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Abstract: In this paper, the authors introduce the reader to the state of the art of Metal Wire Additive
Manufacturing (MWAM) and provide a comparison between Wire Arc Additive Manufacturing
(WAAM), Wire Laser Additive Manufacturing (WLAM), and Laser Arc Hybrid Wire Deposition
(LAHWD) based on their characteristics and potential future applications, since MWAM is expected to
have a promising future in various areas, such as aerospace, automotive, biomedical, and energy fields.
A detailed discussion of the benefits and drawbacks of each Metal Wire Additive Manufacturing
process can help to improve our understanding of the unique characteristics of metal wire application.
Therefore, this paper offers a comprehensive analysis that can serve as a reference for upcoming
industrial projects and research initiatives, with the aim of helping industries choose the most
appropriate WAM technique for their specific applications.

Keywords: wire arc additive manufacturing; laser wire additive manufacturing; laser arc hybrid
wire deposition; perspectives

1. Introduction

The use of materials such as nickel, steel, titanium, and aluminum is widespread
in the additive manufacturing industry. Metal feedstocks, which are melted by directed
energy deposition (DED) methods into the desired part, have either powder or wire
shapes [1]. With respect to wire, wire arc additive manufacturing (WAAM) and wire
laser additive manufacturing (WLAM) are available for directed energy deposition. The
operating windows of WAAM and WLAM can be complementary and alternative. In
fact, WAAM can provide a high deposition rate, and WLAM enables sufficient control to
build medium to small features with near-net shape characteristics. Laser arc hybrid wire
deposition (LAHWD) is a hybrid additive manufacturing process that combines wire arc
additive manufacturing (WAAM) and laser metal deposition (LMD) processes. WAAM
was the first to appear with WLAM and WLAHM being recently introduced options for
WAM [2]. To date, many different methods have been used for additive manufacturing,
each having advantages and disadvantages regarding the experimental environments, the
materials used, and the devices installed [1]. Based on the use of unique parts for particular
applications, AM methods have been used to find specific solutions to 3D-printing problems
to achieve maximum productivity [3]. In the additive manufacturing (AM) industry, wire
arc additive manufacturing (WAAM) and wire laser additive manufacturing (WLAM) are
both forms of additive manufacturing that use wire as a material feedstock.

The main difference is the type of energy used to melt the wire. WAAM uses an
electric arc, while WLAM uses a laser source. WAAM tends to be faster and more efficient
than WLAM, but the latter produces parts with higher precision and surface quality.
Additionally, WLAM is more versatile as it can be used with various materials, while
WAAM primarily uses aluminum.

However, a serious challenge the laser material processing industry faces is how to
ensure careful preparation of the edges of AM parts while minimizing defects due to the
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small size of the focalized laser spot, which would ensure correct keyhole formation [4].
In addition, to solve the gap and significant part problems, it is not possible to use a
defocusing beam since, apart from in exceptional cases, the consequent reduction in the
power density would lead to a conduction process, which does not allow the heat source to
achieve high depth penetration [5].

The solution proposed in some studies consists in providing the laser beam with
further movement, combined with the WAAM method [6]. An innovative welding process
referred to in the recent literature as WLAM, involves fiber, CO2, or YAG lasers. This
technique can be used for AM of large parts with different metal wires [4]. WAAM and
WLAM are two powerful processes in wire additive manufacturing (WAM) which can
enhance these techniques using optimization methods and material characterization for
a range of metals, arc, and laser sources [7–9]. With respect to welding technology and
AM processes, the national and international market for laser sources in the early 2000s
was very limited [10]. In the last decade, the global laser additive manufacturing (LAM)
market has grown significantly due to the laser beam’s high thermal stability, which helps
to reduce waste from the processed materials [11]. Hybrid-AM is a technique that allows
metal structures to be generated by means of a concentrated high-intensity beam [12].
This concentrated heat source enables circumscribed and deep welds to be carried out at
high AM speeds. The frequent use of laser sources in various applications is no longer
confined to the automotive sector, but is increasingly aimed at improving products of the
aerospace, medical, electronics, and jewelry industries, which have favored the expansion
of these sources in the market [13]. The demand for LAM products is set to increase even
further with product innovations, advances in manufacturing processes, and technological
improvements [14]. Among the technologies used in the global LAM market, the fiber laser
source is expected to grow significantly in the coming years. One of the main innovations
introduced by the fiber laser is the ability to weld highly reflective metals, such as brass,
aluminum, copper, gold, and silver [12]. Within five years, the market for the use of additive
AM has increased dramatically in the aerospace and automobile industries, except in the
years between 2020 to 2022, which were depressed because of the COVID-19 situation,
and is predicted to increase with cost savings of between 40% and 55% until 2025 [15,16].
Some lasers, such as CO2 or Nd:YAG lasers, are more sensitive to damage during operation
when using bright metals due to the reflected beam [17]. A fiber laser can process highly
reflective materials for various applications, such as in aluminum welding for aircraft or car
frames, welding copper or shape memory alloys, and welding of gold and silver [18]. One
of the main goals of WAM strategies is to find ways to save time and money while retaining
the high-performance of AM methods [19]. The WAM method reduces the processing time
and can generate large and complex geometric parts with high accuracy [20]. The repair
of damaged parts using the WAM method shows that it can save significant costs in the
AM industry [21]. Composites of two or more different materials can be manufactured
using AM methods with high precision by controlling the amount of each element of
the composite according to input and output factors, such as weight, strength, brightness,
flexibility, etc. [22–25]. Various tests are conducted to check the quality of samples to control
the mechanical properties of the printed parts. According to published data, WAM process
simulations were analyzed with higher accuracy by some researchers [26–32]. In WAAM
and WLAM, metal wires are melted when a feeder places the wire in the melting point
sources [33–37], with the energy source usually provided by a mobile robot [38–43]. With
respect to Inconel 718 and Ti6Al4V, it should be mentioned that the additive parts require
post-processing because, on some occasions, samples can have building defects [44,45].
However, the advances of AM in medical areas [46], industry [47], and art [48] have been
clear and many scientists are tackling the optimization, simulation, and quality control of
the fabricated parts [49].

