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Abstract: The aim of the study was to develop a methodology for calculating and optimizing devices
for the magnetic exploration of fossils containing materials with a high magnetic permeability. The
proposed technique is based on the calculation of electrostatic fields perturbed by conducting bodies
and of magnetic fields perturbed by ferromagnets with a high magnetic permeability. It uses an
integral equation of the first kind. This technique is preferable to the technique consisting in the
use of an integral equation of the second kind, since in the situation under consideration, the latter
does not have a unique solution and requires transformation. Prospects for the development of
this area allow one to bring geophysical services to the service market on a new scientific and
technical production level; reduce the environmental burden on nature by replacing magnetometric
measurements with energy-saving, environmentally safe technology; and ensure the export potential
of magnetometric equipment.

Keywords: permanent magnet; conductor; ferromagnet; magnetic field; electric field; integral
equation; system of linear algebraic equations; magnetization; electric field strength; magnetic field
strength; magnetic field induction

1. Introduction

The aim of the study was to develop a methodology for calculating and optimizing de-
vices for the magnetic exploration of fossils containing materials with a high
magnetic permeability.

Magnetic prospecting is based on the differentiation of rocks and ores according to
their physical properties. The main magnetic characteristics of any medium are magnetic
susceptibility and magnetization. Magnetic susceptibility is characterized by the ability
of minerals and rocks to be magnetized under the action of an external magnetic field,
and magnetization is the magnetic moment per unit volume of the rock. The magnetic
properties of minerals are determined by the chemical composition and structure of the
crystal lattice, and the magnetic properties of rocks depend on their mineral composition,
texture and structure, temperature, and pressure [1–3].

A modern magnetic-prospecting measuring device consists of a number of mandatory
components: a sensor, an amplifier, a signal meter, and an analog-to-digital converter
(ADC). However, the most important component is still the sensor. The sensor is a primary
converter, an element of a measuring, signaling, regulating or controlling device of a system
that converts a controlled value (pressure, temperature, frequency, speed, displacement,
voltage, electric current, etc.) into a signal that is convenient for measurement, transmission,
conversion, storage, and registration, as well as for their impact on managed processes [4–6].
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Magnetometers differ in their principle of operation from magnetically sensitive sensors,
which determine which field components the magnetometer is able to measure. The
classification of magnetometers according to the principle of operation is given in Table 1.
T is the total vector of the Earth’s magnetic field (EMF), and the physical essence of T is
magnetic induction, where Z is the vertical component of the total EMF vector, H is its
horizontal component, X is its northern component, and Y is its eastern component. In a
physical meaning, each of these components is an induction [7–11]. Devices with a different
principle of operation have certain advantages and shortcomings.

Table 1. Classification of magnetometers according to the principle of operation.

Magnetometer Type Magnetic Sensitive Element Measured Components

Optical-mechanical Permanent magnet Z, ∆Z

Proton Hydrogen liquid

T, ∆T, ∂T ∂x, ∂T ∂xOverhauser Hydrogen-containing liquid with the addition of
free radicals with unpaired electrons

Quantum Alkali metal vapors

Ferroprobe Ferrosonde X, Y, Z, ∆X, ∆Y, ∆Z

Cryogenic Superconducting quantum interferometer T, ∆T

A magnetic-field sensitivity G is one of the crucial parameters of the magnetometer.
At the same time, it is almost impossible to formalize this parameter, to make it the same
for all magnetometers, and this is not only the case because magnetometers differ in their
principle of operation but also because they do so in the design of the transducers and the
signal-processing function. For magnetometers, sensitivity to a magnetic field is usually
denoted by the value of the magnetic-field induction, which the device is able to register.
Usually, the sensitivity G is measured in nanotesla.

The main positive and negative qualities of different types of magnetometers are given
in the Table 2.

Table 2. Comparative characteristics of various types of magnetometers.

Magnetometer Type Advantages Disadvantages

Optical-mechanical Able to measure Z, X, Y and H components. Zero point creep, presence of azimuth correction,
temperature drift, low measurement speed, low accuracy.

Proton

This magnetometer type is impervious to shaking and
vibrations, measurements are practically independent of
changes in external conditions (temperature, humidity,
pressure), there is no need for precise orientation of the
sensor, there is no need to stake out reference networks,
zero-point shift is negligible.

Instability and signal loss at high magnetic field gradients.

Overhauser
All the benefits of proton magnetometers, plus reduced
measurement time, lower uncertainty due to increased
signal-to-noise ratio, small sensor size.

