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Abstract: The use of modern methods for determining the fault location (FL) on overhead power
lines (OHPLs), which have high accuracy and speed, contributes to the reliable operation of power
systems. Various physical principles are used in FL devices for OHPLs, as well as various algorithms
for calculating the distance to the FL. Some algorithms for FL on OHPLs use emergency mode
parameters (EMP); other algorithms use measurement results based on wave methods. Many random
factors that determine the magnitude of the error in calculating the distance to the FL affect the
operation of FL devices by EMP. Methods based on deterministic procedures used in well-known
FL devices for OHPLs do not take into account the influence of random factors, which significantly
increases the time to search for the fault. The authors have developed a method of FL on OHPLs based
on a multi-hypothetical sequential analysis using the Armitage algorithm. The task of recognizing a
faulted section of an OHPL is formulated as a statistical problem. To do this, the inspection area of
the OHPL is divided into many sections, followed by the implementation of the procedure for FL.
The developed method makes it possible to adapt the distortions of currents and voltages on the
emergency mode oscillograms to the conditions for estimating their parameters. The results of the
calculations proved that the implementation of the developed method has practically no effect on
the speed of the FL algorithm for the OHPL by EMP. This ensures the uniqueness of determining
the faulted section of the OHPL under the influence of random factors, which leads to a significant
reduction in the inspection area of the OHPL. The application of the developed method in FL devices
for OHPLs will ensure the required reliability of power supply to consumers and reduce losses from
power outages by minimizing the time to search for a fault.

Keywords: overhead power line; fault location; emergency mode parameters; sequential analysis;
Armitage algorithm

1. Introduction

Overhead power lines (OHPLs) of various voltage classes are the main elements of
power systems, both in terms of quantity and length. The output of power from all types
of power plants and the transfer of power between regional power systems are carried out,
as a rule, via high- and extra-high-voltage OHPLs [1,2]. This is due to the fact that the cost
of construction and operation of cable power lines is much more expensive. At the same
time, a number of countries have long-term programs to convert overhead power lines into
cable ones [3,4]. This is due to the susceptibility of OHPLs to the influence of many natural
and technogenic factors [5–7]. As a result, OHPLs have low reliability indicators compared
to cable transmission lines [8,9].
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Short circuits (SCs) on OHPLs that occur for various reasons are accompanied by
voltage dips of various depths and durations. It depends on the type of SC, the magnitude
of the transient resistance at the place of the SC, the operation algorithms and settings of
the relay protection (RP) devices, as well as the intrinsic time of switching off the high-
voltage circuit breakers [10,11]. Voltage dips adversely affect the operation of electrical
receivers, especially electric motors, which are slowed down during an SC, and after the SC
is eliminated, their self-starting begins. Self-starting occurs only if the electric motors have
not been turned off by electrical or technological protection [12–14]. According to statistics,
on OHPLs with a voltage of 110–500 kV, single-phase SCs are the main ones, accounting for
up to 70% of the total. At the same time, two-phase and three-phase SCs account for 20%
and 10%, respectively.

The negative impact of faults on OHPLs is mainly associated with either damage to
electricity consumers, depending on their power supply scheme, or with violations of the
stability of electric power systems.

In some countries, OHPLs with a voltage of 110–500 kV have a length of hundreds of
kilometers, pass through mountainous, forested, and swampy areas, with a large number
of crossings through water barriers (streams, rivers, lakes, and artificial reservoirs), etc.
In addition, OHPLs are operated in difficult climatic conditions, for example, high wind
pressures that cause vibration and dancing of wires, the formation of ice-frost deposits
on wires, ground wires, and supports of overhead lines, as well as critically high or low
air temperatures [15–17]. Under these conditions, determining the fault location (FL) on
OHPLs by inspection requires considerable time and labor.

The reliability of the functioning of power systems as well as the ability to provide a
reliable power supply to consumers depend on the availability of reserve OHPLs, as well
as the time required to search for and eliminate a fault on OHPLs [18–20]. To eliminate the
fault on OHPL, it is necessary to implement organizational and technical measures, which
consist of the departure of the repair team to the place of fault and the implementation of
emergency recovery work. The volume of repair work, the category of its complexity, as
well as the need for materials and devices, are determined on the spot and depend on the
scale of the fault and the reasons for its occurrence. The time for elimination of a fault on
OHPLs largely depends on the accuracy of determining the fault location by FL devices,
i.e., where the repair team should go to search for a fault on the overhead line.

