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Abstract: Electromyography (EMG) onsets determined by computerized detection methods have
been compared against the onsets selected by experts through visual inspection. However, with this
type of approach, the true onset remains unknown, making it impossible to determine if computerized
detection methods are better than visual detection (VD) as they can only be as good as what the
experts select. The use of simulated signals allows for all aspects of the signal to be precisely
controlled, including the onset and the signal-to-noise ratio (SNR). This study compared three onset
detection methods: approximated generalized likelihood ratio, double threshold (DT), and VD
determined by eight trained individuals. The selected onset was compared against the true onset
in simulated signals which varied in the SNR from 5 to 40 dB. For signals with 5 dB SNR, the VD
method was significantly better, but for SNRs of 20 dB or greater, no differences existed between
the VD and DT methods. The DT method is recommended as it can improve objectivity and reduce
time of analysis when determining EMG onsets. Even for the best-quality signals (SNR of 40 dB),
all the detection methods were off by 15–30 ms from the true onset and became progressively more
inaccurate as the SNR decreased. Therefore, although all the detection methods provided similar
results, they can be off by 50–80 ms from the true onset as the SNR decreases to 10 dB. Caution must
be used when interpreting EMG onsets, especially on signals where the SNR is low or not reported
at all.

Keywords: approximated generalized likelihood ratio; double threshold; visual detection; muscle
activity; surface EMG onset

1. Introduction

Electromyography (EMG) can be a valuable tool in measuring skeletal muscle electrical
output during physical activities and provides easy access to the physiological processes
that cause muscles to generate force in order to produce movement [1]. EMG is evaluated
clinically and in research settings to diagnose neurological and neuromuscular problems.
It is a valuable tool involved in the fields of biomechanics, motor control, neuromuscular
physiology, postural control, and physical therapy [2]. Often, the EMG signal is evaluated
in the time domain and in the spectral domain. In the spectral domain, mean and median
frequencies are evaluated to provide insight into the muscle biochemistry, contraction
characteristics [3,4], and muscle fatigue [5]. Common parameters used in the time domain
include the root mean square, the average rectified value, and the peak linear envelope [1].
However, it is often necessary to understand when the muscle is activated (on/off), which
requires the detection of the muscle onsets and offsets.

The onset of muscle activity is required in many research and medical fields. Various
medical fields, such as orthopedics, physiatry, and neurology use EMG in their clinical
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evaluations [6–9]. For example, it was identified that patients after a total knee replacement
surgery had prolonged activation of their rectus femoris and hamstrings muscles, caused
by an earlier onset and later offset of these muscles. This muscle activation pattern after
a total knee replacement is associated with a stiff knee pattern, which is a compensatory
strategy patients adapt to provide better control of the knee joint while walking [6].

Onset of muscle activity and its detection are accomplished by a variety of different
methods including computerized methods [10–12] or through visual detection (VD) [13–15].
Accurately detecting the onset can be difficult as the EMG signal is sensitive to different
types of noise [16]. When the EMG signal has a low signal-to-noise ratio (SNR), the ability
to accurately detect the onset becomes compromised [11].

Computerized detection methods were created to produce a reliable way to determine
muscle onsets. Some commonly used methods include the approximated generalized
likelihood ratio (AGLR) [17] and the double threshold (DT) detector [18]. Despite having
been created decades ago, these methods are still routinely used [19,20]. Both methods have
been shown to perform well at detecting muscle onsets [21], and their performance has
only improved with the addition of various modifications, such as conditioning the signal
with a Teager–Kaiser energy operator [14]. Although computerized detection methods
perform well with good-quality, high-SNR EMG signals [21], researchers need to visually
verify these onsets, especially when the SNR is low.

In general, VD is considered accurate [22], but in addition to being time-consuming,
its reliability has been questioned due to its poor reproducibility due to both human error
and variability between researchers [12]. To show reliability in their onset measurement,
researchers can repeat the onset measurements after a set period (e.g., several days or
week later) or have multiple individuals take these measurements and report intra- and
interrater reliability, respectively. This highlights measurement reliability; however, there
is no indication if these measurements are valid or improve with experience.

