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Abstract: Interleukin-6 (IL-6) is one of several pro-inflammatory cytokines present at elevated
levels in the synovial fluid of individuals with confirmed clinical diagnosis of rheumatoid arthritis
(RA) and osteoarthritis (OA). The mechanism of action of IL-6 was shown to involve its capacity
to interact with a membrane-bound IL-6 receptor (mIL-6Rα), also known as the “classical” IL-6
pathway, or through its interaction with a soluble IL-6 receptor (sIL-6R) termed the “trans-signaling”
pathway. Activation of downstream signaling is transduced via these IL-6 receptors and principally
involves the Janus Kinase/Signal Transduction and Activators of Transcription (JAK/STAT) signaling
pathway that is further regulated by glycoprotein-130 (gp130) interacting with the IL-6/mIL-6R
complex. Phosphorylation of STAT proteins via JAK activation facilitates STAT proteins to act as
transcription factors in inflammation. However, the biological function(s) of the sIL-6R in human
chondrocytes requires further elucidation, although we previously showed that exogenous sIL-6R
significantly suppressed the synthesis of neutrophil gelatinase-associated lipocalin (NGAL) in the
immortalized line of human chondrocytes, C28/I2. NGAL was shown to regulate the activity of
matrix metalloproteinase-9 (MMP-9), whose activity is crucial in OA for the destruction of articular
cartilage. The “shedding” of sIL-6R from the plasma membrane is carried out by a family of enzymes
known as A Distintegrin and Metalloproteinase (ADAM), which are also elevated in OA. In this
paper, we have systematically reviewed the role played by IL-6 in OA. We have proposed that sIL-6R
may be an important target for future drug development in OA by ameliorating cartilage extracellular
protein degradation.

Keywords: a disintegrin and metalloproteinase; cytokines; inflammation; interleukin-6; interleukin-6
receptor; osteoarthritis; signal transduction

1. Introduction

At the pathophysiological level, human osteoarthritis (OA) can best be described as a systemic
disturbance [1,2] primarily involving large and small diarthrodial synovial joints [3]. Although the
aetiopathogenesis of OA remains debatable, an examination of simple radiographs suggested that
subtle changes in the anatomical structure of synovial joints, which can evolve during the ageing
process, may be a contributing factor in the development of human generalized OA [4]. In addition,
several components of cartilage and bone metabolism converge in OA which include genetic,
mechanical, and microenvironmental stresses that are known to influence the progression of primary
generalized and synovial joint-specific OA [5].

Just as important as genetic and mechanical stressors are to the development of OA was
the recognition that a type of “non-classical” inflammation was also a significant contributing
factor in the progression of OA [6–9]. Thus, accumulating evidence now appears to show that
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a chronic form of synovitis is a critical component that drives the progression of OA [3,10–12].
Furthermore, the cellular infiltrates commonly associated with immune-mediated synovial tissue
inflammation as seen in rheumatoid arthritis (RA), is evidenced in OA by the presence of activated
T-lymphocytes [13–15]. There are also other cell-mediated inflammation biomarkers found in OA,
including elevated levels of nitric oxide, prostaglandin E2, and neuropeptides [3]. Taken together with
this and other evidence [3,5,7–9] these findings provide putative cellular and molecular mechanisms, as
well as the pathophysiological underpinning for considering a role for immune cell and non-immune
cell-mediated inflammation in OA together with the new data pointing to potential novel therapies for
OA that could be developed based on those findings.

The inflammatory component of OA, as evidenced by chronic synovitis, is associated with
a modulation of the chondrogenic phenotype. These changes include the upregulation of
pro-inflammatory cytokine gene expression [16]; the upregulation of matrix metalloproteinase (MMP)
gene expression [9,17,18] combined with a skewing of the ratio of the level of tissue inhibitor of
metalloproteinases (TIMPs) to MMPs towards MMPs has also been considered as relevant; elevated
expression of a disintegrin and metalloproteinases with thrombospondin motif (ADAMTS) genes [19];
and a disintegrin and metalloproteinase (ADAM) genes [20], the production of alarmins and Toll-like
receptors [21], and an increased frequency of chondrocyte apoptosis [22]. These changes are likely
to be arise from aberrations in signal transduction involving the mitogen-activated protein kinase
(MAPK) and Janus Kinase/Signal Transduction and Activators of Transcription (JAK/STAT) pathways,
negative regulators of JAK/STAT [23–26], and by those cytokines that activate the nuclear factor-κB
(NF-κB) pathway [27–29].