For consumers powered by two OHPLs, one of which was taken out for repair and the
second turned off in an emergency, the power supply will be completely disrupted. This will
lead to damage from the disconnection of OHPLs, as well as losses from the undersupply
of products during the restoration of power supply to the technological process [21–23]. To
minimize damages and losses to consumers, the accuracy of determining the FL on OHPLs
should be increased, and the time for performing emergency recovery work should be
minimized [24,25].

For more than 70 years, power grid companies have been using FL devices installed
at substations on one or two sides of OHPLs [26–29]. However, their accuracy remained
unsatisfactory for many years, so the staff of the electric grid companies did not trust their
testimony. In addition, according to the readings of the FL devices, it was necessary to carry
out calculations in order to determine the distance from the substation to the place of fault.
To accurately determine the fault location, it is necessary to use modern FL devices, which
have sufficient speed and high accuracy and also do not require additional calculations.
This will ensure the required reliability of power supply to consumers.

The FL methods by EMP have specific features when implemented on OHPLs of
various designs and under different circuit conditions. For example, ref. [30] provides
detailed studies of the use of measurements of currents and voltages of zero and negative
sequences for the two-way FL of parallel (double-circuit) OHPLs. Features of the use of
distributed generation sources in modern power supply systems lead to the advisability of
using nonparametric methods in relay protection algorithms and FL on OHPLs [31], such
as genetic algorithms, particle swarm methods, differential evolution, and others. It should
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be noted that achieving high accuracy and speed of FL methods on OHPLs is important
in the conditions of reconfiguring the electrical network [32] to ensure system stability
and reliability.

It is important to note that various random factors influence the magnitude of errors
in calculating the distance to the fault in FL devices:

• Relative and angular errors of measuring current and voltage transformers;
• Harmonic components in currents and voltages recorded in an emergency mode [33];
• Current waveform distortions associated with saturation of electromagnetic measuring

current transformers;
• Distortion of the sinusoidality of currents and voltages due to the influence of the load

and devices based on power electronics elements [34,35];
• The presence of transient resistance at the site of fault on OHPLs;
• Uneven distribution of resistivity along the OHPL [36];
• Change in the resistance of the ground loops of OHPLs at different times of the

year [37,38];
• Not taking into account the capacitive component of the OHPL relative to the ground

in the FL algorithm;
• Neglect of mutual induction in the corridors of joint passage of OHPLs [39];
• Errors in the initial data on the resistivity of sections of OHPLs;
• Not taking into account the resistance of bypass connections, etc.

Under these conditions, it is required to use FL methods that allow calculating the
distance to the fault location under the influence of random factors with high accuracy [40].
In the existing FL devices for OHPLs and various FL methods considered in the scientific
literature, it was not previously proposed to apply a multi-hypothetical sequential analysis
using the Armitage algorithm to determine the fault location on overhead lines.

The purpose of the study is to develop a new FL method for OHPLs according to the
emergency mode parameters (EMP), based on a multi-hypothetical sequential analysis
using the Armitage algorithm. The task of recognizing a faulted section of an OHPL is
formulated as a statistical problem. The use of the developed FL method for OHPLs
practically does not affect its performance but ensures the unambiguous identification of
the faulted section of the OHPL under the influence of random factors.

2. Materials and Methods

In FL devices for OHPLs, they can use various physical principles as well as all kinds of
algorithms to calculate the distance to the fault [41–44]. In some FL algorithms, emergency
mode parameters are used, and in other algorithms, the results of the measurements are
based on wave methods. In wave methods, either active probing of OHPLs is used or
passive registration of wave processes at the ends of OHPLs (at substations) is used [45–47].

The relative error of wave FL methods, including those based on active probing of
OHPLs, is much less than the error of FL devices by EMP [48–50]. However, the high
cost of wave FL devices for OHPLs limits the possibility of their mass application in
power grid companies. As experience shows, wave FL devices are used only on especially
critical OHPLs.

FL devices for OHPLs by EMP are simple since the calculation algorithms are based
on measurements of the components of currents and voltages of industrial frequency. One-
sided [51,52], two-sided, and multi-sided measurements of currents and voltages are used
in FL devices for OHPLs by EMP [53–55]. When implementing FL algorithms for OHPLs
by EMP, it is not required to use analog-to-digital converters with a high sampling rate as
well as high-performance processors. One-way FL algorithms for OHPLs do not require
communication channels for information exchange since current and voltage measurements
are made from one side of the OHPL. However, one-sided FL algorithms for OHPL have a
large error compared to two-sided algorithms [56–62].