Short lifetime of the working substance, the appearance of a
systematic error, due to the influence of the microwave unit.

Quantum High measurement speed, high resolution.
The need for orientation of the sensor is present, but with
small values: orientation and azimuth errors, temperature
drift. Sensitivity to mechanical influences (shock, vibration).

Ferroprobe Able to measure Z, X, Y and H components with
high accuracy. The bulkiness of the equipment, the need to orient the sensor.

Cryogenic High accuracy. The need to maintain very low temperatures for a
superconductor. There are no mass-produced devices.

The processing of magnetic survey data is aimed at eliminating various kinds of
“interference” from the primary data, for example, variations, the normal gradient of the
Earth’s magnetic field, and others [12–15]. The result of processing should be maps and
maps of graphs of the anomalous magnetic field (Figure 1).
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Figure 1. Schematic representation of the development of methods, equipment, and data processing
of magnetic prospecting.

The goal of this research was to develop a method for the magnetic prospecting of,
predominantly, fossils containing materials with a high magnetic permeability.

Materials with a high magnetic permeability exist; for example, permalloys belong
to them. Pure iron also has a fairly high magnetic permeability. The infinite magnetic
permeability of a material is, of course, a mathematical abstraction. However, in the absence
of the phenomenon of magnetic saturation in a ferromagnet under certain conditions of
the problem, if the magnetic permeability of the material of this ferromagnet is sufficiently
large and is, for example, 1000 µ0 or higher, then the field perturbed by such a material will
practically not differ in any way from the field perturbed by a ferromagnet with an infinite
magnetic permeability [16–19].

Problems of electrostatics and magnetostatics are considered and solved. The basic
integral equations of electro-magnetostatics are reduced to linear algebraic equations,
which, in particular, can be solved using a numeric computing environment. The equations
for magnetic charges are similar to the equations for electric charges, so they have the same
form in this approximation. Since a system of linear equations of a sufficiently large order
is used to solve integral equations, it is advisable to use a numeric computing environment
to solve them [20–23].

In the introduction of this study, we have tried to provide:

- a brief overview of the comparative characteristics of various types of magnetometers;
- a schematic representation of the development of methods, equipment, and data

processing of magnetic prospecting;
- the goal of this research as the development of a method for magnetic prospecting of,

predominantly, fossils containing materials with a high magnetic permeability.

In this study, the following options are considered (Figure 2):

(A) Electrostatic fields. Three-dimensional case, where a conducting body bounded by a
closed surface S carrying a charge q is introduced into the field of charges located in
volume V0.

(B) The field of a permanent magnet. Three-dimensional case, where a magnetic system
consists of a permanent magnet with a given distribution of the magnetization vector
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(V0 is the volume occupied by the magnet) and a homogeneous ferromagnet bounded
by a closed surface S.

(C) Electrostatic field. The plane-parallel case, where the system is extended along the
z axis.

(D) The field of a permanent magnet. Plane-parallel case, where the magnetic system is
extended along the z axis.
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Figure 2. Options considered in this study.

Electrostatic fields. Three-dimensional case. Let a conducting body bounded by a
closed surface S carrying a charge q be introduced into the field of charges located in volume
V0 (Figure 3) [24–26].
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Figure 3. A conducting body bounded by a closed surface S carrying a charge q is introduced into
the field of charges located in volume V0.

It is required that one find the electric field
→
E outside S (inside S field

→
E = 0).
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Take the point of the zero value of the potential at infinity. Then, for the potential at
any point M, we can write the expression:

ϕ(M) =
1

4πε0

∫
V0

ρ(P)
rPM

dVP +
1

4πε0

∮
S

σ(P)
rPM

dSP (1)

where ρ(P) is a given distribution of the electric-charge density in a closed volume V0, and
σ(P) is an unknown distribution of the surface-electric-charge density on a given surface S.