In this article, the mechanical properties, microstructure, and manufacturing quality
of MWAM processes are compared in terms of quality, process capability, device condi-
tions, and environmental factors. The industrial applications of products made in various
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industries, such as food manufacturing, aircraft manufacturing, and shipbuilding, are
examined in separate categories so that a logical framework can be produced, as far as
possible, based on previous studies. The improvements in WAM are discussed, with a focus
on identifying the most significant challenges in MAWM for various industrial sectors.
The article highlights the key considerations for addressing industrial challenges through
process evaluation and comparison.

2. Wire Arc Additive Manufacturing (WAAM)

In this section, the use of WAAM in the deposition of a variety of wire metals is
discussed, and an overview of the microstructures and the mechanical properties of the
samples, such as micro-hardness, tensile test performance, and fracture test performance,
is given. Figure 1 provides a schematic of WAAM equipment and an illustration of its
installation. Due to the process’s high speed and environmental cooling, some defects
are created in the additive samples [50]. However, AM parts with increased weight and
volume have unique disadvantages, such as cracks and micro-cracks, incomplete process,
porosity, and lack of adhesion of printed layers, which can be addressed by controlling
and optimizing the hardware inputs and relevant parameters [51–53]. Additionally, some
experiments have shown that complex process design for WAAM could be more precise,
so it is hard to find topological optimization for this technique [54,55]. Carlos et al. studied
numerical models for bending the parts created by WAAM. In this study, the horizontal
links were considered for optimized geometries to achieve a better and stronger structure
for the WAAM process [56].
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Figure 1. Installation and schema of WAAM processes (a) schematic (b) WAAM equipment [57,58].
Reprinted/adapted with permission from Refs. [57,58]. 2023, Mojtaba Karamimoghadam.

Figure 2a shows SEM images of a sample manufactured by WAAM, in which the wire
was TC4-DT titanium alloy with a diameter of 0.6 mm [50]. After cooling the samples in
the air and etching them with HF + 10% HNO3 + 86% H2O solution, some cracks were
observed along the α’ structures (Figure 2b). One crucial factor to consider is the cooling
process, as cooling the samples too quickly in the air can transfer heat into the surrounding
layers, reducing the flexibility to form the proper shape. Figure 3a shows a crack created
in 718 nickel-base alloy manufactured by the WAAM method [59]. The crack grew in
the metal after the WAAM process and cooling in the air. Figure 3b shows the electron
backscatter diffraction (EBSD) image of the cracks formed at the boundary of the layers.
Figure 3c shows the surface microcracks of the sample where the lengths of some of the
cracks reach 16 mm [58].
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Figure 2. Crack profile with 27.6 V average voltage, 5 m/min wire feed speed, 9.8 mm welding width,
194 A current, and 600 mm/min welding speed for input parameters. (a) Microstructure of first crack;
(b) microstructure of second crack [50]. Reprinted/adapted with permission from Ref. [50]. 2022,
Mojtaba Karamimoghadam.
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Figure 3. Crack in nickel-base alloy 718 fabricated by WAAM with 240 A current, 0.6 L/min plasma
gas flow, and 3.1 m/min wire feed speed for input parameters. (a) crack on the layers; (b) EBSD
image; (c) crack on the surface [58].

Figure 4 shows an example of detecting simulation using a non-destructive ultrasonic
test (UT), which was evaluated by the finite element method with COMSOL software. This
technique was used to find the surface cracks on the WAAM-deposited layers by calculating
the response time of the R-wave, an acoustic velocity used for defect inspection, such as
cracks. By comparing the reference signals with the L-wave and S-wave simulated amount,
the ultrasonic change waves can be evaluated. When the signals are detected in the sample,
revealing the RS and R waves can show the UT simulation of the cracks [60].
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Figure 4. Displacement distribution on the simulation of UT on the WAAM process to find surface
crack. L-wave transfer to secondary L-wave (LL) and S-wave (LS). S-wave transfer to L-wave (SL)
and secondary S-wave (SS) [60]. Reprinted/adapted with permission from Ref. [60]. 2022, Mojtaba
Karamimoghadam.