Interleukin-6 (IL-6), in addition to other cytokines belonging to the IL-6 family of proteins,
which include oncostatin M [30] and adiponectin (a member of the adipokine family) [9,31], are
among the most prominently elevated cytokines involved in the inflammatory response in OA.
In that regard, it will be imperative that we further our understanding of the molecular mechanisms
underlying the interaction between IL-6-type cytokines with the membrane form of the IL-6
receptor known as mIL-6Rα/gp130 and the soluble IL-6R form (sIL-6), as well as other respective
membrane-bound receptors.

Of note, Livshits et al. [32] showed that an increase in the levels of circulating IL-6, as well
as higher body mass index, had a predictive value in the development of confirmed radiographic
knee OA. Furthermore, Blumenfeld et al. [33] studied thousands of female patients in the United
Kingdom and found that single nucleotide polymorphisms (SNPs) in the IL-6 genomic region were
associated with radiographic evidence of hand OA and an “osteoporosis-related phenotype” of the
hand, suggesting that specific DNA motifs in the IL-6 gene represented by these IL-6 SNPs contributed
to the development of hand OA and osteoporotic-related changes in the hand.

With this in mind, we have briefly reviewed the current state of knowledge of how OA alters
articular cartilage homeostasis and, in that regard, have explored the molecular mechanism by which
the mIL-6R and/or sIL-6R can regulate articular chondrocyte gene expression in OA. Moreover, we
propose a strategy by which sIL6R could be manipulated to ameliorate the progression of cartilage
degradation in OA.

2. Cartilage Alterations in Osteoarthritis (OA)

The major changes occurring in OA of large diarthrodial synovial joints, such as hip, knee, and
shoulder, involve significant alterations in articular cartilage and subchondral bone homeostasis, both
of which are evidenced by radiographic or histologic evidence of osteophyte formation, chondrocyte
senescence, and the increased frequency of apoptotic chondrocytes in articular cartilage as OA
progresses [22,34,35]. However, the earliest measured changes in articular cartilage in OA also
suggested a burst of hypermetabolic activity resulting from chondrocyte proliferation and an elevated
production of proteoglycans and collagens [36]. At this stage of OA, subchondral bone cell homeostasis
may also be perturbed [37], which is likely to be a precursor of, and eventually leads to, boney sclerosis.
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However, at its core, OA is characterized by an imbalance between anabolic and catabolic events
leaning towards catabolism [38–40]. Thus, the significantly elevated levels of MMP, ADAMs, and
ADAMTS activity in OA synovial fluid, which is caused by stimulation from pro-inflammatory
cytokines, including TNF-α, IL-6, OSM, IL-17, and IL-1β, as well as an increased production of
reactive oxygen species, lead to cartilage extracellular matrix protein (ECM) degradation and the
loss of sulfated proteoglycans, collagens [10,41], and accessory matrix proteins, such as fragmented
fibronectin, from the tissue. In particular, OSM, in concert with TNF-α and IL-1β, have been implicated
in the inflammatory process associated with OA wherein OSM mediated the degradation of aggrecan
and hyaluronan, and where aggrecan degradation was associated with an increase in the low molecular
weight G3 product of aggrecan [42]. Furthermore, Ni et al. [43] suggested that OSM may be involved in
altering the metabolism of bone associated with OA progression. In addition, Greene and Loesser [44]
showed that the chondrocyte in response to OSM and IL-1β, as well as growth factors such as IGF-1,
may be responsible for initiating “cross-talk” between PI3K-Akt, MAP kinase, and the JAK-STAT
pathways, which could provide the mechanism in OA for the differential responsiveness between
anabolic and catabolic pathways in response to these factors.

This, in turn, not only results in a potent inflammatory response brought about by the egress
of ECM protein fragments from cartilage into the synovial fluid, but also significantly compromises
articular cartilage integrity, and also alters synovial joint biomechanical properties [45,46].

3. “Classical” IL-6 Signaling Versus IL-6 Trans-Signaling

Interleukin-6 (IL-6) is one of several cytokine regulators of inflammation. At present, there are two
principal mechanisms by which IL-6 is known to interact with its target cells. The “classical” pathway
of IL-6 signaling involves membrane-bound IL-6 receptors (mIL-6R/mIL-6Rα) which associate with
membrane-bound gp130 [47]. Gp130, when engaged by IL-6 bound to IL-6R, serves as a locus for
a tyrosine kinase cascade, resulting in the activation of JAK/STAT and Src-family kinase signaling
pathways [47–51], as well as ERK and PI3K/Akt/mTOR signaling [22,44,52]. However, only a limited
number of cell types express membrane-bound mIL-6R, including hepatocytes, neutrophils, monocytes,
macrophages, as well as naive and memory T-cells [53,54]. IL-6R is also known to interact with ciliary
neurotrophic factor [55].