Using the expression for the potential at an arbitrary point Q (1) on the surface S and
equating it with the as yet unknown constant C, we obtain an integral equation of the first
kind for σ(P):

1
4πε0

∮
S

σ(P)
rPQ

dSP = C + f (Q),
σ(P)
rPQ

. (2)

where:

f (Q) = − 1
4πε0

∫
V0

ρ(P)
rPQ

dVP

The unknowns in Equation (2) are σ(P) and C.
When deriving integral Equation (2), information about the total charge of the conduc-

tor was not used. Therefore, this equation will have a non-unique solution.
In fact, if we fix C = C′, then from (2), we can find σ′(P). This distribution satisfies

the equation:
1

4πε0

∮
S

σ′(P)
rPQ

dSP = C′ + f (Q), Q ∈ S. (3)

If fixed C = C′′ 6= C′, then Equation (2) will have a solution:

1
4πε0

∮
S

σ′′ (P)
rPQ

dSP = C′′ + f (Q), Q ∈ S. (4)

The solution {σ′′ (P), C′′ } differs from the solution {σ′(P), C′}, at least because
C′′ 6= C′. It is easy to see that σ′′ (P) is not identically equal to σ′(P), since if we assume
that σ′′ (P) ≡ σ′(P), then subtracting the expression (4) from (3), we obtain:

0 = C′ − C′′ + 0.

This contradiction definitively proves that the solution of integral Equation (2) is
not unique.

To (2) we must add the equation:∮
S

σ(P)dSP = q (5)

2. Materials and Methods

The system of integral Equations (2) and (5) has a unique solution.
Assuming two different solutions of the system (2) and (5) {σ′(P), C′} and {σ′′ (P), C′′ },

for the difference distribution {σ′′′ (P), C′′′ } = {σ′(P)− σ′′ (P), C′ − C′′ }, we obtain
the equations:

1
4πε0

∮
S

σ′′′ (P)
rPQ

dSP = C′′′ , Q ∈ S. (6)

∮
S

σ′′′ (P)dSP = 0 (7)
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The system of integral Equations (6) and (7) describes the distribution of the surface-
charge density on a solitary uncharged conductor. Such a distribution is obviously
σ′′′ (P) ≡ 0. But then, as follows from (6), C′′′ = 0. Thus, the uniqueness of the solution of
the system of integral Equations (2) and (5) is proven [21–32].

The system of Equations (2) and (5) can be solved by reducing it to a system of linear
algebraic equations. We divide the surface S into N elementary surfaces ∆Si (i = 1, 2 . . . N).
On each such surface ∆Si, the surface σ density will be σi, considered constant and equal.
Then, instead of (2), we can write:

1
4πε0

N

∑
i=1

σi

∫
∆Si

dSP
rPQ
− C = f (Q), Q ∈ S, (8)

and instead of (5):
N

∑
i=1

σi·∆Si = q (9)

Let us take the point Qk approximately in the center of the site ∆Sk; if i 6= k, then
approximately replace the integrals in (8) with the value:∫

∆Si

dSP
rPQ

=
∆Si

rPiQk

(10)

Then, instead of (8), we obtain the equations:

1
4πε0

N

∑
i = 1
i 6= k

σi∆Si
rPiQk

+
1

4πε0
σk

∫
∆Sk

dSP
rPQk

− C = f (Qk), k = 1, 2, . . . , N. (11)

Equations (9) and (11) are a system of linear algebraic equations consisting (SLAE) of
N + 1 equations with N + 1 unknowns: σ1, σ2, . . . , σN , C.

The integral included in (11) can be taken analytically. For example, for the case when
∆Sk, there is a rectangle with sides 2a and 2b, and the point Qk is in the center of the
rectangle; this integral is equal to (calculations are omitted):∫

∆Sk

dSP
rPQk

= 4
(

a ln tg
(

0.25π + 0.5arctg
b
a

)
− b ln tg

(
0.5arctg

b
a

))
(12)

Or: ∫
∆Sk

dSP
rPQk

= 4(a ln(b + l) + b ln(a + l)− a ln a− b ln b) (13)

where: l =
√

a2 + b2.

3. Results and Discussion

Let us consider the second way of solving the system of integral Equations (2) and (5).
We find the solution of the equation:

1
4πε0

∮
S

σ1(P)
rPQ

dSP = f (Q), Q ∈ S. (14)

This solution σ1(P) can be found by reducing integral Equation (14) to a SLAE with a
matrix N × N.
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Next, we find the solution of the equation:

1
4πε0

∮
S

σ1(P)
rPQ

dSP = 1, Q ∈ S. (15)

Obviously, the solution of the system (2) and (5) will be equal to:

σ(P) = σ1(P) + C·σ2(P) (16)

where:
C =

q− q1

q2
(17)

q1 =
∮
S

σ1(P)dSP, q2 =
∮
S

σ2(P)dSP. (18)

A special case of the considered problem is the case when there is no external electric
field, and the conductor carries a charge q, i.e., these are the problems for finding the
charge-density distribution on a solitary charged conductor. These problems are described
by integral equations:

1
4πε0

∮
S

σ(P)
rPQ

dSP = C, (19)

∮
S

σ(P)dSP = q. (20)

The first way to solve this system is the same as for the system (2) and (5).
The second way for the system (19) and (20) will look like this. We fix the constant

C = C1. We find the solution of the equation:

1
4πε0

∮
S

σ1(P)
rPQ

dSP = C1. (21)

We reduce, as before, to SLAE.
We find:

q1 =
∮
S

σ1(P)dSP. (22)

The desired solution will obviously be equal to:

C =
q
q1

C1, σ(P) =
q
q1

σ1(P). (23)

After finding the distribution σ(P), the electric field strength at any point M can be
found by the formula:

→
E(M) =

1
4πε0

∫
V0

ρ(P)
→
r PM

r3
PM

dVP +
1

4πε0

∮
S

σ(P)
→
r PM

r3
PM

dSP. (24)

3.1. The Field of a Permanent Magnet—Three-Dimensional Case

Consider a magnetic system consisting of a permanent magnet with a given distribu-

tion of the magnetization vector
→
M(P) (P ∈ V0, V0 is the volume occupied by the magnet)

and a homogeneous ferromagnet bounded by a closed surface S (Figure 4).
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magnetization vector
→
M(P) (P ∈ V0, V0 is the volume occupied by the magnet) and a homogeneous

ferromagnet bounded by a closed surface S.

The magnetic permeability of a ferromagnet will be considered constant and equal to
infinity. The magnetic permeability of the medium surrounding the magnet and ferromag-
net is equal to µ0.

The geometric parameters of the system are assumed to be set.
To calculate the magnetic field, this system can be replaced with magnetic charges

located in the air. By definition, the magnetic charge density ρ is called:

ρ = div
→
H, (25)

where
→
H is the magnetic field strength.

Since
→
H =

→
B
µ0
−
→
M, where

→
B is the magnetic field induction, from (20) we then obtain:

ρ = −div
→
M, (26)

Because: div
→
B = 0.

From (21), we find that there are also magnetic charges with a surface density on the
surface of the magnet S0:

σ0 = Mn, (27)

where Mn is the normal component of the vector
→
M on the surface of the magnet S0 (the

direction of the normal is chosen on the exterior of the magnet).
Surface magnetic charges also exist on the surface S of a ferromagnet. Inside a ferro-

magnet at µ = const, the bulk density of magnetic charges is:

ρ = div
→
H = div

→
B
µ

=
1
µ

div
→
B = 0.

For the case when µ = ∞,
→
H = 0 inside a ferromagnet, and therefore:

ρ = div
→
H = 0.

We introduce the scalar magnetic potential ϕ by equality:

− gradϕ =
→
H (28)
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or:

ϕ(M) =

M0∫
M

→
Hd
→
l (29)

where M0 is the point of the zero value of the potential.
By analogy with electrostatics:

ϕ(M) =
1

4π

∫
V0

ρ(P)
rPM

dVP +
1

4π

∮
S0

σ0(P)
rPM

dSP +
1

4π

∮
S

σ(P)
rPM

dSP, (30)

where M is an arbitrary point of space.

Since inside the ferromagnet
→
H = 0, the surface S is equipotential. Having recorded

this fact mathematically, we obtain an integral equation of the first kind for σ:

1
4π

∮
S

σ(P)
rPQ

dSP − C = − 1
4π

∫
V0

ρ(P)
rPQ

dVP −
1

4π

∮
S0

σ0(P)
rPQ

dSP, Q ∈ S (31)

where C is an unknown constant.
Denoting the right part (26) by f (Q), we finally obtain the following integral equation

of the first kind:
1

4π

∮
S

σ(P)
rPQ

dSP = C + f (Q). (32)

This is an analogue of Equation (2) in electrostatics.
To derive an equation that is an analogue of Equation (5), we do the following.
Let us take a closed surface S′ located in the air and close to the surface S, i.e., only a

ferromagnet is located inside the closed surface. For this surface, one can write:∮
S′

→
Hd
→
S =

1
µ0

∮
S′

→
Bd
→
S −

∮
S′

→
Md
→
S =

1
µ0
·0− 0 = 0 (33)

However, as follows from (25) and from the fact that there are no magnetic charges in
the ferromagnet volume: ∮

S′

→
Hd
→
S =

∮
S

σ dS (34)

From (33) and (34), the integral equation follows, which is an analogue of Equation (5):∮
S

σ dS = 0 (35)

The system of integral Equations (32) and (35) can be solved along with the system
(2, 5) in two ways. In this case, q = 0 is assumed.