Trying to simulate a signal is not as simple as generating a batch of noise followed
by a region of higher amplitude since it needs to adhere to the same convolutions as a
real signal with similar frequency spectra. EMG signals are complex waveforms which
vary in frequency, amplitude, and phase angle due to many intrinsic factors [2]. A method
of simulated EMG (SIMEMG) was described which created signals that were not only
visually similar, but also had comparable distributions in frequency domains [23]. Unlike
the simple method which either varied the variance level in a white noise sequence [17]
or modulated a Gaussian sequence with a truncated Gaussian wave [18], this method
includes physiological aspects such as the firing rate of motor units (MUs) and their
impulse responses. This method accounts for many aspects of the signal to be precisely
controlled, including relaxation and contraction levels, initial relaxation period, transient
relaxation–contraction period, contraction period, transient contraction–relaxation period,
return to the relaxation condition period, and the SNR, by adding a white noise to the
signal [23]. Controlling all these factors would allow for a reliable training tool which may
improve VD of real EMG signals.

While computerized detection methods will remain the primary onset detection
methods used by researchers due to their consistency and reliability, their performance
drops when signal quality is not ideal [21]. VD of EMG signals will always remain there,
whether to visually inspect any automated onset detections or detect onsets of low SNR
signals. The purpose of this study was to compare computerized and visual detection
in determining the onset of SIMEMG signals. Based on the previous research [21], we
hypothesized that on signals with low SNR (10 dB), visual detection is superior, but at
higher SNR, computerized detection methods are more accurate.

2. Materials and Methods
2.1. Signal Simulation

EMG signals were simulated using previously reported methods [23]. A raw (without
noise) signal is created by the convolution of two features: the random process p(t) that
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promotes the temporal profile of the MU action potential trains (MUAPTs) and Wλ, n(t),
the impulse of the MU. The raw SIMEMG y1(t) can be written as follows:

y1(t) = p(t)×Wλ, n(t) (1)

The impulse Wλ, n(t) was modeled using the first-order Hermite–Rodrigues func-
tion [24]:

Wλ, n(t) =
1√
2nn!

Hn

(
t
n

)
1√
πλ

e−t2/λ (2)

where λ is the constant scale factor, t is time, and Hn is the first-order (n = 1) Hermite
function:

Hn

(
t
n

)
=

2t
n

(3)

The temporal profile of the MUAPTs was based off both the firing rates and the
number of recruited motor units modeled using the following piece-wise function:

f (t) =


RL,
CL + (RL− CL)e−6(t−tr)/ts ,
CL,
RL + (CL− RL)e−6(t−tr−ts−tc)/tr ,
RL,

0 ≤ t < tr
tr ≤ t < tr + ts
tr + ts ≤ t < tr + ts + tc
tr + ts + tc ≤ t < tr + ts + tc + td
tr + ts + tc + td ≤ t < T

(4)

RL and CL are associated with the relaxed and contracted levels of the muscle, respec-
tively. Constants tr, ts, tc, and td were used to delimit the instants in time correlated to the
muscle activities representing the initial relaxation period, transient relaxation–contraction,
contraction period, transient contraction–relaxation, and return to the relaxation condi-
tion [23].

