# Compromised Vibration Isolator of Electric Power Generator Considering Self-Excitation and Basement Input

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Theoretical Linear Model of Supported Electric Power Generator

## 3. Evaluation Indices for Vibration Isolator

## 4. Dynamic Simulation of Supported Power Plant Model

## 5. Compromise Strategy of Vibration Isolator

## 6. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Alujevic, N.; Cakmak, D.; Wolf, H.; Jokic, M. Passive and active vibration isolation system using inerter. J. Sound Vib.
**2018**, 418, 163–183. [Google Scholar] [CrossRef] - Siami, A.; Karimi, H.R.; Cigada, A.; Zappa, E.; Sabbioni, E. Parameter optimization of an inerter-based isolator for passive vibration control of Michelangelo’s Rondanini Pieta. Mech. Syst. Signal Process.
**2018**, 98, 667–683. [Google Scholar] [CrossRef] - Wu, Z.; Jing, X.; Sun, B.; Li, F. A 6DOF passive vibration isolator using X-shape supporting structures. J. Sound Vib.
**2016**, 380, 90–111. [Google Scholar] [CrossRef] - Lee, J.; Okwudire, C.E. Reduction of vibrations of passively-isolated ultra-precision manufacturing machines using mode coupling. Precis. Eng.
**2016**, 43, 164–177. [Google Scholar] [CrossRef] - Ribeiro, E.A.; Lopes, E.M.O.; Bavastri, C.A. A numerical and experimental study on optimal design of multi-DOF viscoelastic supports for passive vibration control in rotating machinery. J. Sound Vib.
**2017**, 411, 346–361. [Google Scholar] [CrossRef] - Oh, H.U.; Lee, K.J.; Jo, M.S. A passive launch and on-orbit vibration isolation system for the spaceborne cryocooler. Aerosp. Sci. Technol.
**2013**, 28, 324–331. [Google Scholar] [CrossRef] - Gu, X.; Yu, Y.; Li, J.; Li, Y. Semi-active control of magnetorheological elastomer base isolation system utilizing learning-based inverse model. J. Sound Vib.
**2017**, 406, 346–362. [Google Scholar] [CrossRef] - Santos, M.B.; Coelho, H.T.; Neto, F.P.L.; Mafhoud, J. Assessment of semi-active friction dampers. Mech. Syst. Signal Process.
**2017**, 94, 33–56. [Google Scholar] [CrossRef] - Oh, H.U.; Choi, Y.J. Enhancement of pointing performance by semi-active variable damping isolator with strategies for attenuating chattering effects. Sens. Actuators A Phys.
**2011**, 165, 385–391. [Google Scholar] [CrossRef] - Azadi, M.; Behzadipour, S.; Faulkner, G. Performance analysis of a semi-active mount made by a new variable stiffness spring. J. Sound Vib.
**2011**, 330, 2733–2746. [Google Scholar] [CrossRef] - Pingzhang, Z.; Jianbin, D.; Zhenhua, L. Simultaneous topology optimization of supporting structure and loci of isolators in an active vibration isolation system. Comput. Struct.
**2018**, 194, 74–85. [Google Scholar] - Beijen, M.A.; Tjepkema, D.; Dijk, J. Two-sensor control in active vibration isolation using hard mounts. Control Eng. Pract.
**2014**, 26, 82–90. [Google Scholar] [CrossRef] - Yang, X.L.; Wu, H.T.; Li, Y.; Chen, B. Dynamic isotropic design and decentralized active control of a six-axis vibration isolator via Stewart platform. Mech. Mach. Theory
**2017**, 117, 244–252. [Google Scholar] [CrossRef] - Wang, Z.; Mak, C.M. Application of a movable active vibration control system on a floating raft. J. Sound Vib.
**2018**, 414, 233–244. [Google Scholar] [CrossRef] - Li, Y.; He, L.; Shuai, C.G.; Wang, C.Y. Improved hybrid isolator with maglev actuator integrated in air spring for active-passive isolation of ship machinery vibration. J. Sound Vib.
**2017**, 407, 226–239. [Google Scholar] [CrossRef] - Chi, W.; Cao, D.; Wang, D.; Tang, J.; Nie, Y.; Huang, W. Design and experimental study of a VCM-based stewart parallel mechanism used for active vibration isolation. Energies
**2015**, 8, 8001–8019. [Google Scholar] [CrossRef] - Yang, J.; Xiong, Y.P.; Xing, J.T. Vibration power flow and force transmission behavior of a nonlinear isolator mounted on a nonlinear base. Int. J. Mech. Sci.
**2016**, 115, 238–252. [Google Scholar] [CrossRef] - Hu, Z.; Zheng, G. A combined dynamic analysis method for geometrically nonlinear vibration isolation with elastic rings. Mech. Syst. Signal Process.
**2016**, 76, 634–648. [Google Scholar] [CrossRef] - Yan, L.; Gong, X. Experimental study of vibration isolation characteristics of a geometric anti-spring isolator. Appl. Sci.
**2017**, 7, 711. [Google Scholar] [CrossRef] - Kim, C.-J. Design criterion of damper component of passive-type mount module without using base mass-block. Energies
**2018**, 11, 1548. [Google Scholar] [CrossRef][Green Version] - Rao, S.S. Mechanical Vibration, 5th ed.; Pearson: Singapore, 2011. [Google Scholar]
- Inman, D.J. Engineering Vibration, 4th ed.; Pearson: Singapore, 2013. [Google Scholar]