It is possible to implement FL algorithms for OHPLs by EMP in the form of specialized
software in relay protection devices, emergency event recorders, automated process control
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systems for substations, devices for phasor measurement units (PMUs), etc. [63–65]. This
makes it possible to not install separate FL devices for OHPLs, as has been the case
for several decades, but implement this function in devices that are already installed at
substations, which is more cost-effective.

In the regulatory and technical documents of large electric grid companies, the OHPL
inspection zone means the estimated section of the OHPL (in km), determined on the
basis of data from the FL devices (RP or others), which were obtained after an emergency
shutdown of the OHPL. This information is the basis for planning the departure of the
repair team to the OHPL in order to establish the actual location of the fault to the OHPL,
identify the causes of fault, and carry out emergency recovery work. The permissible value
of the OHPL inspection zone to search for the actual location of fault depends on the length
of the OHPL, and it can reach up to ±10% of its length [66]. If the length of the OHPL is
50 km, then the permissible value of the inspection zone is ±5 km, which is a lot, especially
when the OHPL passes over rough terrain.

To reduce the inspection area of OHPLs, in [67,68], two FL methods for OHPLs were
proposed and studied, which are used in electrical networks and the contact network
of railways. In the first case, based on the use of the interval method [67], the problem
of reducing the size of the OHPL section, including the fault site, is solved. The second
method [68] offers provisions for splitting the OHPL into sections to solve the problem of
determining the faulted section of the OHPL. However, the authors do not take into account
the influence of random factors that determine the magnitude of the error when calculating
the distance to the fault site, and the FL methods for OHPLs by EMP are implemented on
the basis of deterministic procedures.

Let us formulate the problem of recognizing a faulted section of an OHPL as a clas-
sification problem, which consists of establishing whether the fault belongs to one of the
sections of an OHPL within the zone of its inspection. Due to the influence of random
factors, the decision-making process during recognition has a stochastic character, since it
is based on the processing of emergency oscillograms of currents and voltages recorded
over a limited time interval. The duration of the time interval is determined by the time of
SC elimination.

To implement a sequential analysis when choosing a faulted area within the inspection
zone of an OHPL, it is proposed to carry out k experiments with sample data at each step
of the procedure. According to the results of each of the experiments, one of the (M + 1)
decisions is made:

• Complete the experiment by accepting the hypothesis H1 (fault in section No. 1).
• Complete the experiment by accepting the H2 hypothesis (fault in section No. 2).
• . . .. . .. . .
• Complete the experiment by accepting the HM hypothesis (fault in section No. M).
• Continue the experiment by making additional observations.

Thus, the procedure is implemented sequentially: based on the first observation, one
of the (M + 1) decisions is made, and when one of the first M decisions is chosen, the
analysis process ends. If the solution numbered (M + 1) is chosen, then the next (second)
observation is made. Then, based on the first two sample data, one of the (M + 1) decisions
is made again. If the choice corresponds to the last (M + 1)th decision, then the third
experiment is performed, and so on. The process continues until one of the first M solutions
is chosen.

In the general case, the decision regarding the faulted section of the OHPL is made
on the basis of the vector of parameters of currents and voltages x corresponding to the
faulted section numbered m (m = 1, . . ., M). In this case, the vector x = {x1, x2, . . .} of current
and voltage parameters is generally random since it may include distorting components;
for example, it is associated with deviations of power quality indicators from standard
values [69,70].
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Since the hypotheses H1, . . ., HM mutually exclude each other, exhausting all possible
cases for the chosen values of the vector x, then one (and only one) of the hypotheses,
H1, . . ., HM, is consistent with a specific set of values of the vector x.

In order to form a rational decision rule in case of FL on OHPLs, it is necessary to
introduce indicators of the effectiveness of a sequential analysis in recognizing a faulted
section of an OHPL.

The most common probabilistic indicators of the effectiveness of the sequential analysis
procedure should include a matrix of conditional probabilities for M—hypotheses, each of
which corresponds to its faulted section within the inspection area of the OHPL:

‖P(k|i)‖ = ‖Pi(k)‖ = ‖Pik‖, (1)

where i, k = 1, . . ., M; P(k|i) = Pi(k) = Pik—the conditional probability of making a decision
about the number k of the faulted section, provided that the fault belongs to section i.