IL-6R does not contain a signal-transduction domain. Gp130 serves as the signal transducer
for IL-6R [47–51], and gp130 is a target for small-molecule inhibition of inflammatory pathways [56].
Circulating gp130 can bind to IL-6/sIL-6R complex, inactivating the complex, as well as sequestering
the signaling molecules. This mechanism creates an IL-6 buffer. Thus, for classical or trans-signaling to
occur, the concentration of IL-6 must be high enough so that the signal is not diluted by functional
cytokine loss due to circulating gp130. This observation led to a therapeutic development with soluble
gp130 employed as an IL-6 inhibitor [57].

Cells expressing membrane-bound IL-6R are the source of soluble IL-6R (sIL-6R) [58], and this
soluble receptor is the mediator of the IL-6-trans signaling pathway. Approximately 80% of sIL-6R
is produced by proteolytic cleavage of the membrane-bound IL-6R via ADAM 17 [59], and direct
synthesis of the soluble receptor contributes to 20% of the circulating level of sIL-6R [59]. Once mIL-6R
is released, IL-6 can bind to sIL-6R. This receptor-ligand pair interacts with membrane-bound gp130
which is expressed by a majority of cell types [60]. In that regard, once engaged, the gp130/sIL-6R/IL-6
complex induces protein kinase activity within the cell and activation of the JAK/STAT pathway [24],
among other protein kinase pathways [61].

IL-6 does not require an IL-6 specific membrane-bound receptor to induce a response. This means
that gp130 serves as the signal-transducing domain for both the classical- and trans-signaling
pathways [62]. However, a novel mechanism of IL-6 signaling (termed “cluster signaling”) has
been described for the development of Th17 cells in this pathway, membrane-bound IL-6/IL-6R/gp130
complex that is found on dendritic cells binds to and activates membrane-bound Gp130 on
T-cells, promoting FoxP3 activation, which induces Th17 differentiation [63]. Thus, the proximal
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downstream response to IL-6 signaling does not seem to differ between cells based solely on the
presence or absence of mIL-6R [64]. Accumulating evidence indicates that differences in phenotypic
expression occur in response to “classical” IL-6 stimulation versus IL-6 trans-stimulation. Stimulation
from the “classical” IL-6 pathway appears to primarily produce an anti-inflammatory effect [65],
whereas trans-IL-6-stimulation predominantly results in a pro-inflammatory effect [66]. Of note, the
homogenous nature of these signal transduction pathways can produce opposite phenotypes because
the genomic targets of IL-6 signaling can vary based on cell type [67].

4. Metzincin Proteases Contribute to the Formation sIL-6R

IL-6 plays a pivotal role in many immune-cell-mediated responses in various disease states, including
cancer [68] and arthritis [25]. As previously stated, the “classical” pathway of IL-6-mediated signal
transduction involves membrane-bound IL-6R (mIL-6R; CD126). Thus, following the interaction of IL-6
with mIL-6R, two gp130 co-receptor molecules (CD130) are recruited to the IL-6/mIL-6R complex. In that
manner, the recruitment of gp130 to mIL-6R provides the molecular mechanism for activating JAK/STAT
signal transduction pathway [24]. Thus, STAT protein activation can provide the dominant signaling
mechanism for increasing the level of pro-inflammatory cytokines in various arthritic disorders [18,24,25].
We have previously discussed the types of cytokines and growth factors that activate JAK/STAT signaling
and the canonical IL-6 pathway, as well as the negative regulators of JAK/STAT signaling [24,26] and the
numerous downstream events which are coupled to STAT protein activation [24].

However, proteolytic cleavage of the mIL-6R protein is mediated by a class of enzymes termed
metzincin proteases [69] which yields a soluble form of the IL-6R (sIL-6R). In addition, but to a
lesser extent, the synthesis of mIL-6R can arise from an alternatively-spliced mIL-6R mRNA which
can, therefore, result in the synthesis of a soluble form of IL-6R (sIL-6R) that can also interact with
IL-6 [68,70]. Importantly, Rose-John [70] defined sIL-6R as the critical component in IL-6-mediated
signaling wherein the degree of IL-6-trans-signaling versus “classical” mIL-6R signaling regulated the
apparent dichotomy between the pro-inflammatory and anti-inflammatory properties of IL-6.