**Figure 1.**Image of the electric power generator [20].

**Figure 2.**Image of vibration isolator [20].

**Table 1.**Specification of theoretical power plant model [20].

Variable | Value |
---|---|

${M}_{p}$(kg) | 6070 |

${M}_{M}$ (kg) | 6900 |

${M}_{B}$ (kg) | ${10\times M}_{p}$ |

${K}_{p}$ (kN/m) | 940 (1 Hz), 1050 (30 Hz), 1245 (60 Hz), 1881 (90 Hz), 4399 (120 Hz) |

${K}_{M}$ (kN/m) | $\left(5\times {10}^{6}\right)\times {K}_{p}$ |

${K}_{B}$ (kN/m) | ${{10}^{-1}\times K}_{p}$ |

${C}_{p}$ (Nsec/m) | 603 (1 Hz), 376 (30 Hz), 216 (60 Hz), 184 (90 Hz), 158 (120 Hz) |

${C}_{M}$ (Nsec/m) | $\left(1.5\times {10}^{6}\right)\ast {C}_{p}$ |

Case | Value |
---|---|

I | ${C}_{M}\xf710$, ${K}_{M}\xf710$ |

II | ${C}_{M}\xf710$, ${K}_{M}\times 10$ |

III | ${C}_{M}\times 10$, ${K}_{M}\xf710$ |

IV | ${C}_{M}\times 10$, ${K}_{M}\times 10$ |

Case | $\mathbf{Ratio}\mathbf{of}\mathbf{the}\mathbf{First}\mathbf{Performance}\mathbf{Index}\left({\mathit{I}}_{1}\right)$ | ||||
---|---|---|---|---|---|

1 (Hz) | 30 (Hz) | 60 (Hz) | 90 (Hz) | 120 (Hz) | |

I | - | 3.2 | 1.6 | 1.4 | 1.6 |

II | - | 3.2 | 1.7 | 1.5 | 1.6 |

III | - | 3.2 | 1.6 | 1.4 | 1.6 |

IV | - | 3.2 | 1.6 | 1.4 | 1.6 |

Case | $\mathbf{Ratio}\mathbf{of}\mathbf{the}\mathbf{Sec}\mathbf{ond}\mathbf{Performance}\mathbf{Index}\left({\mathit{I}}_{2}\right)$ | ||||
---|---|---|---|---|---|

1 (Hz) | 30 (Hz) | 60 (Hz) | 90 (Hz) | 120 (Hz) | |

I | 1.3 | 1.0 | 1.2 | 1.5 | 2.0 |

II | 1.3 | 0.9 | 0.9 | 0.8 | 0.8 |

III | 1.3 | 1.0 | 1.0 | 1.0 | 1.0 |

IV | 1.3 | 1.0 | 1.0 | 1.0 | 1.0 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Park, Y.W.; Kim, T.-W.; Kim, C.-J. Compromised Vibration Isolator of Electric Power Generator Considering Self-Excitation and Basement Input. *Inventions* **2023**, *8*, 40.
https://doi.org/10.3390/inventions8010040

**AMA Style**

Park YW, Kim T-W, Kim C-J. Compromised Vibration Isolator of Electric Power Generator Considering Self-Excitation and Basement Input. *Inventions*. 2023; 8(1):40.
https://doi.org/10.3390/inventions8010040

**Chicago/Turabian Style**

Park, Young Whan, Tae-Wan Kim, and Chan-Jung Kim. 2023. "Compromised Vibration Isolator of Electric Power Generator Considering Self-Excitation and Basement Input" *Inventions* 8, no. 1: 40.
https://doi.org/10.3390/inventions8010040