The probabilistic indicators of recognition of a faulted section of an OHPL are directly
related to the concept of resolution used in a number of physical problems [71]. In this case,
the resolution of the FL algorithm for OHPLs should be understood as the minimum length
of the OHPL section for which the problem of fault recognition with given performance
indicators is implemented (Expression (1)). It is assumed that the resolution of the FL
for OHPLs is the potentially achievable minimum length section of the OHPL, while the
influence of undesirable random factors is minimized.

It is important to note that the actual resolution refers not only to the FL algorithm
(device) for OHPLs, but also to a specific OHPL, which has design and operational features.
For each fault on the OHPL, the accuracy of calculating the distance to the fault site will be
determined by the resolution of the FL algorithm and the values of random factors affecting
the OHPL.

Let us consider the option of using a multi-hypothetical sequential analysis with the
use of the Armitage algorithm [72,73] when determining the fault location. In the algorithm
developed by the authors, at each step of the analysis, M·(M − 1) paired likelihood ratios
are calculated:

λm(x|Hk,l) = pm(x|Hk)/pm(x|Hl) (2)

where k,l = 1, . . ., M; k 6= l; pm(x|Hk) pm(x|Hl)—multi-dimensional probability density of
the vector x observed at the m-th step.

At each observation step m, the calculated likelihood ratios (Expression (2)) are com-
pared with the thresholds and the condition is checked: if λm(x|Hk,l) > λthreshold

m (x|Hk,l),
l = 1, . . ., M, k 6= l, then a decision is made in favor of the hypothesis Hk. Otherwise, a deci-
sion is made to continue observations. The sequential analysis procedure is implemented
until the condition is met when all (M− 1) likelihood ratios λm(x|Hk,l) > λthreshold

m (x|Hk,l),
l = 1, . . ., M, k 6= l, characteristic of the hypothesis Hk will simultaneously exceed the corre-
sponding thresholds λthreshold

m (x|Hk,l).
The thresholds λthreshold

m (x|Hk,l) for each of the tested hypotheses regarding the
faulted section of the OHPL are formed on the basis of probabilistic indicators of the quality
of the probability, combined into a matrix of conditional probabilities (Expression (1)). It
was shown in [72] that the probability of making a correct decision about a faulted section
of an OHPL increases and approaches unity as the number of observations m increases.

The values of the probabilities of correct recognition of the faulted section Pkk and the
threshold values λthreshold

m (x|Hk,l) in the multi-hypothetical sequential analysis using the
Armitage algorithm are interconnected:

Pkk > 1−∑
k 6=l

[
1/λthreshold

m (x|Hk,l)
]

(3)

λthreshold
m (x|Hk,l) = (1/Pkl)·[1−∑

k 6=l
Pkl ]. (4)
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For M = 2, the threshold values are identical to those for sequential Wald analysis [74].
Thus, the Armitage algorithm can be considered a combination of M·(M − 1) binary
consecutive Wald analyses, where the threshold ratios are determined by Expression (4).

The use of a multi-hypothesis sequential analysis using the Armitage algorithm for FL
on OHPLs helps reduce the number of observations while maintaining the simplicity of the
approach based on a comparison of pairwise likelihood ratios. For this, threshold values
should be set, which depend on the number of observations m:

λthreshold∗
m (x|Hk,l) = λthreshold

m (x|Hk,l)/
(

m(r)
)

, k, l = 1, . . . , M; k 6= l, (5)

where λthreshold
m (x|Hk,l)—threshold determined by Expression (4); r—positive constant [75].

The developed FL method for OHPLs does not impose restrictions on the maximum
required number of observations, but new threshold values reduce the likelihood of con-
ducting a large number of them. It is noted in [75] that for r = 1, the new thresholds
significantly reduce the average required number of observations, having an insignificant
effect on the classifier error probabilities.