In an aluminum AM study [61], the relationship between the rate of shielding gas and
the creation of porosity in the samples was investigated. The results showed that increasing
the gas rate caused an increase in the value of the porosity of the pieces. This phenomenon
happens because oxygen is trapped in the metal and in the melting pool when the rate of
gas increases, which does not give the melt enough time to form uniformly. This results in
the creation of porosity in certain areas (Figure 5) [61].
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Figure 5. Cross-sections of the aluminum (AW-4043) samples considering the rate of shielding gas
flow (a–d) 10, 8, 6.1 and 10 L/min, respectively [61].

The systematic analysis of the aluminum alloy AlMg5Mn microstructure evolution
during the WAAM process was the goal of the research paper by Gierth et al. [62]. The
focus of the study was to analyze the impact of three different arc modes, namely cold metal
transfer (CMT), CMT advanced (CMT-ADV), and CMT-pulse advanced (CMT-PADV), on
various factors, such as the energy input per unit length, thermal cycles, final contour,
microstructure, and mechanical-technological properties. The most appropriate arc mode
should be chosen for the AM of high quality and large parts. The results showed that cracks
occurred in the middle of the deposited lines beside the boundaries of the grain. UT and X-
ray radiography can be used to inspect these defects. Variable symmetry and double-pulsed
techniques were studied by Wang et al. [63] for GTAW welding of the aluminum alloy 2124.
With a pronounced decrease in the coarse dendritic grains discovered by the traditional
double-pulsed technique, and more uniform dispersion of the precipitations, the amount of
refined equiaxed grains increased dramatically. In addition to the mentioned disadvantages,
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it is possible to point out the high capability of the WAAM process for producing samples
with large dimensions and relatively good flexibility when using various diameters of
metal wire to make the samples. These samples can be made using different metals.
Table 1 shows recent studies that have used the WAAM method to make samples. The
simulation of the WAAM process on the wall deposition of materials enables comparison
with real experiments. Analysis of the mechanical properties and calculation of the strain
measurement in three directions can use Hooke’s law (Equation (1)):

σx =
E

(1 + v)
εx +

Ev

(1 + v)(1 − 2v)
(
εx + εy + εz

)
(1)

where εx, εy and εz are the strains in the three directions, and the elasticity and Poisson’s rate
are E and υ, respectively. Applying this equation, the simulation can be more appropriate
to the printed sample’s situation. In the Ding et al. [64] study, thermal analysis on mild steel
was applied considering the strain measurement on the WAAM simulation (Figure 6). The
cooling and heating cycles were predicted. Apart from the deposited line of the WAAM
process, the stress is uniform; meanwhile, a considerable amount of stress can occur by
unclamping.

Table 1. Summary of WAAM research outputs.

Materials Optimum Input Parameters Findings/Goals Ref.

Mild-steel S355JR-AR

Welding speed: 8.33 mm/s
Heat input is 269.5 J/mm

Dwelling time: 400 s
Wire diameter: 1.2 mm

Thermo-mechanical analysis
was investigated [64]

Ti—6Al-4V

Wire feed speed: 1.8 m/min
Average voltage: 12 V
Layer height: 1.2 mm
Average current: 99A
Peak current: 180 A
Base current: 45 A

Wire diameter: 1.2 mm

Enhancing the fatigue life of
samples [65]

Tool steel

Welding speed: 800 mm/min
Shielding gas: argon and CO2

Flow rate: 22 L/min
Wire diameter: 1.2 mm

Strategy of patterns was
conducted [66]

DH36 Low carbon steel

The arc length: 3.5 mm
Average current: 140 A
Average voltage: 12.7 V

Welding speed: 100 mm/min
Wire feed speed: 1000 mm/min

Wire diameter: 0.9 mm

Enhancing yield strength [67]

Ni-Al bronze
(NES 747)

Wire feed speed: 5.4–8 m/min
Welding speed: 400 mm/min

Average current: 175.5–256.1 A
Average voltage: 24.8–29 V
Heat input: 653–1114 J/mm

Wire diameter: 1.2 mm

Reaching the fine
microstructure [68]

Grade 1080 aluminum
Cu-9

Average current: 160 A
Wire feed speed of Al: 311 mm/min

Wire feed speed of Cu: 1300 mm/min
Average deposition energy: 20.2 kJ/g

Welding speed: 95 mm/min
Gas flow rate: 9 L/min

Inter-pass temperature: 673 K
Wire diameter: 0.9 mm

Increasing the microhardness [69]
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Table 1. Cont.

Materials Optimum Input Parameters Findings/Goals Ref.

2Cr13 martensitic stainless
steel

Welding speed: 0.4 m/min
Wire feed angle: 90

Dwelling time: 120 s
Average voltage: 12.9 V
Average current: 96 A

Wire feed speed: 5.2 m/min
Arc length correction factor: 7%

Wire diameter: 1.2 mm

Monitoring the stability and
phase transformation for thin

wall fabrication
[70]

G4Si1 (1.5130) steel
AZ31 magnesium

Wire feed speed: 2.5–5.0 m/min
Welding speed: 40 cm/min

Half width: 2–3 mm
Layer thickness: 2–3 mm

The offset per layer: 1.7 mm
Wire diameter: 1.2 mm

Thermo-physical properties
monitoring [71]

Ti6Al4V alloy

Shielded gas: 99.995% argon
Average current: 110 A
Average voltage: 12 V

Welding speed: 95 mm/min
Wire feed speed: 1000 mm/min

Dwelling time: 125 s
Wire diameter: 1.2 mm

Reaching desirable inter-pass
temperature (200 ◦C) by

controlling the shielding gas
[72]