As previously indicated, the generation of sIL-6R is carried out by a molecular mechanism
termed, “ectodomain shedding” or shedding [71–73]. Thus, shedding is facilitated by the ADAM
class of metzincin proteases (Figure 1) [74]. As reviewed by Giebeler and Zigrino [74], the term
“disintegrin” was originally employed to characterize a cysteine-rich RDG-domain in snake venom
which was capable of binding to integrins, as well as by the capacity of snake venom to inhibit
platelet aggregation in persons bitten by venomous snakes. In that respect, ADAMs are similar in
structure to snake venom metalloproteinases (SVMP) (Figure 1) in their capacity to adhere to integrins,
although the integrin binding sequence of the ADAMs differs from that of the SVMPs, the former
containing mostly aspartic-acid sequences, with the exception of ADAM15 [73]. In the current context,
deregulated shedding of membrane proteins by ADAM proteases has often been found in association
with autoimmune disorders, cardiovascular diseases, neurodegeneration, cancer, infections, and a
general state of inflammation [72].

In the case of mIL-6R, the enzymatic cleavage of mIL-6R occurs most notably by the action
of either or both ADAM10 and ADAM17 [75,76], although the assigned level of importance of
ADAM10 in cancer and neurodegenerative diseases, such as Alzheimer’s disease [77], appears to make
ADAM17 more crucial to its role in inflammation associated with autoimmunity [72]. In this regard,
Schumacher et al. [78] showed that, after induction, the endogenous form of IL-6R from both human
and mouse sources was shed due to the action of ADAM17, whereas constitutive shedding of IL-6R
was, to a greater extent, mediated by ADAM10. In fact, it now can be stated with some certainty that
ADAM10 mediates the constitutive release of sIL-6R from liver and hematopoietic cells which has been
characterized as a slow process [78], whereas ADAM17 is more clearly involved with the regulation of
sIL-6R release from neutrophils during both acute and chronic inflammation [75].
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Figure 1. The general structure of snake venom metalloproteinases (SVMPs), A Distintegrin and
Metalloproteinase (ADAMs), and ADAMTSs.

ADAM17 is a component of the plasma membrane [79,80], and also called tumor necrosis factor-α
converting enzyme (TACE). TACE, in addition to being capable of cleaving mIL-6R to produce sIL-6R,
can also cleave ligands for ErbB, including transforming growth factor-α and amphiregulin. TACE
is also implicated in the cleavage of some adhesion proteins, such as L-selectin and ICAM-1 [81,82].
Also noteworthy was the finding that naturally-occurring isoforms of soluble gp130 were potentially
endogenous inhibitors of sIL-6R-mediated signaling, in which case soluble gp130 would be an active
component in the absence of “classical” IL-6 signaling [83]. In contrast to ADAM17, ADAM10 plays a
significant role in the shedding of other substrates, including Notch, E-cadherin, epidermal growth
factor, ErbB2, and inflammatory cytokines [84]. In addition, the shedding of Notch and CD23 by
ADAM10 was also reported to be critical for lymphocyte development [85]. Thus, it was not unexpected
that hydroxamate inhibitors of ADAM10 and ADAM17, exemplified by G1254023X and GW280264X,
were evaluated as preferential inhibitors of cellular constitutive “ectodomain shedding” but without
possessing the activity required to alter the capacity of ADAM10 and ADAM17 to induce “shedding”
in response to phorbol esters, such as phorbol myristate acetate [86]. Importantly, in cell-based cleavage
analyses, G1254023X blocked the constitutive release of mIL-6R, as well as the release of chemokines,
CX3CL1/fractalkine and chemokine C-X-C ligand-16. These latter results were consistent with the
reported role of ADAM10 in the release of soluble chemokine peptides [86].

A search of the PubMed database which was employed, in part, to select papers to be
included in this review revealed several additional results of studies which investigated these
hydroxamate compounds for their capacity to inhibit various ADAM-associated activities using
cell-based assays [87–90]. Not unexpectedly, selective small molecular inhibitors of ADAM17/TACE
have also been studied for their potential use as a future therapy for rheumatoid arthritis [91].

5. A Role for the ADAMs in OA?

Slightly more than a decade ago Campard et al. [92] showed that sIL-6R produced by shedding
from peripheral blood-derived CD133+ cells purified to yield hematopoietic stem cells was abrogated
by the ADAMs inhibitor, tumor necrosis factor-α protease inhibitor-1. This finding suggested that
mIL-6R was not only the substrate for the shedding event but, moreover, that sIL-6R could also
play a role in both the autocrine and paracrine loops which drives human stem cell development.
In fact, in subsequent studies, ADAM17 was identified as the ADAM that mediated the shedding of
mIL-6R [83], which produced sIL-6R that could be further processed by the activity of α-secretase into
smaller peptides.