Figure 1 shows a structural diagram of the FL device that implements a multi-
hypothetical sequential analysis using the Armitage algorithm. The FL device has a
multi-channel structure, including M·(M − 1) channels, where M characterizes the number
of sections into which the OHPL inspection zone is divided. For example, for M = 3,
the number of channels will be 3 × (3 − 1) = 6, where paired hypothesis testing will be
implemented: H1,2, H1,3; H2,1, H2,3; H3,1, and H3,2. There can be any number of sections
of OHPLs, and they are determined by the personnel of electric grid companies based on
their operating experience.
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Figure 1. Structural diagram of the FL device for OHPLs that implements the sequential analysis
procedure using the Armitage algorithm.

The instantaneous (complex) values of currents and voltages obtained from the oscillo-
grams of the emergency mode are received at the input of the FL device (Figure 1). Based on
this information, the components of the vector x are calculated in the block for processing
oscillograms and estimating the parameters of currents and voltages. The composition
of the vector x includes quantities characterizing the faulted section of the OHPL (active
resistance, reactance, reactive power value, current distribution coefficient value, etc.). In
addition, it includes values calculated according to various FL algorithms for OHPLs by
EMP, which have various systematic and random errors.

Further, in each of the blocks for calculating the likelihood ratio, based on the vector x,
the likelihood ratios are calculated by the Expression (2) λm(x|Hk,l) = pm(x|Hk)/pm(x|Hl).
When calculating each λm(x|Hk,l) from the memory block, for the oscillograms received
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in the block for processing oscillograms and estimating the parameters of currents and
voltages, the values of x are received by the corresponding values pm(x|Hk) and pm(x|Hl).

Values pm(x|Hk) and pm(x|Hl) are formed for different combinations of hypotheses
Hk,l, k 6= l based on simulation results. Simulation modeling is performed in advance,
until the moment of implementation of the FL algorithm and its results are recorded in
the memory block. Probability distributions pm(x|Hk) and pm(x|Hl) can be obtained on
the basis of statistical data, taking into account errors detected by repair teams during
inspections of OHPLs after emergency shutdowns. They can also be obtained on the basis
of the normalized value of the OHPL inspection zone (averaged values for OHPLs of
various lengths and voltages), which is less accurate.

The corresponding threshold values λthreshold
m (x|Hk,l) are fed to the first inputs of the

comparison circuits from the block for calculating threshold (setting) values to implement
the comparison λm(x|Hk,l) > λthreshold

m (x|Hk,l). The calculated values of the likelihood
ratio for each of the hypotheses λm(x|Hk,l) are fed to the second inputs of the comparison
circuits, starting from the first and up to M·(M − 1). When the step m of the sequen-
tial procedure reaches the value λm(x|Hk,l) > λthreshold

m (x|Hk,l) from the output of the
comparison circuit, a logical signal is sent to the analysis block [76].

As noted above, the sequential analysis procedure is implemented until the condition
is met when all (M − 1) likelihood ratios λm(x|Hk,l) > λthreshold

m (x|Hk,l), l = 1, . . ., M,
k 6= l, characteristic of the hypothesis Hk, do not simultaneously exceed the corresponding
thresholds λthreshold

m (x|Hk,l). In this case, the sequential analysis procedure stops and a
decision is made that the fault on the OHPL is located in the section numbered k. From
the output of the analysis block of the FL device (Figure 1), information is provided to the
repair personnel about the faulted section (in the form of its number) within the inspection
area of the OHPL.

3. Results and Discussion

Full-scale experiments to determine the location of fault on OHPLs are expensive and
require the development of special organizational measures. Therefore, the advantages of
the proposed method of FL on OHPLs are illustrated by a calculated example.

Let us consider the implementation of the FL method for OHPLs based on a multi-
hypothetical sequential analysis using the Armitage algorithm using the example of a
110 kV OHPL with a length of l = 50 km and two-sided power supply (Figure 2) [77].
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Figure 2. Single-line equivalent circuit for 110 kV overhead lines.

Figure 2 shows the equivalent circuit of a 110 kV OHPL with a length l (1) in relation
to the calculation example, phase active resistance R (2), and inductance L (3) connecting
buses (4) and (5) of two power systems (6) and (7). On the OHPL, a short circuit (8) is
shown behind the transition resistance Zt (9) at a distance x = n·l (10) from one of the ends
of the OHPL. In the event of an SC, current i′ flows through the OHPL from the busbars (4)
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and current i′′ from the busbars (5). At the time of a short circuit, the instantaneous values
of phase currents (i′A, i′B, i′C), (i′′A, i′′B, i′′C) and voltages (u′A, u′B, u′C), (u′′A, u′′B, u′′C) are
measured from both ends of the overhead line, which are not synchronized in time.