A special case when there is no external magnetic field for magnetostatics does not
exist, because for magnetostatics

∮
S

σdS = 0 always applies, and therefore, if there is no

external magnetic field, then σ ≡ 0.

After finding the distribution σ(P) of the field of tension,
→
H(M) can be found by

the formula:

→
H(M) =

1
4π

∫
V0

ρ(P)
→
r PM

r3
PM

dVP +
1

4π

∮
S0

σ0(P)
→
r PM

r3
PM

dSP +
1

4π

∮
S

σ(P)
→
r PM

r3
PM

dSP.
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Additionally, we find the induction of the magnetic field
→
B(M) according to the formula:

→
B(M) = µ0

→
H(M) + µ0

→
M(M)

The latter formula allows us to find
→
B(M) at all points outside the ferromagnet. We

do not consider the question of finding
→
B(M) inside a ferromagnet here.

3.2. The Electrostatic Field—The Plane-Parallel Case

In the case of an extended system along the z axis (Figure 5), the corresponding integral
equations will have the form:

1
2πε0

∮
l

σ(P) ln
1

rPQ
dlP = C + f (Q), Q ∈ l, (36)

∮
l

σ(P)dlP = τ, (37)

f (Q) = − 1
2πε0

∫
S0

ρ(P) ln
1

rPQ
dSP,

τ—a given total charge of the conductor per unit length along z.

Inventions 2023, 8, x FOR PEER REVIEW 12 of 17 
 

 

Figure 5. Electrostatic field, plane-parallel case, assuming an extended system along the z-axis. 

If l
k

  is a straight-line segment and the point Q is located in the center of the 

segment, then: 

( )
1

ln 2 ln .

k

P

PQl

dl a a a
r



= −
 (38) 

where a is half the length of the segment. 

After finding ( )P , the tension ( )E M  can be found by the formula: 

( )
( ) ( )

0

2 2

0 0

1 1
.

2 2

PM PM

P P

PM PMS l

P r P r
E M dS dl

r r

 

 
= + 

  

Along with the electrostatic three-dimensional case, a special case of the considered 

problem is possible when it is necessary to find the field of a solitary charged conductor. 

This case is described by the equations: 

( )
0

1 1
ln ,   ,

2
P

PQl

P dl C Q l
r




= 
  

( ) ,P

l

P dl =
 

 

whose solution is similar to the three-dimensional case. 

3.3. The Field of a Permanent Magnet—The Plane-Parallel Case 

In the case of an extended magnetic system along the z axis (Figure 6), the 

corresponding integral equations will have the form: 

( ) ( )
1 1

ln ,   ,
2

P

PMl

P dl C f Q Q l
r




= + 
 (39) 

( ) 0P

l

P dl =
 

(40) 

( ) ( ) ( )
0 0

0

1 1 1 1
ln ln

2 2
P P

PM PMS l

f Q P dS P dl
r r

 
 

= − − 
.  

Figure 5. Electrostatic field, plane-parallel case, assuming an extended system along the z-axis.

When solving the system (36) and (37), the line l will be divided into N elementary
lines, on each of which the surface density σ will be assumed to be constant. In this case,
we will need to analytically calculate the integral of the form:∫

∆lk

dlP ln
1

rPQ
.

If ∆lk is a straight-line segment and the point Q is located in the center of the
segment, then: ∫

∆lk

dlP ln
1

rPQ
= 2(a− a ln a). (38)

where a is half the length of the segment.
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After finding σ(P), the tension
→
E(M) can be found by the formula:

→
E(M) =

1
2πε0

∫
S0

ρ(P)
→
r PM

r2
PM

dSP +
1

2πε0

∮
l

σ(P)
→
r PM

r2
PM

dlP.

Along with the electrostatic three-dimensional case, a special case of the considered
problem is possible when it is necessary to find the field of a solitary charged conductor.
This case is described by the equations:

1
2πε0

∮
l

σ(P) ln
1

rPQ
dlP = C, Q ∈ l,

∮
l

σ(P)dlP = τ,

whose solution is similar to the three-dimensional case.