A random variable α was presented from a uniform distribution and was compared
to each of the discrete timepoints over the temporal profile to define a random process
denoted by r(t) :

r(t) =
{

0
N(0, 1)

α (t) < f (t)
α (t) > f (t)

(5)

where N(0, 1) is drawn from a Gaussian distribution of mean zero and variance one and
f (t) is the value of the temporal profile which ranged from zero to one. The temporal
profile of the MUAPTs themselves, p(t), was created by summation of these random
processes r(t) for all the firing MUs denoted by integer γ:

p(t) =
γ

∑
i=1

ri(t) (6)

Once Wλ,n(t) and p(t) were convolved to achieve the raw SIMEMG y1(t), a white
noise process n(t) was added to generate the final SIMEMG signal y(t), where σ2

s was the
variance of the raw SIMEMG signal.

n(t) = N
(

0,
σ2

s
10SNR/10

)
(7)

This noise represented the intrinsic noise associated with acquisition and allowed
for the configuration of a desired SNR. The final (with noise) SIMEMG signal y(t) was
summarized using this equation:

y(t) = (Wλ,n(t) ∗ p(t)) + n(t) (8)
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2.2. Comparison of Onset Detection Methods

Using the methods described above, eight signals, each with five bursts of muscle
activity, were simulated to create signals with SNRs of 5, 10, 20 and 40 dB (Figure 1). Two
signals of each SNR condition were created to have a total of 10 bursts of activity at each
SNR. For each burst, the lengths in time correlated to the muscle activities, RL, and CL were
all controlled and varied for each burst. The onset was defined by the initial relaxation
period and signaled the beginning of the transient relaxation–contraction period. This
value was programmed into the signal and was therefore known, so the true onset was
known for each burst of SIMEMG.
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Figure 1. A sample of SIMEMG signals with the SNR of 5, 10, 20, and 40 dB. Each SIMEMG signal
contained five bursts of muscle activity.

Two automated detection methods were used, the AGLR [17] and the DT [18]. Custom-
made Matlab (MathWorks, Natick, MA, USA) graphical user interfaces (GUIs) were created
to implement both detection methods against the 10 SIMEMG signals. For the AGLR
method, a sliding window (L) of 1000 points and the decision threshold (h) of 125 were
used. For the DT method, the number of samples observed (m) was set to 5, the second
threshold (ro) was set to 1, and the probability of false alarm (Pfa) was set to 0.05. Both
computerized detection methods were performed on the 10 SIMEMG signals three times
for a total of 120 onset detections for each method.

Eight individuals with at least 1 year of EMG VD experience (7.1 ± 8.8 years) partici-
pated in the study and completed two VD sessions separated by one week. This cohort
included seven graduate students and one faculty member. Using the training tool, the
participants completed three sets of 10 SIMEMG signals at four different SNRs for a total of
120 onset selections. Feedback between their selected onset and the true onset was visually
provided at the end of each session.
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2.3. Graphical User Interface

A custom-made Matlab graphical user interface (GUI) (2017b, Natick, MA, USA)
was created which presented eight SIMEMG signals in a random order and required the
participants to self-select the onset location of five bursts for each signal (Figure 2). The
toolbox allowed the participants to make their selection within 1 ms of accuracy.

J. Funct. Morphol. Kinesiol. 2021, 6, x FOR PEER REVIEW 5 of 9 
 

Eight individuals with at least 1 year of EMG VD experience (7.1 ± 8.8 years) partici-
pated in the study and completed two VD sessions separated by one week. This cohort 
included seven graduate students and one faculty member. Using the training tool, the 
participants completed three sets of 10 SIMEMG signals at four different SNRs for a total of 
120 onset selections. Feedback between their selected onset and the true onset was visually 
provided at the end of each session. 

2.3. Graphical User Interface 
A custom-made Matlab graphical user interface (GUI) (2017b, Natick, MA, USA) was 

created which presented eight SIMEMG signals in a random order and required the partic-
ipants to self-select the onset location of five bursts for each signal (Figure 2). The toolbox 
allowed the participants to make their selection within 1 ms of accuracy. 

 
Figure 2. Visual detection GUI with the cursor displayed which allowed participants to select the onset location of five 
bursts of SIMEMG signals. 