The relative distance to the fault location n is determined in accordance with the
following well-known Expression (6):

n = [(u′(m) − u′′(m)) + R·I′′(m) + L·I′′(m)/dtm]/[R·(I′(m) + I′′(m))
+ L·(I′(m)/dtm + I′′(m)/dtm)].

(6)

This FL method for OHPLs has small errors in calculating the distance to the fault
location under short-circuit conditions with undistorted (sinusoidal) currents and voltages
in emergency mode oscillograms [77]. Let us assume that from the power System-1 side
(Figure 2), discrete instantaneous values of current i′(m) are distorted by flicker [78–80].
The distorted current signal i′(m) is shown in Figure 3a.
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Let us assume that there is a non-linear load on the side of power System-2 (Figure 2),
which outputs interharmonics into the electrical network [81,82]. In the example, the
instantaneous values of current i′′(m) are distorted by interharmonics with frequency
fi = 135 Hz, amplitude Ii = 0.15·I′′, and a zero initial phase, as shown in Figure 3b.

The calculation expression for determining the fault location in the presence of flicker
and frequency interharmonics fi = 135 Hz will correspond to the equation:

ni(m) = {(u′(m) − ui
′′(m)) + I′′[R·sin(2πf (td + m·ts)) + L·cos(2πf (td + m·ts))]

+ 0.15I′′[R·sin(2πfi(td + m·ts))+ L·cos(2πfi(td + m·ts))]}/
{(I′(1 − k·rnd(m)) + I′′)·[R·sin(2πf (td + m·ts)) + L·cos(2πf (td + m·ts))]

+ 0.15I′′[R·sin(2πfi(td + m·ts)) + L·cos(2πfi(td + m·ts))]};
u′(m) = U + I′·(1 − k·rnd(m))·[nR·sin(2πf (td + m·ts)) + nL·cos(2πf (td + m·ts))],

ui
′′(m) = U + (1 − n)·R[I′′·sin(2πf (td + m·ts)) + 0.15I′′·sin(2πfi(td + m·ts))]

+ (1 − n)L·[I′′·sin(2πf (td + m·ts)) + 0.15I′′·sin(2πfi(td + m·ts))],

(7)

where k—number (constant coefficient) characterizing the “depth of distortion” by flicker;
rnd(m)—random number (for example, distributed according to a uniform law in the
interval [0; 1], formed at each discrete time value m); U—voltage at the fault location;
td—delay time; ts—sampling interval.

The technical characteristics of the OHPL and the measured parameters of the emer-
gency mode from the two ends of the OHPL are given in Table 1. The measurement data of
the emergency mode parameters were obtained from the emergency event recorder during
a real short circuit on the 110 kV OHPL considered in the example.
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Table 1. Technical characteristics of overhead lines and measured parameters of the emergency mode.

Parameter I′ (A) I′′ (A) f (Hz) ts (s) L (H) R (Ohm) fi (Hz) U (V) n k td (s)

Meaning 13,908.15 9030.13 50 0.0025 0.0643 12.5 135 29,323.83 0.5 0.15 0.003

Substitution of numerical values from Table 1 into Expression (7) allowed us to obtain
the following results:

• At m = 20; ni and (20) = 0.486; ∆x = l·(n − ni) = 50 × (0.5 − 0.486) = 0.7 (km);
• At m = 60; ni and (60) = 0.526; ∆x = l·(n − ni) = 50 × (0.5 − 0.526) = −1.30 (km).

The analysis of the obtained calculation results shows that the FL errors can have both
positive and negative signs. In addition, they are distributed unevenly with respect to
different points in time [83].

Since the length of the OHPL is l = 50 km, the inspection area by the repair team to
search for the actual fault location, in accordance with the requirements of regulatory and
technical documents, should not exceed ±10% of the length of the OHPL [66]. Therefore,
∆l = ±50 × 0.1 = ±5 km relative to the fault location.

Taking into account the normal law of FL error distribution for OHPLs by EMP and the
three-sigma rule [84], we assume that the standard deviation (root-mean-square deviation)
of the normal distribution law of errors of the FL device is σ ≈ (2·∆l)/6 = 10/6 = 1.67 km.