Al-5Mg and Al-3Si alloys

Average voltage: 15.2–18 V
Average current: 115–177 A
Welding speed: 6–8 mm/s

Dwelling time: 120 s
Wire diameter: 0.9 mm

Heat-source management
during the process [73]

Inconel 625

Wire feed speed: 6.5 m/min
Welding speed: 8–10 mm/s

Average current: 148 A
Average voltage: 14.6 V

Heat input: 216–270 J/mm
Wire diameter: 1.2 mm

Defining the micro-hardness
by considering the wall height

(The first layer has less
micro-hardness than the top

layer)

[74]

Ti-6Al-4V alloy

Average current: 120 A
Average voltage: 14 V

Wire feed rate: 10 m/min
Layer thickness: 3.3 mm

Argon flow rate: 15 L/min
Wire diameter: 1 mm

Improving the micro-hardness
by post-processing with hot

forging
[75]

Al-Zn-Mg-Cu alloys

Average current: 220 A
Welding speed: 10 cm/min

Wire feed speed: 130 cm/min
Inter-pass temperature: 80 ◦C

Wire diameter: 1.2 mm

Monitoring the phases after
fabrication: columnar grains

were originated from the first
lines.

[76]

EN AW-5754A H111
(substrate)
S Al 5556

(welding wire)

Welding speed: 0.3–0.6 m/min
Wire feed speed: 9.45 m/min
Shielding gas: argon/helium

Average current: 60–180 A
Average voltage: 0–23 V

Wire diameter: 1 mm

The influence of energy input
and porosity on the small
walls was investigated by
changing the travel speed

[62]

Titanium-6Al4V
Stainless-steel-316

Inconel-718
Aluminum 5356

Wire feed speed: 5–12 m/min
Energy: 300–1080 J/mm

Overlapped walls rate: 65%
Shielding gas: argon

Wire diameter: 1.2 mm

Improving productivity by
matrix-manufacturing

strategies
[77]
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Table 1. Cont.

Materials Optimum Input Parameters Findings/Goals Ref.

ER70S-6
Q235

Shielding gas: argon and CO2
Welding speed: 0.1–0.6 m/min
Wire feed speed: 1–5 m/min

Nozzle to work distance: 5–21 mm
Wire diameter: 0.9 mm

Weld bead geometries were
investigated [78]

Ni50.8Ti

Shielding gas: helium and argon
Welding speed: 4 mm/s

Average current: 110–130 A
Average voltage: 14.7–14.9 V

Wire feed speed: 7.4–8.9 m/min
Wire diameter: 1 mm

Plasticity and mechanical
properties improvement [79]
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In this regard, by changing the scanning strategies, Wang et al. [65] were able to
produce printing patterns to make the WAAM samples with a lower roughness rate.
Equation (2) was used:

Ra =
1
n

n

∑
i=1

∣∣∣hi − h
∣∣∣ (2)

where h and hi are the average and absolute height of the surface points.

3. Wire Laser Additive Manufacturing (WLAM)

In this technique, the metal wires are melted with a laser beam and deposited in a line
shape to create a sample with a complex geometry design (Figure 7).
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Figure 7. Installation and schema of WLAM processes: (a) schematic, (b) WLAM equipment [80].

The patterns in this technique and the input laser parameters significantly influence
the quality of the AM samples generated with no defects. However, defects can grow
or generate during and after the WLAM process [81]. Regarding the high-speed WLAM
process and melting of the metal wires, porosity can form in the samples [82–88]. In WLAM
processes, austenite in some alloy steels is melted completely by high laser power. After
passing the laser from the affected area, some martensite phase forms into the deposited
layers. Thus, if the laser power increases, the melting pool has time to mix the austenite
phase properly [89]. On the other hand, another effect of solidification for WLAM is
generating porosity after backfilling the deposition. In this regard, the solidification rate in
the melting pool is linked to laser speed and power; optimizing the WLAM parameters can
reduce the level of porosity [90]. The environment air or shielding gases are trapped inside
the AM structures and a range of porosities appear in the AM samples. Figure 8 shows the
WLAM process of 316L stainless-steel wire, in which some porosities are formed during the
process [91]. The high cooling rate during the wire arc additive manufacturing (WLAM)
process results in porosities being trapped between the dendrite micro-structures of the
316L wire. This rapid cooling does not allow enough time for the austenite phase to properly
form, leading to a mixture of ferrite and air trapped between the boundaries (Figure 8a,b). In
addition, during the process, some porosities were reported in the 316L samples regarding
the spaces between the deposited beads. This kind of porosity is widespread among the
AM processes, so, in the deposited beads interaction section, some parts of the melted wire
may not distribute properly because the last deposited beads usually have a non-uniform
surface with waviness and with non-constant sections. In this situation, some parts of
the samples are not covered by the melted metal after the WLAM process and a lack of
fusion can happen in these samples (Figure 8c,d). The porosity of a material during laser
fabrication can be influenced by various laser parameters, including the shielding gas. The
optimal blowing distance and angle can help to ensure a steady flow rate during wire
deposition, which, in turn, affects the molten pool. Therefore, the shielding gas parameters
can have a significant impact on the overall quality of the material. Significant fluctuations
in the shielding gas during laser fabrication can lead to the formation of porosities in the
deposited layer [92]. This can happen due to disruptions in the stability of the molten pool.
Table 2 provides a summary of recent studies related to wire and arc additive manufacturing
(WLAM), including mechanical property tests and the types of lasers used.
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Figure 8. The microstructure of WLAM 316L samples with 1.5 kW laser power, 8.3 mm/s feeding
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lack of fusion [91].

