medial forefoot. The results of this study suggest lower load during
gait at preferred gait velocity. This was more apparent in male than female subjects. Finally,
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the study of the relationship between lower-limb kinematics, kinetics and plantar pressures
parameters might support the notion of optimal pressure pattern at preferred velocity but
it requires a reconsideration and harmonisation of the masks applied to the footprint.
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