Let us consider the process of implementing a sequential analysis when determining
the FL on OHPL with dividing the inspection area of an OHPL into three sections relative
to the place of its fault (Figure 4), corresponding to three hypotheses: H1: µ = −σ; H2: µ = 0;
and H3: µ = σ. Each of the hypotheses corresponds to making a decision about the
compliance of the fault location with the value of mathematical expectations µ.
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As a result of calculating the distance to the fault location (Expression (7)), based on the
instantaneous values of the current (Figure 3a,b) and voltage oscillograms, ten consecutive
sample values lsc were obtained, which are given in Table 2.

Table 2. Sample values of the distance to the fault location obtained by measuring the instantaneous
values of the oscillograms of currents and voltages of the emergency mode.

m 1 2 3 4 5 6 7 8 9 10

lsc (km) 25.85 24.9 23.7 26.35 24.6 25.6 25.7 27.36 23.75 25.05

Due to the scatter of the sample values of lsc, it is impossible to make an unambiguous
decision regarding the validity of the hypotheses H1, H2, H3. The mathematical expectation
of the sample values lsc (Table 2) is M[lsc] = 25.185 (km).
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To implement a sequential analysis, we introduce a matrix of conditional probabilities
(Expression (1)) for making a decision regarding the faulted section of the OHPL:

||P(k|i)|| = ||Pi(k)|| = ||Pik|| =

∥∥∥∥∥∥
0.70 0.15 0.15
0.15 0.70 0.15
0.15 0.15 0.70

∥∥∥∥∥∥. (8)

The choice of matrix elements should take into account the operational features of
the OHPL, as well as the economic consequences of making an incorrect decision when
determining the fault location.

Let us calculate the threshold values necessary for the implementation of a multi-
hypothesis sequential analysis using the Armitage algorithm, taking into account the
components of the matrix ‖P(k|i)‖ (Expression (1)):

λthreshold
m (x|H1,2)= λthreshold

m (x|H1,3)= λthreshold
m (x|H2,1)

= λthreshold
m (x|H2,3)= λthreshold

m (x|H3,1)= λthreshold
m (x|H3,2)

= (1/P12)·[1−∑k 6=l P12] = (1/0.15)× [1− 0.15] = 6.667× 0.85 = 5.667
(9)

It is advisable to calculate the likelihood ratios λm(x|Hk,l) = pm(x|Hk)/pm(x|Hl)
for each ratio k 6= l using the standard Gaussian function, the tables of which are given in
the following [84]:

f (x) =
(

1/
√

2π
)
·exp

{
−x2/2

}
, (10)

At the first step of sequential analysis in relative units lst
sc(1) = 0.398, then we achieve

the following:

λ1(0.398|H1,2) = p1(0.398H1)/p2(0.398|H2) = 0.0485/0.369 = 0.131;
λ1(0.398|H1,3) = p1(0.398H1)/p2(0.398|H3) = 0.0485/0.18 = 0.269;

λ1(0.398|H2,1) = p2(0.398H2)/p1(0.398|H1) = 0.369/0.0485 = 7.608;
λ1(0.398|H2,3) = p2(0.398H2)/p3(0.398|H3) = 0.369/0.18 = 2.05;

λ1(0.398|H3,1) = p3(0.398H3)/p1(0.398|H1) = 0.18/0.0485 = 3.711;
λ1(0.398|H3,2) = p3(0.398H3)/p2(0.398|H2) = 0.18/0.369 = 0.488.

The calculation results show that at the first step of the sequential analysis, which
is only one likelihood ratio λ1(0.398|H2,1) = 7.608, exceeds the specified threshold value.
This is due to the introduced condition that all (M − 1) likelihood ratios λm(x|Hk,l) >
λthreshold

m (x|Hk,l), l = 1, . . ., M, k 6= l, characteristic of the hypothesis Hk, must simultane-
ously exceed the corresponding thresholds λthreshold

m (x|Hk,l). If this condition is not met,
then the sequential analysis continues.

Likewise, the likelihood ratios are calculated for the next steps m of sequential analysis
using the Armitage algorithm, as shown in Table 3.