The shedding of mIL-6R in response to ADAM proteases also appears to be, in part, under
genetic regulation since a single nucleotide polymorphism, rs2228145 in the IL-6R gene (i.e.,
the IL-6R Asp358Ala variant), conferred an increased susceptibility of mIL-6R to ADAM10- and
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ADAM17-mediated shedding [93]. Importantly, ADAM9, ADAM10, and ADAM12 levels were found
to be at increased levels in human OA along with other MMPs and the ADAMTS [20]. Furthermore, the
finding of an elevated level of activity of ADAM17 in OA cartilage in which the rare double-secreted
frizzled-related protein was expressed [94,95] suggested that the origin of sIL-6R in OA cartilage was
likely due to the “sheddase” activity of ADAM17. Importantly, Yan et al. [96] recently identified
the natural protease required for the shedding of murine mIL-6Rα using hypomorphic ADAM10 or
conditional ADAM17 knockout mice. In that paper, Yan et al. [96] showed that infection in these mice
with Listeria monocytogenes caused the shedding of IL-6Rα by ADAM17 which was rapidly induced in
leukocytes. However, CD4+-Cre-driven ADAM10 deletion in T-cells obtained from these mice did not
alter mIL-6Rα shedding. This finding substantiated the role that ADAM17 played in producing sIL-6R
following a challenge with an inflammatory stressor. Furthermore, a mechanism involving ADAM17
may also contribute to the increase in the biological availability and activity of sIL-6R in various types
of arthritis [97] (also, see below).

We have previously shown that human chondrocytes enzymatically dissociated from OA knee
cartilage synthesized neutrophil gelatinase-associated lipocalin (NGAL) in response to exogenous
IL-1β [98]. Importantly, we have also previously shown that NGAL exists in a complex with MMP-9
(92 kDa gelatinase; gelatinase B) in synovial fluids sampled from OA patients undergoing joint
replacement surgery [99]. Moreover, we showed that the MMP-9/NGAL complex was responsible
for maintaining MMP-9 in its active state because when the MMP-9/NGAL complex was disrupted,
MMP-9 activity was lost. We also found that exogenous sIL-6R, but not exogenous recombinant human
IL-6 (rhIL-6), was a potent inhibitor of NGAL production in the immortalized human chondrocyte line,
C28/I2 [100]. Furthermore, we reported that the combination of rhIL-6 and sIL-6R failed to suppress
NGAL production, nor did exogenous tocilizumab (TCZ), a monoclonal antibody that blocks IL-6
signaling [101]. However, the combination of rhIL-6 and TCZ also inhibited NGAL production by
C28/I2 human chondrocytes. Taken together with other data [102], we suggested that endogenous
sIL-6R could potentially be manipulated so that it would behave as an inhibitor of NGAL production.
This advance could limit the potential deleterious effects of MMP-9 on articular cartilage degradation
in RA and OA.

6. Conclusions and Future Perspective

Meszaros and Malemud [5] reviewed the state of drug development for OA, which emphasized
the fact that an OA-specific drug had yet to be developed. However, because the ADAMTS were also
shown to be critical enzymes in OA cartilage for producing fragments of the sulfated proteoglycan,
aggrecan, ADAMTS-4 and ADAMTS-5, in particular, have been targeted for potential future therapy
of OA [103]. In that regard, IL-6 was shown to upregulate the expression of ADAMTS-4 [104].
Furthermore, the expression of the ADAMTS-4 gene was upregulated in vitro by the combination
of IL-6 and sIL-6R-treated RA-fibroblast-like synoviocytes, whereas ADAMTS-5 was decreased.
Of note, both ADAMTS-4 and ADAMTS-5 gene expression were dependent on IL-6/sIL-6R-mediated
trans-activation of JAK/STAT. Therefore, in an important first step going forward it will be vital to
critically and systematically evaluate the extent to which sIL-6R differentially regulates the activation
of JAK/STAT signaling, as well as ADAMS/ADAMTS production, in human OA chondrocytes when
those chondrocytes are compared to chondrocytes isolated from age-matched non-arthritis human
cartilage. However, it will also be critical to consider that any pharmacologic approach to inhibiting
ADAM proteases may produce important adverse side-effects. For example, because ADAM proteases
also play a crucial role in developmental and regenerative processes [105], it will be incumbent to more
accurately define both the temporal and spatial involvement of ADAM proteases in OA.
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