Table 2. Summary of WLAM research outputs.

Materials Optimum Input Parameters Findings/Goals Ref.

Ti–6Al–4V

Laser power: 2.6–3.5 kW
Laser scanning speed: 7.5–10 mm/s

Feeding angle: 55◦

Wire-feed speed: 30–40 mm/s
Diameter of optical fiber: 0.4 mm

Focal plane diameter: 0.56 mm
Focal length of optics: 140 mm

Wire diameter: 1.2 mm
Laser type: 3.5 kW Nd:YAG laser

Enhancing the yield strength
to 884 MPa [93]

Ti-6Al-4V

Laser power: 1.75–3.5 kW
Laser scanning speed: 7.5–40 mm/s

Wire-feed speed: 15–160 mm/s
Focal length of optics: 140 mm
Focal plane diameter: 0.56 mm

Wire diameter: 1.2 mm
Laser type: 3.5 kW Nd:YAG laser

Considering 600 ◦C/4 h
treatment to enhance the

micro-hardness
[94]

Ti-6Al-4V

Wire feed angle: 55◦

Deposit spacing: 3 mm
Layer thickness: 0.8 mm

Wire-feed speed: 2200 mm/min
Laser power: 1.65 kW

Deposition speed: 500 mm/min
Diameter of laser beam: 3 mm

Wire diameter: 1.2 mm
Laser type: not reported

Proofing the strong forming
ability by assuming vertical

feeding for the wire
[80]
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Table 2. Cont.

Materials Optimum Input Parameters Findings/Goals Ref.

AISI 301

Spot diameter: 0.3 mm
Laser power: 150 W

Pulse duration: 6–12 ms
Wire-feeding speed: 900 mm/min

Wire-feeding angle: 30◦

Shielding gas type-rate: Argon at 0.8 bar
Laser scanning speed: 90–180 mm/min

Wire diameter: 0.3–0.5 mm
Laser type: 5 kW Nd:YAG laser

Fabricating 20 thin walls with
efficient metal wire [95]

308L

Laser power: 0.4–1600 kW
Laser scanning speed: 1.2 m/min

Spot size: 2 mm
Deposition rate: 0.7 kg/h

Shielding gas: Argon
Wire-feeding speed: 1.5 m/min

Number of layers: 45
Bead overlap: 47%

Wire diameter: 1.1 mm
Laser type: 5 kW diode laser

Optimizing the parameters to
enhance the wall quality [96]

ER321

Laser power: 2 kW
Laser scanning speed: 4.5 mm/s

Wire-feeding speed: 20 mm/s
Shield gas flow rate: 15 L/min

Wire diameter: 1.2 mm
Laser type: 3 kW Fiber laser

Investigating the dendrite
grains and using the UV
synchronous movement

[97]

Ti-6Al-4V

Laser power: 1200 W
Deposition speed: 2 mm/s
Wire-feed rate: 10 mm/s

Shield gas flow rate: 15 L/min
Laser beam size: 2.6 mm

Laser scanning speed: 120 mm/min
Laser type: Not reported

Dendrite grains growth using
ultrasound where the last

layer has the greatest amount
[98]

Ti-6Al-4V

Width of the deposit: 2–4 mm
Laser power: 3 kW

Scanning speed: 20 mm/s
Wire-feeding speed: 30 mm/s

Wire diameter: 1 mm
Laser type: Not reported

Simulation of the WLAM
process [99]

316L

Feeding rate: 8.3 mm/s
Laser scanning speed: 6.5 mm/s

Deposition rate: 250 g/h
Laser power: 1.5 kW

Wire diameter: 1.2 mm
Laser type: Not reported

Detecting defects such as
porosity and lack of fusion in

fabricated parts
[91]

Ti-6Al-4V

Laser power: 2.5–3 kW
Laser scanning speed: 10 mm/s

Cooling rate: 20 K/s
Laser radius: 7.5 mm

Wire diameter: 1.2 mm
Laser type: 3 kW Fiber laser

A simulation of phases was
conducted [100]

316L

Shielding gas flow rate: 20 L/min
Wire-feeding speed: 3–7 m/min

Laser power: 1.5–5 kW
Wire diameter: 1.2 mm

Laser type: 5 kW Fiber laser

The recoil pressure used to
control drop detachment [101]
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Table 2. Cont.

Materials Optimum Input Parameters Findings/Goals Ref.