2.4. Statistical Design 
The absolute difference between the true onset and the selected onset was deter-

mined for each detection method to consider when the onset was either over- or under-
estimated. Statistical comparisons were tested with the statistical package SPSS (v22, IBM 
Corp, Armonk, NY, USA). A Wilcoxon signed-rank test was conducted to determine the 
effect of the visual detection training tool between the two sessions on the absolute differ-
ence between the true onset and the selected onset at various SNRs. A Mann–Whitney U 
test was run to determine if there were differences between the onset detection methods 
regarding the absolute difference between the true onset and the selected onset at various 
SNRs. Statistical significance was achieved with p ≤ 0.05. 

3. Results 
Absolute differences from the true onset (ms) for the different onset detection meth-

ods (VD sessions 1 and 2, as well as the DT and the AGLR) with four SNRs are displayed 
in Figure 3. 
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bursts of SIMEMG signals.

2.4. Statistical Design

The absolute difference between the true onset and the selected onset was determined
for each detection method to consider when the onset was either over- or under-estimated.
Statistical comparisons were tested with the statistical package SPSS (v22, IBM Corp,
Armonk, NY, USA). A Wilcoxon signed-rank test was conducted to determine the effect
of the visual detection training tool between the two sessions on the absolute difference
between the true onset and the selected onset at various SNRs. A Mann–Whitney U test was
run to determine if there were differences between the onset detection methods regarding
the absolute difference between the true onset and the selected onset at various SNRs.
Statistical significance was achieved with p ≤ 0.05.

3. Results

Absolute differences from the true onset (ms) for the different onset detection methods
(VD sessions 1 and 2, as well as the DT and the AGLR) with four SNRs are displayed in
Figure 3.
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3.1. Differences between the Two VD Sessions

The second VD session elicited a significant median decrease in the absolute difference
of the selected onset from the true onset compared to the first VD session at all SNRs. At
the SNR of 5 dB, VD session 2 (35 ms) had a significant decrease compared to VD session 1
(44 ms), z = −5.073, p < 0.001. At the SNR of 10 dB, VD session 2 (33.5 ms) had a significant
decrease compared to VD session 1 (46 ms), z = −5.209, p < 0.001. At the SNR of 20 dB, VD
session 2 (20 ms) had a significant decrease compared to VD session 1 (30 ms), z = −5.715,
p < 0.001. At the SNR of 40 dB, VD session 2 (21 ms) had a significant decrease compared
to VD session 1 (26 ms), z = −5.133, p < 0.001.

3.2. Differences between All the Onset Detection Methods

During the 5 dB SNR condition, both VD sessions had a significant median decrease in
the absolute difference of the selected onset compared to both automated detection methods.
VD session 1 (44 ms) was significantly lower than the DT (130 ms), z = −5.110, p < 0.001,
and the AGLR (101 ms), z = −3.884, p < 0.001. VD session 2 (35 ms) was significantly lower
than the DT (130 ms), z = −7.253, p < 0.001, and the AGLR (101 ms), z = −6.100, p < 0.001.

During the 10 dB SNR condition, both VD sessions had a significant median decrease
in the absolute difference of the selected onset compared to both automated detection
methods. VD session 1 (46 ms) was significantly lower than the DT (76 ms), z = −3.574,
p < 0.001, and the AGLR (54 ms), z = −2.341, p < 0.001. VD session 2 (33.5 ms) was
significantly lower than the DT (76 ms), z = −5.686, p < 0.001, and the AGLR (54 ms),
z = −4.536, p < 0.001.

During the 20 dB SNR condition, VD session 1 (30 ms) was significantly lower than the
AGLR method (49 ms), z = −2.826, p = 0.005. VD session 2 (20 ms) was significantly lower
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than the DT (33 ms), z =−2.635, p = 0.008, and the AGLR (49 ms), z =−4.838, p < 0.001. The
DT (33 ms) was significantly lower than the AGLR method (49 ms), z = −3.058, p = 0.002.

During the 40 dB SNR condition, VD session 1 (26 ms) was significantly lower than the
AGLR method (37 ms), z = −2.750, p = 0.006. VD session 2 (21 ms) was significantly lower
than the DT (30 ms), z =−2.616, p = 0.009, and the AGLR (37 ms), z =−4.624, p < 0.001. The
DT (30 ms) was significantly lower than the AGLR method (47 ms), z = −3.108, p = 0.002.