Table 3. Likelihood ratio calculation results required to implement sequential analysis using the
Armitage algorithm.

m 1 2 3 4 5 6 7 8 9 10

λm(x|H1,2) 0.131 0.043 0.047 0.004 0.002 – – – – –

λm(x|H1,3) 0.269 0.475 9.362 0.917 2.953 – – – – –

λm(x|H2,1) 7.608 23.098 23.236 298.12 669.88 – – – – –

λm(x|H2,3) 2.05 10.98 196.25 247.66 1790 – – – – –

λm(x|H3,1) 3.711 2.10 1.05 1.07 0.332 – – – – –

λm(x|H3,2) 0.488 0.091 0.005 0.004 0.0006 – – – – –
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Visually, the process of implementing sequential analysis using the Armitage algorithm
is shown in Figure 5.
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overhead line with a length of l = 50 km: (a) likelihood ratios λm(x|H1,2), λm(x|H1,3); (b) likelihood
ratios λm(x|H2,1), λm(x|H2,3); (c) likelihood ratios λm(x|H3,1), λm(x|H3,2).

Analysis of Figure 5 allows us to draw the following conclusions:

• Multi-criteria sequential analysis using the Armitage algorithm as applied to FL for
OHPLs by EMP leads to the selection of a faulted section in the interval M[lsc] ± σ/2 =
25.185 ± 0.835 (km);

• The sequential analysis procedure does not require significant time costs, allowing us
to make a decision about the faulted section in two steps, practically without affecting
the speed of the OHPL fault algorithm;

• There is no need to use special computational methods to increase the speed of FL
for OHPLs;

• A comparison of the likelihood ratios shown in Figure 5 allows us to state that the
H3 hypothesis is the least probable; therefore, the inspection of the OHPL should be
started from Section 25.185 + 0.835 (km) toward power System-1 (Figure 2), i.e., the
most likely location of the fault;

• The speed of making a decision on the fault location on OHPLs when implementing
sequential analysis depends on the degree of distortion of currents and voltages in
emergency mode oscillograms, including deviations of power quality parameters from
standard values [85].

The proposed method is applicable to determining the location of faults on OHPLs
accompanied by one-, two-, and three-phase SCs. The reasons for such SCs may be
as follows:
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• Overlaps as a result of thunderstorms;
• Falling of trees onto wires without breaking the wire or overlapping onto tree branches;
• Overlap with the destruction of insulators, for example, due to unauthorized persons

shooting at the garland from a hunting rifle;
• Overlap from the wire to the support body as a result of strong winds, ice, and

frost deposits;
• Blocking the wire from passing large-sized machinery and agricultural machinery;
• Breakage of lightning protection cables followed by an SC of the phase wire(s) to

the ground;
• A break with a wire falling to the ground;
• Uncoupling of the insulator string;
• Throwing metal objects onto overhead line wires by unauthorized persons;
• Other reasons.

It should be noted that the implementation of a multi-hypothesis sequential analysis
slightly increases the time of the decision-making process regarding the faulted area when
determining the FL. Based on statistical calculations, the number of stages of the sequential
procedure does not exceed 8–10 steps [74]. Moreover, as shown above, the number of
processing operations at each step of the sequential procedure is a small number. Thus,
for modern FL devices, the practical implementation of the proposed algorithm does not
require significant computational costs and time. On the other hand, information about
the FL is necessary in network control centers (dispatch centers) to assign the line crew
a zone to bypass the faulted OHPL. The time from the moment of fault detection on
OHPLs (triggering of relay protection devices) until the departure of the line crew, as a
rule, in Russian practice ranges from tens of minutes to an hour and a half. Therefore, the
complication of calculations and the additional time spent on them for the proposed FL
method do not have any effect on the overall speed of eliminating faults on OHPLs.

4. Conclusions

The influence of various random factors, including deviations of power quality indica-
tors from standard values, leads to the need to use statistical procedures when determining
the fault location on an overhead power line based on emergency mode parameters.

A method has been developed for determining the location of the fault based on
emergency mode parameters, including dividing the overhead power line bypass zone into
many sections, followed by the implementation of a statistical procedure for recognizing
the faulted area based on the Armitage multi-hypothesis sequential analysis algorithm.

The use of the Armitage algorithm allows us to adapt the decision-making process
regarding the faulted area to the distortion features of emergency oscillograms.

An analysis of the computational operations of the proposed fault location method
using the EMP shows an insignificant dependence of its performance on the distortion of
emergency oscillograms, but at the same time, unambiguous decision-making is ensured
regarding the faulted section of the overhead power line.
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Abbreviation
FL fault location
OHPL overhead power line
EMP emergency mode parameters
RP relay protection
SC short circuit
PMU phasor measurement unit
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