Al alloy 5A06

Shielding gas flow rate: 15 L/min
Wire-feeding angles: 15–75◦

Laser power: 2.6–3.2 kW
Laser scanning speed: 1–2.5 m/min

Wire-feeding speed: 2–5 m/min
Wire diameter: 1.2 mm

Laser type: 4 kW Fiber laser

Reaching the best overlap rate
for depositing metal (33.33%

was the best amount)
[102]

Ti6-Al-4V

Beam waist: 0.3 mm
Laser power: 200–1000 W

Travel speed: 5, 8, 10 mm/s
Wire-feed speed: 10, 13, 15 mm/s

Laser type: 3 kW Fiber laser

Analyzing the surface tension
by considering regular and

smooth fabrication
[103]

Ti6-Al-4V

Laser power: 4–6 kW
Laser scanning speed: 3.5–10 mm/s

Wire-feeding rate: 40–71.3 mm/s
Hot wire power: 300 W
Wire diameter: 1.5 mm

Laser type: 6 kW Fiber laser

Monitoring molten pool
processing [104]

Ti6-Al-4V

Laser scanning speed: 1–30 mm/s
Laser power: 1–1.8 kW

Peak temperature: 3125 K
Laser type: 3 kW Fiber laser

Monitoring the molten pool
with laser parameters.

Expansion and increase of the
molten pool is highly

dependent on high laser
power

[105]

Inconel 625

Deposition rates: 10 m/min
Shielding gas flow rate: 20 L/min

Laser power: 2000 W
Wire-feeding rate: 55 mm/s

Wire diameter: 1.2 mm
Laser type: 2 kW Fiber laser

Monitoring corrosion
resistance on the dendrite core
and inter-dendritic zone. The
inter-dendritic zone had less
corrosion resistance than the

dendrite core

[106]

ER2319

Focal length: 200 and 300 mm
Laser Power: 1900–2400 W

Laser scanning speed: 1.2 m/min
Wire scanning speed: 1.2 m/min

Wire diameter: 1.2 mm
Laser type: 3 kW Fiber laser

Microstructure analysis was
investigated to monitor the

columnar crystals on the layer
boundaries

[107]

4. Comparing WAAM and WLAM

In this section, we discuss various aspects of additive manufacturing (AM) analysis
for both wire and arc additive manufacturing (WAAM) and wire and laser additive manu-
facturing (WLAM) processes. One advantage of the WLAM process over WAAM is the
small heat-affected area, which allows for more selective melting of the metal. However,
the installation of optic equipment in the WLAM process can be challenging, making it
difficult to install machine components. Additionally, due to the high cost of optic parts,
such as lasers and laser heads, the WLAM process is generally more expensive to set up
and maintain compared to WAAM. Compared to arc-based methods, the laser source in
the WLAM process offers greater control over the heat input. As a result, the quality of the
fabricated parts can be improved. Figure 9 provides a concise comparison of the advantages
and disadvantages of WAAM and WLAM techniques.



Inventions 2023, 8, 52 13 of 22

Inventions 2023, 8, x FOR PEER REVIEW 13 of 22 
 

the fabricated parts can be improved. Figure 9 provides a concise comparison of the ad-

vantages and disadvantages of WAAM and WLAM techniques. 

 

Figure 9. Comparing WAAM and WLAM capabilities. 

The WAAM technique can result in more manufacturing defects compared to 

WLAM. This is due to limitations in installing the arc system, which requires the wire to 

be deposited along simpler lines. If the complexity of the part increases, it can lead to 

incomplete processes or non-uniform walls, and an increase in overlapping walls. Figure 

10 shows a comparison of the microstructures of the same material produced by WAAM 

and WLAM techniques [72,93]. In the microstructure images, the bright phase indicating 

the colony α in the boundary of β grains is more pronounced in the WLAM sample (Figure 

10a) than in the WAAM sample (Figure 10b). Furthermore, the β grains in the WLAM 

sample are more uniformly distributed. 

 

Figure 10. Microstructure of Ti6-Al-4V Fabrication by (a) WAAM with 110 A average current, 1000 

mm/min wire-feed speed, 95 mm/min travel speed, and 12 V average voltage input parameters, and 

(b) WLAM with 2.7 kW laser pawer, 30 mm/s wire feed speed, and 7.5 mm/s deposition speed input 

parameters [72,93]. Reprinted/adapted with permission from Refs. [72,93]. 2023, Mojtaba Kara-

mimoghadam 

  

Figure 9. Comparing WAAM and WLAM capabilities.

The WAAM technique can result in more manufacturing defects compared to WLAM.
This is due to limitations in installing the arc system, which requires the wire to be deposited
along simpler lines. If the complexity of the part increases, it can lead to incomplete
processes or non-uniform walls, and an increase in overlapping walls. Figure 10 shows a
comparison of the microstructures of the same material produced by WAAM and WLAM
techniques [72,93]. In the microstructure images, the bright phase indicating the colony α

in the boundary of β grains is more pronounced in the WLAM sample (Figure 10a) than in
the WAAM sample (Figure 10b). Furthermore, the β grains in the WLAM sample are more
uniformly distributed.
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Figure 10. Microstructure of Ti6-Al-4V Fabrication by (a) WAAM with 110 A average current,
1000 mm/min wire-feed speed, 95 mm/min travel speed, and 12 V average voltage input parameters,
and (b) WLAM with 2.7 kW laser pawer, 30 mm/s wire feed speed, and 7.5 mm/s deposition speed
input parameters [72,93]. Reprinted/adapted with permission from Refs. [72,93]. 2023, Mojtaba
Karamimoghadam.