4. Discussion

The aim of this study was to compare the various detection methods in determining
the onsets of SIMEMG signals. Our hypothesis was partially correct as the VD methods
were significantly more accurate during the 5 and 10 dB SNR conditions. However, at
higher SNRs, only after the second session the participants had a lower median absolute
difference from the true onset compared to both the DT and AGLR methods (Figure 3).

Noise in EMG signals comes from a variety of sources, including inherent noise gener-
ated from electronic equipment, movement artifacts, electromagnetic noise, crosstalk from
neighboring muscles, electrocardiographic artifacts, internal noise, or inherent instability
of the EMG signal itself [25]. However, EMG signals are often processed and filtered prior
to analysis to help remove much of this noise.

When the SNR is higher, the signal and the baseline noise are more discernible.
Regardless of whether VD or automated methods are used, detection accuracy is improved
(Figure 3). Of course, signals with higher SNR are ideal, but this is not always feasible. In
individuals with Duchenne muscular dystrophy, EMG SNR was around 2 dB [26], which
can severely impact onset detection and negatively impact the design of EMG-based control
interfaces for assistive technologies.

Muscle onsets and offsets are often used in conjunction with biomechanical variables
to provide information on the physiological processes that cause muscles to generate force
in order to produce movement [1]. However, an electromechanical delay of 30 and 100 ms
exists between the onset of electrical activity and measurable tension [27]. It is believed
that the time required to stretch the series elastic component represents the major portion
of the measured delay, which is why force development can occur more rapidly in eccentric
muscle activities [27]. All the detection methods were within this 30 and 100 ms window
of electromechanical delay when SNRs were ≥10 dB, which further improved to under
50 ms when SNRs improved to ≥20 dB.

Caution is needed when interpreting the VD results. Although the VD methods were
significantly lower, the interquartile range of the VD sessions was larger compared to
both the DT and AGLR for all SNRs ≥ 10 dB. Computerized detection methods have the
advantage of increased objectivity of analysis, reduced time requirements, and fewer skill
requirements for researchers [13]. VD adds a subjective element when selecting the onsets,
and the large range of the data for all SNRs is evidence of this. However, further training
on simulated signals may further improve a researcher’s selections at the various SNRs.

There are some limitations to this study that should be addressed. First, the sample
size of our study was only nine participants. Although there was a general improvement
between the two sessions separated by one week, further research should include more
participants and a greater number of sessions to determine how many sessions would
be necessary to achieve a ceiling effect. The second limitation of this study was that
feedback was only provided at the end of the session and not after each onset selection.
Having immediate feedback may be beneficial for improving learning outcomes, so future
improvements to the GUI could include this feature. Lastly, it was mentioned earlier that
signal conditioning strategies such as the Teager–Kaiser energy operator can improve onset
detection. This was not integrated into the GUI for testing either the VD or computerized
methods. Different togglable features, such as signal condition strategies, could be included
in the GUI to educate users on various methods they could use to assist in selecting the
onsets. By including various strategies, users could select their preferred method and
incorporate it into the research on real EMG signals.
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5. Conclusions

In conclusion, this study was successful in showing that the concept of an EMG onset
training tool can improve a researcher’s VD of signal onset. VD and DT methods provided
similar onsets (within 5 ms) of each other for all signals with the SNR of 20 dB or greater. To
improve objectivity and reduce time of analysis, the DT detection method is recommended
for signals with the SNR of 20 dB or greater. Caution must be taken when examining onsets
of EMG signals when the SNR is low (≤10 dB) or when not reported at all, as the indicated
onset may be 50 ms or more away from the true onset, depending on the detection method
used. The VD methods were more accurate at low SNRs; however, the use of computerized
detection methods is still recommended when signal quality is better due to their lower
variability and quicker implication.
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