3.3. The Field of a Permanent Magnet—The Plane-Parallel Case

In the case of an extended magnetic system along the z axis (Figure 6), the correspond-
ing integral equations will have the form:

1
2π

∮
l

σ(P) ln
1

rPM
dlP = C + f (Q), Q ∈ l, (39)

∮
l

σ(P)dlP = 0 (40)

f (Q) = − 1
2π

∫
S0

ρ(P) ln
1

rPM
dSP −

1
2π

∮
l0

σ0(P) ln
1

rPM
dlP
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These equations are solved by analogy with the equations of electrostatics (31, 32), in

which it is necessary to accept τ = 0. After finding the distribution σ, the tension
→
H(M)

and induction
→
B(M) are calculated using the formulas:

→
H(M) =

1
2π

∫
S0

ρ(P)
→
r PM

r2
PM

dSP +
1

2π

∮
l0

σ0(P)
→
r PM

r2
PM

dlP +
1

2π

∮
l

σ(P)
→
r PM

r2
PM

dlP.

→
B(M) = µ0

→
H(M) + µ0

→
M(M)

3.4. Examples of Calculating Magnetic Fields Using Integral Equations of the First Kind

The magnetic field of the system shown in Figure 7 was calculated. The permanent
magnet and ferromagnets have the shape of a parallelepiped. The centers of these par-
allelepipeds lie on the y axis. The magnet is magnetized uniformly along the y-axis, i.e.,
→
M = M

→
e y. Therefore, ρ = 0 in the volume of the magnet.
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Figure 7. The magnetic field of the system for which the calculation was made using integral
equations of the first kind.

After calculating the distribution σ, the potential on the segment L of the upper face of
the ferromagnet was calculated. The results are presented in Table 3, with the numbering of
points from left to right. The magnetic-field induction was also calculated at the center of
the magnet B1 = 1.749 Tl (the first method), B1 = 1.749 Tl (the second method) and at a point
on the y axis at a distance of 0.0025 m from the ferromagnet, i.e., at the point y = 0.0275 m.
It was equal to B2 = 0.644 Tl (the first method) and B2 = 0.644 Tl (the second method). At
the same point, the induction was calculated in the absence of a ferromagnet. It was equal
to B′2 = 0.365 Tl.

A plane-parallel version of this system was also calculated, i.e., when c = ∞, cM = ∞,
and N was taken to be 256. The value of the potential on line L is shown in Table 4.
B1 = 1.817 Tl (first method), B1 = 1.817 Tl (second method), B2 = 0.44 Tl (first method), and
B2 = 0.444 Tl (second method). B′2 = 0.268 Tl.
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Table 3. Calculation of the potential on the segment L of the upper face of the ferromagnet after
calculating the distribution σ.

The First Way The Second Way

−2410.29 −2410.29
−2368.50 −2368.50
−2354.42 −2354.42

−2353.95 −2353.95
−2354.71 −2354.71

−2354.71 −2354.71
−2353.95 −2353.95
−2354.42 −2354.42
−2368.50 −2368.50

−2410.29 −2410.29

Table 4. Calculation of the potential on the line L in the case of a plane-parallel version of this system,
when c = ∞ and cM = ∞. N was taken to be 256.

The First Way The Second Way

−6020.20 −6020.20
−6008.95 −6008.95
−6004.63 −6004.63

−6004.21 −6004.21
−6004.25 −6004.25

−6004.25 −6004.25
−6004.21 −6004.21
−6004.63 −6004.63
−6008.95 −6008.95

−6020.20 −6020.20

4. Conclusions

Modifications of this calculation method were also used by the authors when modeling
the winding of electric motors (for pumps, cars, tractors, drones), generators, permanent-
magnet linear motors for machine tools, etc.

Two solutions are proposed for the obtained integral equations of the first kind. Both
methods, as shown by examples of calculating magnetic fields created by permanent
magnets and perturbed by ferromagnets with a magnetic permeability µ = ∞, give the
same results. Numerical examples also show that the SLAE to which the integral equation
of the first kind is reduced is easily solved.

The existing methods of magnetic prospecting have both advantages and disadvan-
tages. The development of new methods can open up new possibilities, increase the
accuracy of calculations, increase the efficiency and reliability of equipment, and help re-
duce the cost of equipment and research in the field of magnetic prospecting. The proposed
methods can be applied to the calculation and optimization of devices for the magnetic
exploration of fossils containing materials with a high magnetic permeability.

Prospects for the development of this area allow one to:

- bring geophysical services to the service market on a new scientific and technical
production level;

- reduce the environmental burden on nature by replacing magnetometric measure-
ments with energy-saving, environmentally safe technology;

- ensure the export potential of magnetometric equipment.
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