5. Laser Arc Hybrid Wire Manufacturing (LAHWM)

Laser arc hybrid wire manufacturing (LAHWM) is a hybrid manufacturing process
that combines wire arc manufacturing (WAM) and laser manufacturing (LM) processes.
In Figure 11 are depicted a scheme of the process, where a1 represent the arc leader
configuration, and a2 the laser leader configuration. In this approach, a laser is used to
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melt the wire feedstock. In contrast, an arc is used to stabilize the melt pool, resulting in a
higher deposition rate, improved surface quality, and better mechanical properties [108].
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Figure 11. Schematic of LAHWM [108].

LAHWM has been used to fabricate various metallic parts for aerospace, automotive,
and biomedical applications [109]. It can be used with many materials, including aluminum,
titanium, and stainless steel. It can produce parts with high precision, high surface quality,
and good mechanical properties. The advantages of LAHWM include [110]:

• High deposition rate: The high deposition rate of LAHWM enables the production of
large and complex parts in a relatively short time.

• Cost-effectiveness: LAHWM is a cost-effective method for producing large parts as it
requires less material compared to powder-based additive manufacturing.

• High precision: LAHWM produces parts with high precision and surface quality due
to the high energy density of the laser and arc.

• Versatility: LAHWM can be used with a wide range of materials, including aluminum,
titanium, and stainless steel.

• Improved mechanical properties: LAHWM can produce parts with improved mechan-
ical properties, such as high strength and toughness.

However, LAHWM is still under development and research, and still faces some
challenges, such as the need for further research to improve the quality of the deposited
material and the need to develop post-processing techniques to improve the mechanical
properties of the manufactured parts [111]. Overall, LAHWM is a promising technology
that can produce high-quality parts cost-effectively and efficiently. With continued develop-
ment and research, LAHWM is expected to play an increasingly important role in various
industries in the future [112]. To overcome the limitations of both WAAM and WLAM, the
LAHWM technique was developed to enhance the operation of the process. WAAM faces
challenges in the fabrication of complex parts due to the limitations of the arc and process
parameters. On the other hand, the LAHWM technique can achieve the highest deposition
rate by using two or more wire feeders, making it a more feasible option [111]. Based on
research, the rate of porosity decreases significantly by comparison with WAAM processes.
In some cases, the amount of porosity decreased by 70% using the LAHWM method [113].
A summary of recent articles is show in Table 3, the used metal are highlighted.
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Table 3. Summary of LAHWM research outputs.

Materials Optimum Input Parameters Findings/Goals Ref.

ER316L

Laser power: 2 kW
Laser scanning speed: 0.3 1.2 m/min

Wire-feed speed: 6 m/min
Wire diameter: 1 mm

Heat input: 175–289 J/mm
Layer length: 160 mm

Average current: 112 A
Average voltage: 13.3 V

Shielding gas flow rate: 25 L/min
Angle of arc torch to the workpiece: 60◦

Angle of laser to the workpiece: 90◦

Laser-arc distance: 2 mm
Laser type: 6 kW Fiber laser

Improving the surface
roughness and quality of

WAAM samples for the same
material by oscillating laser

beam

[113]

316L-Si Stainless steel

Laser scanning speed: 35 mm/s
Wire-feed speed: 6.7 m/min

Wire diameter: 1.2 mm
Focal length of optics: 250 mm

Focal plane diameter: 3 mm
Layer height: 0.8–1.2 mm
Average current: 170 A
Average voltage: 18.5 V

Angle of arc torch to the workpiece: 90◦

Angle of laser to the workpiece: 30◦

Laser type: 3.5 kW fiber laser

Topological accuracy
decreased by increasing the

deposition rate
[114]

ER4043 and 6061

Laser power: 200–400 W
Scanning speed: 1000 mm/min
Wire-feed speed: 250 mm/min

Average current: 80–160 A
Average voltage: 13.3 V
Wire diameter: 1.2 mm

Laser type: Nd:YAG

Increasing the tensile strength
from 143.6 MPa to 164.4 MPa

by comparing the WAAM
process for the same material

[115]

ER316L

Laser power: 500–2000 W
Average current: 147 A
Average voltage: 14.2 V

Angle of arc torch to the workpiece: 55◦

Angle of laser to the workpiece: 90◦

Wire-feed speed: 0.6 m/min
Heat input: 259–409 J/mm

Focal plane diameter: 0.4 mm
Wire diameter: 1 mm

Laser type: 6 kW fiber laser

Increasing the laser power, the
trend became weaker, and

expanding the deposition wall
decreased micro-hardness

[116]

6. Comparison between WAAM, WLAM and WLAHM

WAAM, WLAM, and WLAHM all have their advantages and disadvantages. In
summary, WAAM is a cost-effective process with low precision and poor surface quality,
WLAM is a high-precision and high-speed process but with high cost, and WLAHM
is a high-efficiency and high-precision process with high cost and complexity [117,118].
WLAHM is considered the most versatile process among the three but involves the most
complex process. WAAM is the most cost-effective process but has the lowest precision,
while WLAM is the most precise and expensive process [119]. The choice of which process
to use will depend on the specific application and the desired balance of cost, precision, and
surface quality [120]. Table 4 provides an at-a-glance comparison of WAAM, WLAM, and
WLAHM processes by considering three ranks, -, +, and ++, representing low, middle and
high effectiveness, respectively. WLAHM has some disadvantageous aspects, such as the
procedure for installation taking more time. Moreover, with this technique, more devices
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are involved in the process compared to WAAM and WLAM processes; the positives
responses are outweighed by these disadvantages [114]. One of the distinctive features of
WLAHM is that it can use two lasers simultaneously to make the process more effective.
By using thicker metal wire in this technique, large parts can be manufactured faster, and
the accuracy of the melting pool can increase dramatically [108]. The laser process keyhole
can shape better when two lasers are applied in WLAHM, and the bead of the deposited
layers has a suitable appliance so that the other layers can deposit on each other very
uniformly [108,110]. Moreover, regarding the equipment components of the three WAM
methods, WAAM has fewer parts than WLAM and WLAHM. Additionally, WLAM and
WLAHM have optical elements that can be damaged, so the portability of WAAM is easier
than the laser components [109].

Table 4. At-a-glance comparison of WAAM, WLAM, and WLAHM processes.

Features
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Better process
control - + ++

Higher deposition
rate - + ++

Higher precision - + ++
Better wall accuracy - + ++

Post-processing
requirement ++ + -

More complexity - + ++
Harder to install - + ++
Better portability ++ + -

Moreover, WAAM is known for its high deposition rate, low cost, and flexibility in
use of materials, but exhibits low precision and poor surface quality. WLAM is known for
its high accuracy and speed but has high costs and limited flexibility in terms of materials.
WLAHM is known for its high precision, high efficiency, good surface quality, and flexibility
in terms of materials, but it has high costs and complexity. In the WAM process, the laser
and arc can melt wire properly. WLAM or WAAM can be applied depending on the
environmental conditions, the metal types, the process speed, the sample volume, the
budget, and other influential factors. One of the limitations of the WLAM process is the use
of reflective metals because the laser beam may be reflected and damage the laser source.
However, the high capability of the WLAM process for making complex parts with unique
geometries can advance MWAM processes by several steps.
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7. Outlook in MWAM Research and Development

Extending the framework for predicting other properties which result from the de-
posited layers in multilayer printing is very challenging because the WAM technique has
only been developed for a couple of years and a comprehensive overview of the mechani-
cal properties of the AM samples needs extensive work. The created framework enables
real-time estimation of printed items’ microstructural characteristics, or provision of a
direct comparison with the specified microstructural features between WAM techniques. To
obtain the desired microstructure in the WAM process it is necessary to adjust the process
parameters in a closed-loop feedback manner by organizing the desired and estimated
microstructural properties.

Monitoring the microstructure of multi-material WAM is an exciting area of research,
with closed-loop feedback on molten pool monitoring after cooling or during the process
contributing to better understanding of the transformation of the microstructure phases [16].
Studies undertaken on the microstructures and grain size of the manufactured samples
show that the controlling heat input of the melting pool has a direct effect on the quality
of microstructures because it is necessary to reach uniform temperatures in the melting
pool. This phenomenon can help to reduce the chance of defect generation after the
cooling process for each layer. It should be noted that monitoring the metal melting areas
and analyzing the images and videos taken by high-speed cameras can lead to a correct
understanding of how the metal melts. This data can be utilized for image processing in the
WAM process, thereby aiding future research to advance the machine learning components.
One of the most critical zones in the WAM process is the melting pool caused by the wire
that forms the layers. In this zone, some defects may occur during and after the WAM
process due to the high speed of the process and the small distance of the heat-affected zone
from the laser process. Monitoring with thermo-cameras and installing thermal sensors
make it possible to record the data resulting from the heat generated. Wires with small
diameters can be operated in the WAM process in the tissue-engineering process, which
controls the process more accurately and uses metals such as magnesium alloys, which
can be very useful in many medical areas and in bioengineering. This unique application
can even be used to repair or fix defects in damaged structures that have been in human
or animal bodies, and there is no need to remove and replace parts by selecting proper
methods to print these parts. The samples are placed in the bodies, and the WAM effectively
reduces incidental costs with respect to medical aspects. In addition to the applications
discussed earlier for WAM techniques, they can also be used in the electronics industry
for welding the bases of sensitive parts and creating thin lines on boards by melting metal
wires. Among the WAM techniques, WAAM is considered the most suitable technique for
load-bearing and precision engineering, as well as for strengthening and repair purposes.

8. Conclusions

In conclusion, WAM is a rapidly evolving technology that has the potential to rev-
olutionize the way metal parts are manufactured in several industries. WAAM, WLAM,
and WLAHM are the three main MWAM processes, each with unique advantages and
disadvantages.

To achieve better microstructural properties, dimensional accuracy, and surface quality
in MWAM, it is essential to identify the main process parameters and deposition strategies
that influence the macroscopic properties and geometrical accuracy of different arc and
laser processes. Further research is needed to fully exploit the potential of these processes
in aerospace, automotive, biomedical, and energy fields, amongst others.

In order to promote the adoption and development of MWAM, it is crucial to develop
a decision-making model that takes into account the most important factors for different
industry sectors to help them determine which MWAM technique is best suited for their
specific needs. Moreover, the establishment of common technical standards for metal
WAAM would be a valuable initiative to ensure the consistency and repeatability of metal
prints.
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